
Baltic J. Modern Computing, Vol. 2 (2014), No. 4, 272-284

Heuristic Reactive Rescheduling Algorithms in the

Advanced Scheduling Add-on for ERP

Vytautas TIEŠIS
1
, Gintautas DZEMYDA

1
, Taskin KIZIL

2

1) Institute of Mathematics and Informatics, Vilnius University, LT-08663,Vilnius, Lithuania
2) Hisbim IT Corp. Atap OSB, 26110 Eskisehir, Turkey

vytautas.tiesis@mii.vu.lt; gintautas.dzemyda@mii.vu.lt;

taskin@hisbim.com

Abstract. In the paper there are described some rescheduling algorithms which are implemented

in the Advanced Planning and Scheduling system, namely PEN System, which is an add-on for the

Enterprise Resource Planning system and intended to be used to mitigate the impacts of potential

exceptions disrupting shop floor level schedules. The rather simple and quick heuristic algorithms,

namely Affected Operations Rescheduling and Active Wilkerson-Irwin algorithm are chosen to

cope with the machine disruption. The algorithms are modified for more complicated and realistic

enterprise environment model than the Job Shop or the Flexible Job Shop, namely for complex

operations’ precedence constraints described by any simple directed acyclic graph.

Keywords: reactive rescheduling; heuristic algorithms; enterprise resource planning; precedence

constraints.

1. Introduction
Advanced enterprise resource planning systems (ERP II) up to date stay ill-suited to

deal with undesirable business events (machine break down, absence of employees,

shortage of materials, etc.), other exceptions and with the optimisation of plans. That

especially concerns ERP for small and middle enterprises. Such functionalities are often

implemented as add-on modules that take data out of ERP databases and send the

produced plans back for execution. The paper describes heuristic rescheduling

algorithms which are implemented in the Advanced Planning and Scheduling (APS)

system, namely PEN System (Caplinskas et al., 2012), which is an add-on for the ERP

system and intended to be used to mitigate the impacts of potential exceptions disrupting

shop floor level schedules an mid-term level production plans. The PEN System is

prepared to proceed with variety of rescheduling algorithms; and system architects

should choose most proper algorithms in the process of design specific architectures in

the particular target enterprises on the basis of PEN System. In the paper quick heuristic

algorithms able to cope with the machine disruption are presented − Affected Operations

Rescheduling (AOR) (Abumaizar and Svestka, 1997) and Active Wilkerson-Irwin

algorithm (AWI) (Dong,Y.-H. and Jang, J., 2012; Wilkerson, L.J. and Irwin, J.D., 1971).

The first algorithm shifts to right exclusively affected operations on the same machines

preserving processing order. The second algorithm dispatches operations on machines in

the manner that creates active schedule for the Job Shop heuristically seeking improve

tardiness, make-span and stability (minimal deviation of new operations’ start times

 Heuristic Reactive Rescheduling Algorithms 273

from the original start times). The AWI with straightforward modification may be

applied to Flexible Job Shop where affected operations may be dispatched to alternative

machines. The modifications of algorithms for more complicated and realistic enterprise

environment than Job Shop and Flexible Job Shop are presented in the paper. The model

of production includes precedence constraints that may be described by any simple

directed acyclic graph: each operation may have several precedents and several

successors. The model may be regarded as a simultaneous execution of several

independent projects.

The elaborated models of the enterprise environment and the ones of schedules are

described in the Section 2. The modifications of heuristic algorithms are presented in the

Section 3. The complexity of algorithms and their application is discussed in the Section

4.

2. Models

Concepts of the enterprise environment and schedules are described in this section,

namely the denominations of parameters of resources, production and schedule and there

relations are described.

2.1. Resources

The algorithms presented in the paper deal with one kind of technical resource – the

machines. In general, the machine is a device which is able to perform one or several

technological operations. The concepts and denominations related to resources are

described below.

𝑀 is a set of machines. The total number of machines is denominated by 𝑚 = |𝑀| .
𝑟 is a number (identifier) of a machine.

An operation is defined as a basic technological operation that is not decomposed in

simpler technological operations in a schedule. To meet the requirements of presented

algorithms, an operation is described by:

 the set of machines that are able to perform it;

 processing time (setup time is included in the processing time).

An operation is denominated as an ordered pair (𝑗, 𝑘)𝜖𝑂𝑗 where 𝑗 is a number of a

job, 𝑘 is a number of an operation in the 𝑗–th job operations' list

𝑂𝑗 = {(𝑗, 1); … ; (𝑗, 𝑘); … ; (𝑗, 𝑜̅𝑗)}, where the 𝑗–th job has 𝑜̅𝑗 operations.

𝑝𝑗𝑘 is processing time of the operation (𝑗, 𝑘)𝜖𝑂𝑗 . It is fixed, same for all alternative

machines and known a priori.
𝑀𝑗𝑘 ⊂ 𝑀 is a set of machines which are able to perform operation (𝑗, 𝑘)𝜖𝑂𝑗 .

2.2. Production and jobs

For the production on the shop floor the presented algorithms use the model which

includes precedence constraints of the job's operations that may be described by any

simple directed acyclic graph. A number of jobs are processed on a number of machines.

The processing of a job on a machine is called an operation. The processing time 𝑝𝑗𝑘 of

each job on each machine is known and fixed. Each machine can process only one job at

a time and preemption is not allowed. For each operation alternative machines may exist.

274 Tiešis, Dzemyda, Kizil

Different jobs may visit different machines. The graph of operations’ precedence 𝐺(𝑂𝑗)

(i.e., the job routing) is individual for each job and is known a priori, an operation may

have several immediate successive operations and several directly predeceasing

operations. The time of release and the due time should be defined for a job. There are

no relations of precedence among operations of different jobs. Below the denominations

related to the production are described.

𝐽 is a set of jobs. The total number of jobs is denominated by 𝑛 = |𝐽|.
𝑟𝑗 is a release date of a job jϵ𝐽.

