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Abstract. The research is focused on investigation of impact of parameters of bi-layer mono-
enzyme amperometric biosensor to its characteristics: the sensitivity and the enzyme volume.
The bi-objective optimization problem of determination of the optimal thicknesses of the layers
and maximal enzymatic rate of the biosensor with respect to maximization of the sensitivity and
simultaneously minimization of the enzyme volume is formulated. The influence of the parame-
ters of the biosensor to the objectives of the problem has been experimentally investigated. The
simulated biosensor responses and the set of different parameters’ values systematically chosen
with respect to the real-life experiments have been used in the investigation.
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1 Introduction

Biosensors are analytical devices in which specific recognition of the chemi-
cal substances is performed by biological material, usually an enzyme, which
serves as recognition element and is used in combination with a trans-
ducer (Scheller and Schubert, 1992, Turner et al., 1990). The transducer transforms
concentration of substrate or product to measurable signal that is amplified and further
processed. Amperometric biosensors measure changes in the cathodic or anodic current
on the working electrode. The amperometric biosensors are reliable devices for clin-
ical diagnostics, food analysis and environment monitoring (Cooper and Cass, 2004,
Banica, 2012).

The action of catalytic biosensors is associated with the substrate diffusion from
a bulk solution into a biocatalytic membrane and an enzyme-catalyzed substrate
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conversion to a product (Bartlett and Whitaker, 1987, Schulmeister, 1990). The ac-
tion can be mathematically modeled by partial differential equations of the reaction-
diffusion type (Schulmeister, 1990, Baronas et al., 2010). The mathematical mod-
els of biosensors response are widely used to optimize their configurations. Usu-
ally, an optimization in biosensor engineering is concentrated on a unique objec-
tive (Shoorideh and Chui, 2012). The complex nature of practical biosensors involves
consideration of the simultaneous optimization of several objectives (multi-objective
optimization). These objectives are often conflicting, which means that if it is desired
to improve one of them, it must allow others to get worse (Sadana and Sadana, 2010).

Multi-objective optimization of chemical and biochemical processes and systems
has been shown beneficial in many applications. Sendı́n et al. (2006, 2009) investi-
gated solution of multi-objective optimization problems arising from the domain of
biochemical systems, namely metabolic pathways, with the aim to maximize the rate of
production of ethanol and simultaneously minimize several internal metabolite concen-
trations. Vera et al. (2010) presented an optimization framework for the technological
improvement of biochemical systems. Taras and Woinaroschy (2012) proposed an inter-
active multi-objective optimization framework for sustainable design of bioprocesses.
Ardao and Zeng (2013) applied a multi-objective genetic algorithm to maximize pro-
ductivity and yield of a multi-enzymatic system. The importance of multi-objective
optimization in chemical and biochemical engineering permanently increases due to
the development of new and improved methods sustained by increased computational
resources (Rangaiah, 2009).

This paper focuses on the determination of the parameters of the bi-layer mono-
enzyme biosensor utilizing the Michaelis-Menten kinetics with respect to the maxi-
mization of the biosensor sensitivity and simultaneously minimization of the enzyme
amount. The amperometric biosensor is treated as a flat electrode covered with a rela-
tively thin layer of an enzyme (biocatalytic membrane) applied onto the electrode sur-
face by using a dialysis membrane.

The reminder of the paper is organized as follows: Section 2 describes the mathe-
matical model of the relevant biosensor and its characteristics; Section 3 is devoted for
the formulation of the multi-objective mathematical optimization problem and results
of the computational experiments are presented and discussed in Section 4. Finally,
conclusions of the investigation are formulated in Section 5.

2 Mathematical Model

We consider a mono-enzyme biosensor utilizing the Michaelis-Menten kinet-
ics (Scheller and Schubert, 1992, Turner et al., 1990),

E + S
k+1

GGGGGGGBFGGGGGGG

k−1
ES

k3
GGGAE + P (1)

where E denotes the enzyme, S – the substrate to be determined, ES – the enzyme-
substrate complex, P – the reaction product, and k+1, k−1, k3 are the kinetic constants.