𝑑𝑗 is a due date of a job jϵ𝐽.

𝐺(𝑂𝑗) is the simple directed acyclic graph which correspond to the direct precedence

constraints of the operations (𝑗, 𝑘)𝜖𝑂𝑗 of job 𝑗. The operations are nodes, and arcs

represent precedence relations.

succ(𝑗, 𝑘) is a set of the immediate successive operations of an operation (𝑗, 𝑘) in the

graph 𝐺(𝑂𝑗). In the case when directed graph is intree (any operation has at most one

successor) the succ(𝑗, 𝑘) consist of one operation or is an empty set for the last operation.

pred(𝑗, 𝑘) is a set of directly predeceasing operations of an operation (𝑗, 𝑘) in 𝐺(𝑂𝑗).

In the case when directed graph is outtree (any operation has at most one predecessor)

the pred(𝑗, 𝑘) consist of one operation or is an empty set for the first operation.

If operations’ graph 𝐺(𝑂𝑗) constitute a simple sequence of operations (succ(𝑗, 𝑘) and

pred(𝑗, 𝑘), both consist of one operation or both are empty sets) then

𝑂𝑗 = {(𝑗, 1); … ; (𝑗, 𝑘); … ; (𝑗, 𝑜̅𝑗)} is a chain of operations ordered according to this

sequence. The Job Shop Scheduling problem uses this model and many academic

algorithms are proposed for this problem (Pinedo, 2012). In all cases the operation (𝑗, 𝑜̅𝑗)

is the last, predeceased indirectly or directly by other operations from 𝐺(𝑂𝑗). If the

original operations’ graph has several terminal nodes then (𝑗, 𝑜̅𝑗) is a mock node with a

processing time equal to zero.

2.3. Undesirable Business Events

The Undesirable Business Event is unexpected facts or circumstances which disturb the

normal implementation of the actual running schedule. Many Undesirable Business

Events can be modelled as machine breakdowns since they involve a disruption in the

processing of operations on a machine or machines for a period of time. The event is

described by a time stamp, an impact estimation (in time), related processes and

resources:

Dm is the broken machine, 𝐷𝑚ϵM.

Rt is the time when the broken machine is anew available for processing.

Ew is the end of Time Window (Rescheduling Point) for the rescheduling. The

rescheduling is invoked only by events with significant impact therefore 𝐸𝑤 ≪ 𝑅𝑡.

Evs is the time stamp when the disruption has been started.

(𝑗𝑜, 𝑖𝑜) is the interrupted operation.

2.4. Schedule

Rescheduling algorithms reschedule the Actual Running Schedule which is the schedule

that has been running until the Undesirable Business Event has occurred and the Event

 Heuristic Reactive Rescheduling Algorithms 275

has been decided by the decision maker or accepted automatically to be a reason for the

rescheduling. Such concepts describe models of schedules:

𝑠𝑗𝑘 is the planned start time of an operation (𝑗, 𝑘) in the Actual Running Schedule;

𝑐𝑗𝑘 is the planed completion time of an operation (𝑗, 𝑘) in the Actual Running

Schedule.

𝑚𝑗𝑘 ∈ 𝑀𝑗𝑘 is the machine on which the operation (𝑗, 𝑘) is assigned to process.

𝐽𝑂𝑟 is the job order for the machine 𝑟 ∈ [1, 𝑚], the processing sequence of operations

on the machine 𝑟. The job orders and operation start times are data forming the Gantt

chart. The order 𝐽𝑂𝑟 = (𝑜𝑝𝑟1, … , 𝑜𝑝𝑟𝑙 , … , 𝑜𝑝𝑟,𝑙𝑚𝑟
) is unambiguously determined by the

sequence of start times 𝑠𝑗𝑘 , 𝑗ϵ𝐽, 𝑘 = 1, 𝑜̅𝑗
̅̅ ̅̅ ̅, (∀(𝑗, 𝑘): 𝑚𝑗𝑘 = 𝑟). Therefore for each

𝑙 ∈ [1, 𝑙𝑚𝑟] there exist the relation between operations’ list 𝐽𝑂𝑟 for 𝑟 machine and list 𝑂𝑗

for 𝑗 job: 𝑜𝑝𝑟𝑙 ≡ (𝑗, 𝑘), where the operation (𝑗, 𝑘) is assigned to the machine 𝑚𝑗𝑘 = 𝑟.

The operations in the Actual Running Schedule should be separated out into

operations to reschedule and operations which will be successfully started until the end

of the calculation Time Window. It is supposed that start times of operations determined

in the Actual Running Schedule are kept at the processing on the shop floor during the

calculation Time Window. Bellow the process of the separation is described.

𝐽𝑅 is the set of remaining to reschedule job numbers. Initially 𝐽𝑅 = 𝐽; the job j is

excluded from 𝐽𝑅 if all operations from 𝑂𝑗 = {(𝑗, 1); … ; (𝑗, 𝑘); … ; (𝑗, 𝑜̅𝑗)} are marked as

finished, i.e. if the last operation (𝑗, 𝑜̅𝑗) is marked as finished.

𝐹𝑖𝑛0 is the set of numbers (𝑗, 𝑘) j𝜖𝐽 of operations that have been finished at the time

stamp Evs of rescheduling calculations. If the final operation (𝑗, 𝑜̅𝑗) from 𝑂𝑗 is included

in 𝐹𝑖𝑛0 then the job 𝑗 is excluded from 𝐽𝑅.

𝐷𝑖𝑟𝐴𝑓𝑓 is the set of numbers (𝑗, 𝑘) of operations which are affected by the

undesirable business event. If the unexpected event is “broken machine” then affected

operations are those:

1) Operations included in the broken machine 𝐷𝑚 job order 𝐽𝑂(𝐷𝑚) wich

planed completion time 𝑐𝑗𝑘 is after disruption start time 𝐸𝑣𝑠 or the planned

start time 𝑠𝑗𝑘 is after 𝐸𝑣𝑠 and before the time 𝑅𝑡 when the broken machine

is available;

2) Operations that are in directed graphs 𝐺(𝑂𝑗) after operations settled in 1);

those operations can be determined by Breadth-First search (Knuth, 1997)

for each jϵ𝐽.

𝐹𝑖𝑛1 is the set of numbers (𝑗, 𝑘) of operations that will be started until the end of the

rescheduling Time Window (the planed start time 𝑠𝑗𝑘 is less than 𝐸𝑤) and which are not

included in the 𝐷𝑖𝑟𝐴𝑓𝑓. If all 𝑜̅𝑗 operations from 𝑂𝑗 are included in 𝐹𝑖𝑛0 and 𝐹𝑖𝑛1,

namely if the final operation (𝑗, 𝑜̅𝑗) is included in 𝐹𝑖𝑛1, then the job 𝑗 is excluded from
𝐽𝑅

𝑅𝑒𝑚𝑗𝑘 is the indicator of remaining operation (j,k) to be rescheduled, 𝑅𝑒𝑚𝑗𝑘 ∈ {0,1},

𝑗 ∈ 𝐽𝑅, 𝑘 = 1, 𝑜̅𝑗
̅̅ ̅̅ ̅ (all operations excluding sets of finished operations Fin0 and Fin1 have

indicator 𝑅𝑒𝑚𝑗𝑘 = 1)

On purpose to simplify the rescheduling it is reasonable to let only remaining

operations in the plan (in the lists 𝐺𝑂 and 𝐽𝑂).

 𝑃𝑙𝑎𝑛1 – new rescheduled schedule with new start times 𝑠1𝑗𝑘 of operations.

276 Tiešis, Dzemyda, Kizil

3. Rescheduling algorithms

Usually there is a short Time Window for rescheduling calculations and corresponding

decision making. Therefore the rough methods are often used for rescheduling that

produce rather effective but not necessarily optimal plans. Several heuristic approaches

are chosen for rescheduling in the PEN system.

Right-shift rescheduling is one of methods for partial rescheduling (Abumaizar and

Svestka, 1997). It is simple, quick to calculate, but generates a schedule far from optimal

– it shifts all remaining operations by the duration of the damaged machine reparation. It

is applicable only in the case of redundant resources, flexible schedules or when

customer orders may wait. Right-shift rescheduling algorithm serves as the base

benchmark for evaluation of elaborated algorithms. The method completely preserves

the initially scheduled operation’s sequences including operations on the damaged

machine that are processed after the reparation of the machine.

More effective method applies right-shift for only those operations that are affected

directly or indirectly by the disruption; the method is called the Affected Operations

Rescheduling (AOR) (Abumaizar and Svestka, 1997). The aim of the method is to

preserve the initial schedule as much as possible, in order to minimize the disruptions of

the raw materials’ and parts’ delivery schedule. The algorithm does not search for

alternative machines; operations on the damaged machine are processed after the

reparation of the machine, like in the Right-shift case.

Differently from the Affected Operations Rescheduling, the Active Wilkerson Irwin

algorithm (AWI) (Dong,Y.-H. and Jang, J., 2012; Wilkerson, L.J. and Irwin, J.D., 1971)

with minor modification may allocate the operations that have been interrupted because

of the machine damage on the alternative operable machines. The heuristic method of

quick rescheduling tries to optimize schedules allocating operations in course by some

heuristic rules. The allocation rules also seek to minimize deviation from the actually

running schedule. In many cases the AWI overcomes AOR, in some cases does not,

especially in the aspect of stability. Therefore the quick AOR serves in the PEN system

as a generator of an optional rescheduled plan to choose by the decision maker.

3.1. Affected Operations Rescheduling algorithm

An algorithm for rescheduling the affected operations in a job shop is presented in the

paper (Abumaizar and Svestka, 1997). The results of experiments demonstrate that the

Affected Operations Rescheduling (AOR) avoids the disadvantages associated with the

full-scale rescheduling and Right-Shift rescheduling methods. In this section the

modification of the AOR is presented when the model of production includes precedence

constraints of the job's operations that may be described by any simple directed acyclic

graph 𝐺(𝑂𝑗). The model may be regarded as a mutual execution of several independent

projects. Furthermore, our algorithm takes into account a fact that non-affected

operations are processed during the rescheduling Time Window.

The basic principle of AOR is to react to any disruption by delaying affected

operations’ starting times (pushing them forward) by the minimum amount required to:

 Keep the technologically constrained precedence relations of job’s

operations;

 Preserve the initially scheduled sequence of operations on each machine. In

the original AOR (Abumaizar and Svestka, 1997) the initial sequence of

 Heuristic Reactive Rescheduling Algorithms 277

operations is strictly preserved because it is supposed that the production

process is stopped during the rescheduling Time Window.

In our modification it is supposed that the unaffected operations are processed during

the Time Window. The starting times of such operations are kept as in the Actual

Running Schedule. So there are some permutations at the beginning of sequences of

operations remaining to reschedule (awaiting of rescheduling).

Let us describe the idea of AOR in the Job Shop case. The technologically

constrained and scheduled sequences of job’s and machine's activities may be

represented as a binary tree (see Fig. 1). The nodes represent the operations (𝑗, 𝑘). Two

branches exit the node (𝑗, 𝑘). One branch, namely the machine branch, points to the

operation next on the machine (NOM) according to the operations assignments in the

Actual Running Schedule, i. e. according to the job order 𝐽𝑂𝑟 where 𝑟 = 𝑚𝑗𝑘. Another

one, namely job branch, points to the operation next of the job (NOJ) immediate

successive operation succ(𝑗, 𝑘) according to the technological precedence constraints

described by the graph 𝐺(𝑂𝑗).