The model of the amperometric biosensor involves three regions: the enzyme layer,
where the biochemical reaction (1) as well as the mass transport by diffusion take place,
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the dialysis membrane (diffusion layer), where only the mass transport by diffusion of
the substrate as well as product takes place, and a convective region, where the con-
centrations of the substrate and product remain constant. Fig. 1 shows the principal
structure of the biosensor, where x = 0 represents the electrode surface, x = d corre-
sponds to the boundary between the enzyme layer and the dialysis membrane, and δ is
the thickness of the dialysis membrane.

Dialysis membrane
(diffusion)

Enzyme membrane
(reaction and diffusion)

Bulk solution

Electrode

δ

d

x

Fig. 1. Principal structure of the biosensor to be optimized.

Usually, the steady-state current is used as a response of commercial amperometric
biosensors. Further, for the quantitative analysis, the measurement of the steady-state
response is one of the easiest electrochemical methods (Scheller and Schubert, 1992,
Banica, 2012). A steady-state electrochemical signal is reached when the rate of the
reaction product formation equals the rate at which the product diffuses out of enzyme
membrane.

Assuming a symmetrical geometry of the electrode and a homogeneous distribution
of the immobilized enzyme in the enzyme layer of a uniform thickness, the mathe-
matical model of the biosensor response can be defined in a one-dimensional-in-space
domain (Schulmeister, 1990, Baronas et al., 2010).

2.1 Governing equations

The mass transport and the kinetics of the enzyme-catalyzed reaction (1) in the en-
zyme layer under steady-state conditions can be described by the following system of
stationary reaction-diffusion equations:

DS,e
d2S

dx2
=

V S

KM + S
,

DP,e
d2P

dx2
= − V S

KM + S
, 0 < x < d,

(2)

where x stands for space; S(x) and P (x) are the molar concentrations of the substrate
S and the product P in the enzyme layer, respectively; V is the maximal enzymatic
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rate; KM is the Michaelis constant; d is the thickness of enzyme layer; DS,e and DP,e

are the diffusion coefficients; V = k3E0, KM = (k−1 + k3)/k+1; and E0 is the total
concentration of the enzyme.

In the dialysis membrane, only the mass transport by diffusion of the substrate and
product takes place during the biosensor operation. Away from the biosensor the solu-
tion is assumed to be in motion and uniform in the concentration,

S(d+ δ) = S0, P (d+ δ) = P0, (3)

where S0 and P0 are the concentrations of the substrate and product in the buffer so-
lution. Usually, the zero concentration of the reaction product in the bulk is assumed,
P0 = 0, while the concentration S0 is to be quantitatively determined from the biosen-
sor response.

In the case of the amperometric biosensors, due to the electrode polarization the
concentration of the reaction product at the electrode surface (x = 0) is being per-
manently reduced to zero. The substrate does not react at the electrode surface, and
therefore the non-leakage (zero flux) boundary condition is applied to the substrate,

DS,e
dS

dx

∣∣∣∣
x=0

= 0, P (0) = 0. (4)

At the steady-state, fluxes of the substrate and product through the bound-
ary of the dialysis membrane/bulk solution (x = d + δ) are equal to the corre-
sponding fluxes through the boundary of the biocatalytic/dialysis membranes (x =
d) (Schulmeister, 1990, Baronas et al., 2010),

DS,m
S0 − S(d)

δ
= DS,e

dS

dx

∣∣∣∣
x=d

,

DP,m
P0 − P (d)

δ
= DP,e

dP

dx

∣∣∣∣
x=d

,

(5)

where δ is the thickness of the external diffusion layer;DS,m andDP,m are the diffusion
coefficients of the species in the dialysis membrane.

2.2 Biosensor characteristics

The measured current is usually assumed as the response of an amperometric biosensor.
The density I of the biosensor current is directly proportional to the flux of the reaction
product at the electrode surface and can be expressed explicitly from the Faraday and
the Fick laws (Gutfreund, 1995),

I = neFDP,e
dP

dx

∣∣∣∣
x=0

, (6)

where ne is the number of electrons involved in a charge transfer at the electrode sur-
face, and F = 96, 486 C/mol is the Faraday constant.