Fig. 1 The binary tree of the delay propagation

Algorithm starts with the root node, that represents the starting affected operation

(𝑗𝑜, 𝑖𝑜), often (𝑗𝑜, 𝑖𝑜) is an interrupted operation and propagates delay through the

binary tree identifying other affected operations. To find out if the operation (𝑗, 𝑘) is

affected, its planned start time 𝑠𝑗𝑘 is compared with the shifted completion time of the

preceding operation ((𝑗𝑜, 𝑖𝑜) in the job branch in Fig. 1). If the completion time of the

preceding operation is less than the 𝑠𝑗𝑘, then the operation (𝑗, 𝑘) is assumed to be

unaffected and no branching from (𝑗, 𝑘) is needed. Furthermore, no more shifts are

performed on this branch. If the completion time of the current operation is greater than

𝑠𝑗𝑘, then the operation (𝑗, 𝑘) is affected and the following additional calculations need to

be performed:

 update 𝑠𝑗𝑘 – make it equal to the completion time of the preceding

operation and update the completion time of (𝑗, 𝑘);

 include the operation (𝑗, 𝑘) into the set of the affected operations for

further branching.

In the case of several successive operations succ(𝑗, 𝑘) there may be several job

branches. In the case of several preceding operations pred(𝑗, 𝑘) the operation (𝑗, 𝑘) may

appear in several job branches and as a consequence it may be shifted many times

prolonging a run time of rescheduling.

278 Tiešis, Dzemyda, Kizil

The algorithm uses such internal variables:

𝑐1𝑗𝑘 is a completion time of an operation (𝑗, 𝑘) according to the rescheduled

schedule Plan1.

𝑐𝑝
𝑗𝑘

 is a temporal completion time of the potentially affected operation.

𝑠𝑝𝑗𝑘 is a temporal start time of the potentially affected operation.

𝑄 is an object – the queue of potentially affected operations (𝑗, 𝑘).

𝑄.push(j,k) is a method: push (𝑗, 𝑘) into the queue, the simplest method is to include

it at the end of the queue.

𝑄.pop is a method: take the first pair from the queue.

𝑄. 𝑞𝑗𝑘 is a property, the indicator of an inclusion of the operation into the queue.

𝑄. 𝑞𝑗𝑘 ∈ {0,1}, 𝑄. 𝑞𝑗𝑘 = 1 if (𝑗, 𝑘) is included into 𝑄.

𝐴𝑓𝑓𝑗𝑘 is the indicator of an operation affected by the right shift; 𝐴𝑓𝑓𝑗𝑘 ∈ {0,1},

𝐴𝑓𝑓𝑗𝑘 = 1 in the affected case.

Makespan is a makespan of the rescheduled schedule (the completion time of the last

job).

𝑑𝑒𝑣𝑆𝑡 is a total starting time deviation between the initial schedule and the new one:

𝑑𝑒𝑣𝑆𝑡 = ∑ |𝑠1𝑗𝑘 − 𝑠𝑗𝑘|𝑗𝑘 .

𝐹(𝜇) is the earliest free time on the machine 𝜇.

Below the pseudo-code of the algorithm with comments is presented.

Step 1. Choose the starting potentially affected operation (𝑗1, 𝑘1) as one of the

following:

(a) The interrupted operation (𝑗𝑜, 𝑖𝑜) if it exists;

(b) If there is no interrupted operations, then as (𝑗1, 𝑘1) choose from remaining

operations on the damaged machine 𝐷𝑚 if such an operation exists and if its start time

𝑠𝑗1,𝑘1 is less than the ready time 𝑅𝑡.

(c) Otherwise, the algorithm terminates and there are no affected operations (i.e. no

need for rescheduling).

Take the starting potentially affected operation as a current operation: (𝑗𝑐, 𝑘𝑐) =
(𝑗1, 𝑘1).

Step 2.

Makespan = 0; devSt = 0.

The earliest free times 𝐹(𝜇) on the machines 𝜇 ∈ 𝑀 are calculated. The 𝐹(𝜇) is

equal to the maximum selected from the End of Time Window 𝐸𝑤 and the completion

time of the last unaffected operation that may be started on machine 𝜇 until 𝐸𝑤:

𝐹(𝐷𝑚) = 𝑅𝑡; // the time when the broken machine 𝐷𝑚 is available for processing.

For 𝜇 ∈ 𝑀, 𝜇 ≠ 𝐷𝑚 do

 𝑙 = 1, 𝑐𝑚𝑎𝑥 = 0;

 (𝑗, 𝑘) = 𝑜𝑝𝜇,𝑙 from 𝐽𝑂𝑚𝑐 = (𝑜𝑝𝜇,1, … , 𝑜𝑝𝜇,𝑙 , … , 𝑜𝑝𝜇,𝑙𝑚𝜇
);

 While 𝑠𝑗𝑘 < 𝐸𝑤 and 𝑙 ≤ 𝑙𝑚𝜇 do

 𝑐𝑚𝑎𝑥 = 𝑐𝑗𝑘;

 l=l+1;

 If 𝑙 ≤ 𝑙𝑚𝜇 then (𝑗, 𝑘) = 𝑜𝑝𝜇,𝑙;

 End of While.

 𝐹(𝜇) = max {𝐸𝑤, 𝑐𝑚𝑎𝑥}.

End of For.

Set initial data for all remaining operations:

 Heuristic Reactive Rescheduling Algorithms 279

For all (𝑗, 𝑘): (𝑗 ∈ 𝐽𝑅, 𝑘𝜖(1 . . 𝑜̅𝑗)) assign

 𝐴𝑓𝑓𝑗𝑘 = 0; // (𝑗, 𝑘) is not affected

 𝑄. 𝑞𝑗𝑘 = 0;

 𝑠1𝑗𝑘 = 𝑠𝑗𝑘;

 𝑠𝑝𝑗𝑘= max {𝐹(𝑚𝑗𝑘), 𝑠1𝑗𝑘, 𝐸𝑤};

 𝑐𝑝𝑗𝑘 = 𝑠𝑝𝑗𝑘 + 𝑝𝑗𝑘;

 If 𝑠1𝑗𝑘 ≠ 𝑠𝑝𝑗𝑘 then 𝑄. 𝑝𝑢𝑠ℎ(𝑣); 𝑄. 𝑞𝑗𝑘 = 1; End of If.

End of For.

//----------------------Below is the main loop---------------------------------

Step 3. If the current operation (𝑗𝑐, 𝑘𝑐) has not been marked as an affected operation

mark it as an affected operation:

If 𝐴𝑓𝑓𝑗𝑐,𝑘𝑐 = 0 then 𝐴𝑓𝑓𝑗𝑐,𝑘𝑐 = 1;

Step 4. Update the schedule, id est delay the current operation according to its

temporal start time 𝑠𝑝𝑗𝑐,𝑘𝑐 and update schedule's quality indexes:

𝑑𝑒𝑣𝑆𝑡 = 𝑑𝑒𝑣𝑆𝑡 + 𝑚𝑎𝑥 {(𝑠𝑝𝑗𝑐,𝑘𝑐−𝑠1𝑗𝑐,𝑘𝑐), 0};

𝑠1𝑗𝑐,𝑘𝑐 = 𝑠𝑝𝑗𝑐,𝑘𝑐;

𝑐1𝑗𝑐,𝑘𝑐 = 𝑐𝑝𝑗𝑐,𝑘𝑐;

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝑐1𝑗𝑐,𝑘𝑐).

Step 5 . Operations next to the current operation (in the Step 5 the next ones in the

job's technological graph; in the Step 6 the next ones on the same machine 𝑚𝑗𝑐,𝑘𝑐) are

included into the queue 𝑄 of potentially affected operations if the new completion time

𝑐1𝑗𝑐,𝑘𝑐 of the current operation impacts the start time of the next operation:

If 𝑠𝑢𝑐𝑐(𝑗𝑐, 𝑘𝑐) = ∅ then go to step 6;

For all 𝑣𝜖𝑠𝑢𝑐𝑐(𝑗𝑐, 𝑘𝑐) do //For all successive operations

 If 𝑠𝑝𝑣 < 𝑐1𝑗𝑐,𝑘𝑐 then

 𝑠𝑝𝑣 = 𝑐1𝑗𝑐,𝑘𝑐

 𝑐𝑝𝑣 = 𝑠𝑝𝑣 + 𝑝𝑣;

 If 𝑄. 𝑞𝑣 = 0 then

 𝑄. 𝑝𝑢𝑠ℎ(𝑣);

 𝑄. 𝑞𝑣 = 1;

 End of If;

 End of If

End of For.

Step 6. Operation next to the current operation on the same machine is included into

the queue of potentially affected operations:

𝑚𝑐 = 𝑚𝑗𝑐,𝑘𝑐; //Machine (workplace) of the current operation

𝑙 = 𝑛𝑢𝑚𝑗𝑐,𝑘𝑐 + 1; //serial number of the next operation in the jobs order on the

 machine mc

If 𝑙 ≤ 𝑙𝑚𝑚𝑐 then

 𝑣 = 𝑜𝑝𝑚𝑐,𝑙 from 𝐽𝑂𝑚𝑐 = (𝑜𝑝𝑚𝑐,1, … , 𝑜𝑝𝑚𝑐,𝑙 , … , 𝑜𝑝𝑚𝑐,𝑙𝑚𝑚𝑐
);

 If 𝑠𝑝𝑣 < 𝑐1𝑗𝑐,𝑘𝑐 then

 𝑠𝑝𝑣 = 𝑐1𝑗𝑐,𝑘𝑐;

 𝑐𝑝𝑣 = 𝑠𝑝𝑣 + 𝑝𝑣;

 If 𝑄. 𝑞𝑣 = 0 then

 𝑄. 𝑝𝑢𝑠ℎ(𝑣);

 𝑄. 𝑞𝑣 = 1;

280 Tiešis, Dzemyda, Kizil

 End of If;

 End of If;

End of If.

Step 7. If the queue of potentially affected operations is empty, then stop, otherwise

take an operation from the queue and return to step 3:

If Q = ∅ then STOP

Else (jc,kc)=Q.pop, 𝑄. 𝑞𝑗𝑐𝑘𝑐 = 0; Goto Step 3.

3.2. Modified Wilkerson Irwin algorithm

The algorithm is based on the algorithms proposed in (Dong and Jang, 2012; Wilkerson,

L.J. and Irwin, J.D., 1971) for a classical Job Shop scheduling problem. We have

adapted the algorithm to the PEN System model (see section 2). The modifications

consist of these enhancements:

 The Flexible Job Shop model is considered instead of Job Shop; the operations

are processed in work centres with alternative machines. So affected operations

may be dispatched to alternative operable machines instead of waiting until the

damaged machine is repaired. This generalisation also changes procedures of

earliest start time calculation because the start time is looked up through

alternative machines. The operations, candidates to reschedule, are also looked

up through the whole work centre on which the earliest completion time can be

achieved (see Step 4 below).

 The used model of production is even more complex than Flexible Job Shop – it

includes precedence constraints of the job's operations that may be described by

any simple directed acyclic graph. This generalisation of the production model

also increases amount of calculations.

The algorithm has two heuristic variants of rescheduling – MWI-J (Modified

Wilkerson Irwin–Job) and MWI-O (Modified Wilkerson Irwin–Operation). Both

variants are based on the Wilkerson–Irwin algorithm that is well known for minimising

average tardiness of a schedule. MWI-J tries to minimise heuristically the efficiency

measures such as mean tardiness, mean flow time and mean makespan with less concern

about stability. On the other hand, MWI-O attempts to balance efficiency and stability

(pursuance of original operations’ start times in the rescheduled plan).