The sensitivity is one of the most important characteristics of the biosen-
sors (Banica, 2012). The biosensor sensitivity can be expressed as the gradient of the
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steady-state current with respect to the substrate concentration. Since the biosensor cur-
rent as well as the substrate concentration varies even in orders of magnitude, another
useful parameter to consider is a dimensionless sensitivity. The dimensionless sensitiv-
ity BS for the substrate concentration S0 is given by (Baronas et al., 2010)

BS(S0) =
dI(S0)

dS0
× S0

I(S0)
≈ I(S0 + ∆S0)− I(S0)

∆S0
× S0

I(S0)
, (7)

where I(S0) is the steady-state current obtained at the concentration S0 of the substrate.
Despite the concentration S0 the steady-state current I(S0) also depends on the

maximal enzymatic rate V and thicknesses d and δ of the enzyme and diffusion lay-
ers, respectively. Aiming to increase the biosensor sensitivity, the biosensor parameters
can be optimized at a certain concentration of the substrate. Since the Michaelis KM

constant is the concentration of the substrate at which half of the maximum velocity
of an enzyme-catalyzed reaction is achieved, the concentration KM of the substrate is
widely used to evaluate the general sensitivity of biosensors. KM is also used as a mea-
sure of the enzyme affinity for substrate, the higher the value of KM , the lower is the
affinity (Banica, 2012). Thus, the dimensionless biosensor sensitivity to be optimized
at a specific substrate concentration S0 = KM can be considered as a three-variable
function,

f1(V, d, δ) = BS(KM ). (8)

In some applications of biosensors, enzymes are archival and only available
in every limited quantity or are the products of combinatorial synthesis pro-
cedures and thus they are only produced in microgram to milligram quanti-
ties (Schuhmann and Habermüller, 2002). In such applications, the minimization of
the enzyme volume is of crucial importance. In the case of enzyme mono-layer two-
compartment model of biosensors (Fig. 1), the enzyme volume equals the product of
the enzyme concentration E0 (E0 = V/k3) and the thickness d of the enzyme layer.
Without loss of generality, the mathematical model (2)–(5) involves the concentration
E0 implicitly as a parameter of V (V = E0k3); for a discussion on the advantages of
dimensionless modelling we refer to (Gutfreund, 1995, Baronas et al., 2010). Since the
enzyme concentration E0 can be freely selected and the maximal enzymatic rate V is
directly proportional to the enzyme concentration, the rate V can be considered as a
free variable. Therefore a relative enzyme volume, as the objective to be minimized,
can be expressed as follows:

f2(V, d) = V × d. (9)

2.3 Numerical simulation

Due to the nonlinearity of the governing equations (2) the boundary value problem (2)–
(5) was solved numerically by applying the finite difference technique (Britz, 2005,
Baronas et al., 2010).

The mathematical as well as the corresponding computational models of the
biosensor were validated using known analytical and numerical solutions for
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two-compartment model of mono-enzyme single substrate amperometric biosen-
sors (Schulmeister, 1990, Baronas et al., 2010). Those analytical solutions were de-
rived only for relatively low as well as high concentrations of the substrate. The rel-
ative difference between the numerical solution of (2)–(5) and known analytical and
numerical solutions was less than 1% at different values of the model parameters
(Britz et al., 2008, Baronas et al., 2010).

3 Bi-Objective Optimization Problem

In this research we are interested in determination of the maximal enzymatic rate V ,
and thicknesses d and δ of the enzyme and dialysis (diffusion) layers, respectively, on
the aim to maximize the sensitivity of the biosensor (BS) and simultaneously minimize
the enzyme volume, considering the fixed substrate concentration S0. This leads to
solution of the multi-objective optimization problem by maximizing the function f1 of
the biosensor sensitivity,

max
V,d,δ

f1(V, d, δ), (10)

while minimizing the function f2 of the enzyme volume,

min
V,d

f2(V, d), (11)

assuming that the maximal enzymatic rate V varies from the lower bound V∗ to the
upper bound V ∗, and the thicknesses of the enzyme layer (d) and the dialysis mem-
brane (δ) are defined as d ∈ [d∗, d

∗] and δ ∈ [δ∗, δ
∗], respectively.

In terms of multi-objective optimization, p = (V, d, δ) is called the decision vector,
which is taken from the search space,

D = [V∗, V
∗]× [d∗, d

∗]× [δ∗, δ
∗]. (12)

The corresponding vector f(p) = (f1(p), f2(p)) representing values of the objective
functions f1(p) and f2(p) obtained using decision vector p is called objective vector.