At each stage of the algorithm an operation is rescheduled. So, in the pseudo-code

there are used some additional variables that are indexed by the stage number 𝑡:

𝑃𝑙𝑎𝑛1(𝑡) is the partial schedule containing 𝑡 rescheduled operations;

𝑆𝑡 is the set of schedulable operations at the stage 𝑡 corresponding to given

𝑃𝑙𝑎𝑛1(𝑡). A schedulable operation is either the initial operation of a job remaining to

reschedule or an operation whose direct predecessors are already scheduled in the

𝑃𝑙𝑎𝑛1(𝑡);

𝑠𝑒𝑗𝑘𝑡 is the earliest time when operation (𝑗, 𝑘) ∈ 𝑆𝑡 can start;

𝑑𝑜𝑗𝑘 is the provisional due date of the operation (𝑗, 𝑘) determined at Step 1 of the

procedures MWI-J and MWI-O

In each iteration the new operation is added to the partial schedule 𝑃𝑙𝑎𝑛1(𝑡)

containing 𝑡 scheduled operations. Initially the 𝑃𝑙𝑎𝑛1(0) is empty.

At first the procedure of schedule generation determines a target machine 𝑚∗, on

which we can get the earliest completion time 𝑐∗ among the completion times of all

schedulable operations.

 Heuristic Reactive Rescheduling Algorithms 281

Then, the procedure selects one of schedulable operations on the target machine

whose earliest start time 𝑠𝑒𝑗𝑘𝑡 is earlier than the earliest completion time 𝑐∗, and makes

new partial schedule 𝑃𝑙𝑎𝑛1(𝑡 + 1) by adding the selected operation to the current partial

schedule 𝑃𝑙𝑎𝑛1(𝑡). The new schedule properties depend on the operation’s selection

rule. Two rules are elaborated. The rule in MWI-J tries to minimise the efficiency

measures such as mean tardiness, mean flow time and mean makespan. The rule in

MWI-O tries to balance efficiency and stability defined as deviation of new operation

start times from the original start times

After failure of a machine 𝐷𝑚, the interrupted operation (𝑗𝑜, 𝑖𝑜), all subsequent

operations in the Jobs Order 𝐽𝑂(𝐷𝑚) for the interrupted machine and all operations that

cannot be successfully started until the end of the Time Window are subject to

rescheduling. All those operations (𝑗, 𝑘) are marked by 𝑅𝑒𝑚𝑗𝑘 = 1 (see section 2.4). The

procedure of MWI-J is as follows:

Step 1: If in the Actual Running Schedule there are no scheduled operations on the

damaged machine Dm during an interval of reparation [Evs, Rt] then there is nothing to

reschedule.

The auxiliary Right Shift is proceeded to calculate provisional due dates 𝑑𝑜𝑗𝑘 of the

operations (𝑗, 𝑘): 𝑅𝑒𝑚𝑗𝑘 = 1. The auxiliary starting and completion times of operations

(𝑠𝑟𝑗,𝑘, 𝑐𝑟𝑗,𝑘) are calculated as described below.

The last operations (𝑗, 𝑜̅𝑗) ∈ 𝑂𝑗 of all jobs 𝑗 ∈ 𝐽𝑅 are shifted forward in time until

they meet their job due dates 𝑑𝑗: 𝑐𝑟𝑗,𝑜̅𝑗
= 𝑑𝑗. If previously a solution of lateness was

accepted and a job is already late in the Actual Running Schedule, the last operation of

the job is kept at its current place.

All other operations are sequentially shifted to the right starting from the one having

a latest completion time 𝑐𝑗𝑘 in the Actual Running Schedule. The operation

(𝑗, 𝑘): 𝑅𝑒𝑚𝑗𝑘 = 1 is being shifted until its completion time 𝑐𝑟𝑗,𝑘 meets the minimal start

time 𝑠𝑟𝑠𝑢𝑐𝑐(𝑗,𝑘) from start times of all successive operations 𝑠𝑢𝑐𝑐(𝑗, 𝑘) or the start time

of the successive operation 𝑠𝑟𝒐𝒑𝑚𝑗𝑘,𝒏𝒖𝒎𝒋𝒌+𝟏
 on the machine 𝑚𝑗𝑘 in the Job Order

𝐽𝑂𝑚𝑗𝑘
= (𝑜𝑝𝑚𝑗𝑘 ,1, … , 𝑜𝑝𝑚𝑗𝑘 ,𝑙, … , 𝑜𝑝𝑚𝑗𝑘 ,𝑙𝑚𝑚𝑗𝑘

):

𝑐𝑟𝑗,𝑘 = min {min(𝑗,𝑘1)∈𝑠𝑢𝑐𝑐(𝑗,𝑘) 𝑠𝑟𝑗,𝑘1 , 𝑠𝑟𝑜𝑝𝑚𝑗𝑘,𝑛𝑢𝑚𝑗𝑘+1
}.

This right shift of operations keeps the original sequence of operations on each

machine and feasibility of the scheduling problem (regardless of the failure of the

machine 𝐷𝑚). Let those shifted completion times 𝑐𝑟𝑗,𝑘 be the provisional due dates 𝑑𝑜𝑗𝑘

of the operations.

Step 2: (Initialisation) Let 𝑡=0, 𝑃𝑙𝑎𝑛1(𝑡) = ∅.

Let 𝑆𝑡 be the set of all schedulable operations corresponding to the 𝑃𝑙𝑎𝑛1(𝑡), i.e. for

each job 𝑗 ∈ 𝐽𝑅 a schedulable operation (𝑗, 𝑘) ∈ 𝑆𝑡 is an operation with 𝑅𝑒𝑚𝑗𝑘 = 1 and

is either the initial operation of the job (pred(𝑗, 𝑘) = ∅) or its direct predecessors

pred(𝑗, 𝑘) should have started before 𝐸𝑤 – the End of the Time Window:

For each 𝑗 ∈ 𝐽𝑅, 𝑘𝜖(1 . . 𝑜̅𝑗) do

 If (pred(𝑗, 𝑘) = ∅) then (𝑗, 𝑘) include into 𝑆𝑡

The earliest available time 𝐹(𝐷𝑚) for a next operation on the broken machine 𝐷𝑚 is

equated to the repair completion time of the broken machine 𝑅𝑡: 𝐹(𝐷𝑚) = 𝑅𝑡.

Obviously, the 𝑅𝑡 is greater than the End of Time Window 𝐸𝑤 (Rescheduling Point).

282 Tiešis, Dzemyda, Kizil

For all other machines 𝜇 ∈ 𝑀, the 𝐹(𝜇) equals to the completion time 𝑐𝑗𝑘: 𝜇 = 𝑚𝑗𝑘

of the last operation which can be processed on the machine 𝜇 at the Time Window or

equals to the 𝐸𝑤, depending which time is later. The calculation of 𝐹(𝜇) is the same as

in Step 2 in Section 3.1.

Calculate the earliest times 𝑠𝑒𝑗𝑘𝑡 at which operations (𝑗, 𝑘): (𝑗, 𝑘) ∈ 𝑆𝑡 can start and

find corresponding machine with earliest feasible time:

𝑠𝑒𝑗𝑘𝑡 = max{ min
𝑚𝑗𝑘∈𝑀𝑗𝑘

𝐹(𝑚𝑗𝑘) , max
(𝑗−,𝑘−)∈𝑝𝑟𝑒𝑑(𝑗𝑘)

𝑐(𝑗−,𝑘−)}

𝑚𝑗𝑘𝑡 = arg min
𝑚𝑗𝑘∈𝑀𝑗𝑘

𝐹(𝑚𝑗𝑘)

Step 3: (Earliest completion time) Determine earliest completion time 𝑐∗ = 𝑐𝑗∗𝑘∗ =

min(𝑗,𝑘)∈𝑆𝑡
(𝑠𝑒𝑗𝑘𝑡 + 𝑝𝑗𝑘) and the machine 𝑚∗ = 𝑚𝑗∗𝑘∗𝑡 on which completion time 𝑐∗ can

be realised.

Step 4: (Candidate operations) Select all operations (𝑗, 𝑘) ∈ 𝑆𝑡 whose earliest start

time is less than 𝑐∗ and that require a machine from the same work centre as the machine

𝑚∗: select (𝑗, 𝑘): (𝑚𝑗𝑘 ∈ 𝑀𝑗∗𝑘∗ and 𝑠𝑒𝑗𝑘𝑡 < 𝑐∗).

If only one operation is selected, let it be operation (𝑗∗𝑘∗) selected to reschedule and

go to Step 5. If there are more selected operations, use the following rules to select for

rescheduling the next operation on the work centre with the machine 𝑚∗:

Rule 1. Let operations (𝑗1, 𝑘1) and (𝑗2, 𝑘2) be the operations whose job due dates 𝑑𝑗1

and 𝑑𝑗2 are among the selected operations the smallest and second smallest, respectively.

Rule 2. If (max {𝑠𝑒𝑗1,𝑘1,𝑡 + 𝑝𝑗1,𝑘1, 𝑠𝑒𝑗2,𝑘2,𝑡 + 𝑝𝑗2,𝑘2} ≤ 𝑑𝑜
𝑗2,𝑘2

) or if (𝑠𝑒𝑗1,𝑘1,𝑡 +

𝑝𝑗1,𝑘1 ≤ 𝑠𝑒𝑗2,𝑘2,𝑡 + 𝑝𝑗2,𝑘2) then the operation (𝑗∗𝑘∗) = (𝑗1, 𝑘1) is selected to reschedule,

else the operation (𝑗∗𝑘∗) = (𝑗2, 𝑘2) is selected to reschedule. Define 𝑚∗ = 𝑚𝑗∗𝑘∗𝑡, where

𝑚𝑗∗𝑘∗𝑡 is the machine with earliest start time 𝑠𝑒𝑗∗𝑘∗𝑡 for operation (𝑗∗𝑘∗).

Step 5: (Update) Set the earliest available time of machine 𝑚∗ equal to the

completion time of operation (𝑗∗𝑘∗), i.e. 𝐹(𝑚∗) = 𝑠𝑒𝑗∗𝑘∗,𝑡 + 𝑝𝑗∗𝑘∗. Set the completion

time of the operation (𝑗∗𝑘∗), i.e. c𝑗∗𝑘∗ = 𝑠𝑒𝑗∗𝑘∗,𝑡 + 𝑝𝑗∗𝑘∗.

Include the operation (𝑗∗𝑘∗) into 𝑃𝑙𝑎𝑛1(𝑡) with start time 𝑠𝑒𝑗∗𝑘∗,𝑡 on the machine

𝑚∗ = 𝑚𝑗∗𝑘∗𝑡 creating in such way the 𝑃𝑙𝑎𝑛1(𝑡 + 1). Remove operation (𝑗∗𝑘∗) from 𝑆𝑡.

Increase t by 1.

Consider all successors of the operation (𝑗∗𝑘∗). If the operation (𝑗,̅ 𝑘̅) ∈ 𝑠𝑢𝑐𝑐(𝑗∗𝑘∗)

that is the direct successor of operation (𝑗∗𝑘∗) may be already proceeded, i.e. if all

𝑝𝑟𝑒𝑑(𝑗,̅ 𝑘̅) are already scheduled then form 𝑆𝑡 by adding (𝑗,̅ 𝑘̅) to 𝑆𝑡−1.