The joint optimization of f1(·) and f2(·) is a contradictory task. Depending on spe-
cific circumstances a certain trade-off between these objectives is accepted. To aid a
rational decision the set of compromising decision vectors all of which are optimal in
some sense will be constructed. But theretofore we will recall relevant definitions used
in multi-objective optimization theory.

In general a decision vector is called Pareto optimal if value of any of objective
functions cannot be improved without deterioration of value of any other objective; i.e.
the values of parameters V ′, d′, and δ′ can be considered as Pareto optimal if there
are no other values in the search space D which would increase the sensitivity of the
biosensor without increment of enzyme value or would reduce the enzyme value with-
out reduction of the sensitivity.

The set of Pareto optimal decision vectors is called Pareto set and the corresponding
set of objective vectors is called Pareto front.

To derive an analytical expression for the Pareto front is a hard task even in the
cases where the objective functions are defined by the analytical formulas. Therefore,
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a discrete representation usually is computed to aid a decision maker in the selection
of a proper trade-off between contradictive objectives. For the discussion on the ar-
guments important in the constructing a discrete representation of Pareto fronts we
refer to a recent paper (Faulkenberg and Wiecek, 2010). To substantiate a choice of a
suitable algorithm for computation of a discrete representation of the Pareto front an-
alytical properties of the objective functions would be very helpful. However, in the
problem considered, objective functions are available only as computer algorithms, and
their analytical investigation is difficult. In such circumstances, it seems reasonable to
choose the algorithm which simply selects Pareto optimal decision vectors from the set
of those computed at vertices of a quadratic lattice (in logarithmic scale). Let us men-
tion that such an algorithm is approximately optimal in worst case setting as shown in
(Žilinskas, 2013).

4 Computational Experiments

A number of numerical simulations of the biosensor response have been performed in
order to determine a discrete approximation of the Pareto front of the multi-objective
optimization problem (10)–(11). The numerical simulator of the biosensor response has
been implemented by C++ programming language (Press et al., 2007).

The following constant values of the parameters of the mathematical model (2)–(5)
have been used:

DS,e = DP,e = 3× 10−6 cm2/s;

DS,m = DP,m = 5× 10−7 cm2/s;

KM = 10−4 M.

(13)

Since the biosensor sensitivity increases with reduction of the concentration S0,
when values of other parameters (V, d, δ) are fixed, the constant value S0 = KM of
the substrate concentration was used. The remaining decision variables (V, d, δ) were
varied in a wide range within their lower and upper bounds, as typical for practical
biosensors (Banica, 2012, Grieshaber et al., 2008, Gough and Leypoldt, 1979):

V ∈ [10−13, 10−2] (M/s); d, δ ∈ [0.001, 0.1] (cm), (14)

assuming that the difference of thicknesses of the layers would be no larger than an
order of magnitude.

The boundary values of the decision variables has been chosen with respect to the
real-life experiments. Polyvinyl alcohol, polyurethane, cellulose, latex or other mem-
branes are often used to cover the enzyme layer in order to prevent it from dissolution
and make biosensors more stable. The thickness most of them varies from several mi-
crometers up to a millimeter (Grieshaber et al., 2008, Banica, 2012). The thickness of
enzyme membranes in practical biosensors varies similarly (Cooper and Cass, 2004,
Banica, 2012). The maximal enzymatic rate can vary in orders of magnitude
(Gutfreund, 1995, Banica, 2012).
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4.1 Dependence of the enzyme volume on the maximal enzymatic rate

The dependence of the biosensor dimensionless sensitivity f1 = BS(KM ) on the max-
imal enzymatic rate V using different thicknesses of the enzyme layer (d) and the dial-
ysis membrane (δ) is illustrated in Fig. 2, where the horizontal axis corresponds to
the maximal enzymatic rate V , the vertical axis – to the biosensor sensitivity f1, and
different curves – to the different combinations (d, δ) of thicknesses of both layers.
Computations have been performed for V = 10−k, k = 2, . . . , 13 except the cases
(d, δ) = (0.1, 0.1) and (d, δ) = (0.01, 0.1) which have been investigated using in-
termediate values of V as these combinations of parameters appeared to be the most
promising in the sense of Pareto optimality.
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Fig. 2. The biosensor sensitivity f1 versus the maximal enzymatic rate V at different thicknesses
d and δ of the enzyme and dialysis layers.