Calculate the earliest starting time of the operation (𝑗,̅ 𝑘̅):

𝑠𝑒𝑗̅,𝑘̅,𝑡 = max {min𝑚𝑗̅,𝑘̅∈𝑀𝑗̅,𝑘̅
𝐹(𝑚𝑗̅,𝑘̅) , max(𝑗,𝑘)∈𝑝𝑟𝑒𝑑((𝑗̅,𝑘̅)), 𝑐(𝑗.𝑘)} (1)

By the use of the same formula (1) recalculate earliest starting times of other

schedulable operations {(𝑗,̅ 𝑘̅): (𝑗,̅ 𝑘̅) ∈ 𝑆𝑡 , 𝑚∗ ∈ 𝑀𝑗̅,𝑘̅} which may be processed on the

machine 𝑚∗ ∈ 𝑀𝑗̅,𝑘̅ because it's earliest available time 𝐹(𝑚∗) have been changed.

If 𝑆𝑡 is empty, stop the procedure; otherwise, go to Step 3.

End of Algorithm.

The MWI-O algorithm is the same as the MWI-J algorithm, except the Rule 1 in the

Step 4; while MWI-J uses job due dates 𝑑𝑗, MWI-O uses an operation due dates 𝑑𝑜𝑗𝑘 to

increase stability of the rescheduling:

 Heuristic Reactive Rescheduling Algorithms 283

Rule 1. Let operations (𝑗1, 𝑘1) and (𝑗2, 𝑘2) be the operations whose due dates 𝑑𝑜𝑗1𝑘1

and 𝑑𝑜𝑗2𝑘2 are among the selected operations the smallest one and second smallest one,

respectively.

4. Discussion and Conclusions

Two quick heuristic algorithms are chosen and modified for the PEN system. They are

recommended to implement in the particular target enterprise Advanced Planning and

Scheduling (APS) system on the basis of PEN System in the case of frequent

disruptions, short rescheduling Time Window and limited calculation resources.

Let us consider the Job Shop case. In this case the operations’ graph 𝐺(𝑂𝑗) is a chain

of remaining operations of 𝑗 job and the Affected Operations Rescheduling (AOR)

algorithm is very quick. Let 𝑅 be the number of remaining operations and 𝑁 ≤ 𝑅 be the

number of affected operations. All calculations of initial two steps may be proceeded

looping through all remaining operations therefore the complexity of those steps is

𝑶(𝑅). In the Job Shop case the main loop has no inner loops and each affected operation

may be shifted twice – once in the job branch and once more in the machine branch.

Therefore the complexity of the AOR algorithm is 𝑶(𝑅 + 2𝑁). All calculations of initial

two steps of the AWI algorithm also have complexity 𝑶(𝑅). One of remaining

operations is rescheduled in the main loop and the number of remaining operations

decreases by one. Therefore the complexity of the main loop (steps 3-5) is

𝑶 (
(𝑅 − 1)𝑅

2⁄) and the complexity of the AWI algorithm is 𝑶(𝑅2), that is greater than

of AOR algorithm, particularly when the number of affected operations is small.

The imperfection of AOR is that interrupted operations which were initially

scheduled on the damaged machine should wait until the damaged machine will be fixed.

AOR works quickly and produces good plans only when the initial plan is flexible and

reparation time of the damaged machine is short.

When there are alternative machines processing the same operation, then the

Wilkerson Irwin algorithm may be used to allocate on the alternative operable machine

the operations which have been interrupted because of the damaged machine. Let us

consider the case when the precedence graph 𝐺(𝑂𝑗) is any directed graph. All

calculations of initial two steps of the AWI algorithm have complexity 𝑶((𝑅 + 𝑚)𝑅)

because inner lops scan through predecessors, successors and machines. The Steps 3, 4

and 5 of the algorithm require 𝑶((𝑅 + 𝑚)𝑅) calculations in the worst case, therefore

the main loop requires 𝑶((𝑅 + 𝑚)𝑅2) calculations. Consequently, the complexity of the

AWI algorithm still is polynomial - it requires 𝑶((𝑅 + 𝑚)𝑅2) calculations.

Acknowledgements

The research has been supported by the EUROSTARS Project E!6232-PEN "Production

effectiveness navigator". The authors cordially thank all the project partners for

contribution and the Agency for Science, Innovation and Technology (Lithuania) for the

financial support of the research.

284 Tiešis, Dzemyda, Kizil

References

Abumaizar, R.J., Svestka, J.A. (1997). Rescheduling job shops under random disruptions. Int. J.

Prod. Res. 35, 2065–2082.

Caplinskas, A., Dzemyda, G., Kiss, F., Lupeikiene, A. (2012). Processing of Undesirable Business

Events in Advanced Production Planning Systems. Informatica. 23, 563–579.

Dong,Y.-H., Jang, J. (2012). Production rescheduling for machine breakdown at a job shop. Int. J.

Prod. Res. 50, 2681–2691.

Giffler, B., Thompson, G.L. (1960). Algorithms for solving production scheduling problems.

Oper. Res. 8, 487–503.

Knuth, D. E. (1997). The Art of Computer Programming. Vol 1. 3rd ed., Addison-Wesley, Boston.

Pinedo, M.L. (2012). Scheduling. Theory, Algorithms, and Systems. 4th ed., Springer, New York.

Wilkerson, L.J., Irwin, J.D. (1971). An improved algorithm for scheduling independent tasks. AIIE

T. 3, 239–245.

Authors' information

V.Tiešis, is the research fellow at the Vilnius University Institute of Mathematics and

Informatics. His main research interests include optimisation algorithms, scheduling,

knowledge discovery and forecasting, and statistical analysis.

G. Dzemyda, habil. dr., is a member of Lithuanian Academy of Sciences, professor,

principal researcher and director of the Vilnius University Institute of Informatics and

Mathematics. His main research interests include optimization and visualization, data

mining, and medical informatics.

T.Kizil, is General Manager of Hisbim IT Corporation. His interest include high quality

software solutions in IT Sector for the Enterprise and Manufacturing, Cognitive Systems

and Robotics.

Received January 9, 2014, revised February 20, 2014, accepted February 27, 2014