One can see in Fig. 2, a higher value of the maximal enzymatic rate leads to the
higher biosensor sensitivity. However the refractive point from which the increment of
the maximal enzymatic rate is not useful in the sense of the sensitivity can be indicated
as well as its dependence on the thicknesses of the catalytic and dialysis membranes.

It is also clear from the figure, that the best sensitivity is achieved with the thickest
layers (curve denoted by rectangles), and thinning of the enzyme or dialysis layers leads
to the lower sensitivity of the biosensor (see curves denoted by circles and triangles,
respectively). The same tendency can be also envisaged for the layers, thinner by an
order of magnitude.

Similarly, Fig. 3 shows the dependence of the biosensor sensitivity f1 on the relative
enzyme volume f2, considering different thicknesses of the enzyme and dialysis layers.
Since the enzyme volume f2 was expressed as the product of the maximal enzymatic
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rate V and the thickness d (f2 = V d), the latter dependency corresponds to the same
curves as presented in Fig. 2, but shifted on the vertical axis.
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Fig. 3. The biosensor sensitivity f1 versus the enzyme volume f2 at different thicknesses of the
enzyme and dialysis layers.

One can see from Fig. 3 that usage of the thickest dialysis layer (δ) leads to the
largest sensitivity. If we are interested in the lower enzyme volume rather than biosensor
sensitivity then it is useful to use the thickest enzyme layer (d = 0.1 cm) – the sensitivity
is higher for relatively small enzyme volumes. If we are more interested in the greater
sensitivity rather that the saving the enzyme, then it is useful to use a thinner enzyme
layer (d = 0.01 cm) as it produces slightly grater sensitivity when when the enzyme
volume is larger.

4.2 The discrete approximation of Pareto front

The discrete approximation of the Pareto front with the context of all other decision
vectors is illustrated in Fig. 4, where the horizontal axis stands for the sensitivity of the
biosensor, the vertical axis – for the enzyme volume, and different marks correspond to
different thicknesses (d; δ) of the enzyme and dialysis layers, correspondingly. Pareto
optimal decision vectors are denoted by filled marks.

One can see from the figure that the Pareto front mainly consists of the decision
vectors referring to the thickest dialysis layer, δ = 0.1 cm. As it was shown in Fig. 2,
the reduction of the value of δ always leads to the lower sensitivity of the biosensor
without any impact to the enzyme volume.

More interesting is the thickness d of the enzyme layer as it has direct impact to the
enzyme volume. One can see from Fig. 4 it is better to use d = 0.01 cm if the larger
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Fig. 4. The interdependence of the biosensor sensitivity f1 and the enzyme volume f2 with the
distinguished Pareto front (filled circles).

sensitivity has priority against the saving of the enzyme, and d = 0.1 cm – if we have a
limit for the enzyme volume.

We can also distinguish the Pareto optimal decision vector (10−13, 0.001, 0.01),
referring to the lowest enzyme volume. However, this decision vector is not reasonable
as it leads to the lowest sensitivity of the biosensor.

In general, the most interesting Pareto optimal decision vectors are illustrated be-
tween the dashed lines as they provide a reasonable trade-off between parameters – the
dimensionless sensitivity of the biosensor can be significantly increased (from 0.7 to
almost 1) without significant (relative) increment of the enzyme volume. Therefore the
decision vectors indicated by the circle should be considered as the most relevant.

5 Conclusions

The multi-objective optimization problem for the determination of optimal maximal
enzymatic rate and thicknesses of the layers of bi-layer mono-enzyme biosensor utiliz-
ing Michaelis-Menten kinetics with respect to maximize the biosensor sensitivity and
minimize the enzyme volume has been formulated.

A number of the relevant values of biosensor parameters have been experimentally
investigated and the discrete approximation of the set of Pareto-optimal solutions has
been determined.

It was shown that it is always optimal to choose the thickest dialysis membrane. The
thickness of the enzyme layer depends on whether the sensitivity or the enzyme volume
is more relevant. If the saving of the enzyme has priority against the biosensor sensi-
tivity, then it is reasonable to use the thickest enzyme layer – the sensitivity is notably
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greater using relatively small enzyme volumes. On the other hand, if the sensitivity has
priority against the enzyme volume, then it is reasonable to choose thinner enzyme layer
– the sensitivity of the biosensor is slightly greater when the enzyme volume is larger.
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