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Abstract. A modification of the global optimization algorithm, rooted in the statistical theory of
global optimization, is proposed. The original method is based on the hyper-rectangular partition
of the feasible region where a hyper-rectangle for subdivision is selected using a criterion related
to the probability of improvement. The idea of the modification is in the coordination of local
and global phases of search. The testing results show that the proposed modification improves
the performance of the original algorithm.
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1 Introduction

Global optimization problems are among the most difficult in optimization theory as
well as in applications. The development of global optimization algorithms is very ac-
tive in accordance with both, heuristic and mathematical, approaches. The origins of
heuristic algorithms are really diverse: from the principle ”survives the fittest” to the
simulation of harmony search in music. Theoretical approaches are based on the two ba-
sic models: deterministic and statistical. In the former case, the assumption on bounded
variation of the function values is crucial, (Floudas, 2000), (Horst et al., 1995), (Parda-
los and Romeijn, 2002), (Pinter, 1996). The most popular model in this class is Lips-
chitzian, see (Sergeyev and Kvasov, 2006, 2011), (Horst et al., 1995), (Pinter, 1996).
The deterministic models are inherently oriented to the guaranteed result, and the re-
spective algorithms are developed in the view of the worst case behavior of an objective
function. The algorithms based on the statistical approach are oriented to the average
case where the unknown objective function values are interpreted as random variables
(Mockus, 1989), (Strongin and Sergeyev, 2000), (Zhigljavsky and Žilinskas, 2008).

In the present paper an algorithm is developed which is rooted in the statistical
models based theory of global optimization. In the original P-algorithm, for the current
computation of the objective function value a point is selected where the improvement
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is most probable. A version of the hybridization of the idea of the P-algorithm with
the decomposition of the feasible region is substantiated in (Calvin et al., 2015). The
idea of decomposition of the feasible region is widely used in global optimization, see
e. g. (Calvin and Žilinskas, 2014), (Paulavičius et al., 2014), (Sergeyev and Kvasov,
2006), (A. Žilinskas and J. Žilinskas, 2002). However, differently from the most similar
algorithms (Calvin and Žilinskas, 2014) and (A. Žilinskas and J. Žilinskas, 2002), the
feasible region in (Calvin et. al., 2015) is divided not into simplices, but into hyper-
rectangles. A hyper-rectangle for the subdivision is selected by the maximization of the
criterion related to the improvement probability. The high asymptotic convergence rate
of this algorithm is shown in (Calvin et al., 2015). However, from an application point
of view it is important to have an acceptable precision after a not too large number of
iterations. To achieve a better, in the mentioned sense, performance a heuristic modifi-
cation is implemented: two phases of the search are defined. The desirable improvement
is pursued by the alternation of the local and global phases of the search. The idea of
this modification is borrowed from (Paulavičius et al., 2014). The testing results show
that the desirable improvement was achieved.

2 The proposed algorithm

2.1 Statistically justified partitioning-based approach

The goal of the presented research was to create a global optimization algorithm assum-
ing that the available information on the objective function is scarce, but the algorithm
nevertheless possess the following properties:

– The search strategy based on the theory of rational decisions under uncertainty,
– The theoretically established asymptotic convergence rate,
– The implementation complexity similar to that of the deterministic algorithms of

similar purpose,
– The competitiveness with other algorithms with respect to the precision after a

modest number of iterations.

We consider the minimization problem minx∈A f(x), where little is known about
f(·), and A ⊂ Rd is a hyper-rectangle. The uncertainty about f(x) is typical, for ex-
ample, in the case where the values of f(x) are computed by an unfamiliar software,
and properties of f(·), such as non-convexity and multi-modality, cannot be excluded.
To justify a search strategy in the described situation of uncertainty, a ”rational opti-
mizer” should define a model of uncertainty, for example, like a statistical model of
uncertainty in the theory of expected utility (Fishburn, 1970). Let us consider the cur-
rent minimization step, whereN function values have been computed at previous steps:
yi = f(xi), i = 1, . . . , N . A rational choice of a point for the next computation of
the objective function value cannot be performed without an assessment of the uncer-
tainty in the result of that computation. The very general assumptions on the rational
perception of uncertainty imply a random variable model of the value of the objec-
tive function; that is, those assumptions imply a random variable ξx as a model of
f(x) for x 6= xi, i = 1, . . . , N , where parameters of the distribution of ξx depend on
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xi, yi = f(xi), i = 1, . . . , N ; see (Zhigljavsky and Žilinskas, 2008). Various strategies
of the global search have been developed using statistical models; we refer to (Mockus,
1989), (Strongin and Sergeyev, 2000) and (Zhigljavsky and Žilinskas, 2008) for their
description and analysis. The so-called P-algorithm selects for the next computation of
the objective function value the point where the improvement is most probable:

xN+1 = arg max
x∈A

P(ξx < y0N − ε), (1)

where y0N = min1≤i≤N yi, m(x|xi, yi, i = 1, . . . , N) is the expected value of ξx, and
s(x|xi, yi, i = 1, . . . , N) is a characteristic of spread, e. g. the standard deviation of ξx.
For the detailed theoretical substantiation of the P-algorithm we refer to (Zhigljavsky
and Žilinskas, 2008).

However, the implementation of the original P-algorithm is difficult because the
algorithms for m(x|xi, yi, i = 1, . . . , N) and s(x|xi, yi, i = 1, . . . , N) are compu-
tationally intensive. To reduce the computational burden the problem is decomposed
into a sequential subdivision of A, where maxP(ξx < yon − ε) is evaluated for the
hyper-rectangular subsets of A, taking only the function values at the vertices of these
hyper-rectangles into account. The algorithm implementing these computational sim-
plifications is presented in (Calvin et al., 2015), where its convergence rate is evaluated
as well. This algorithm possesses the first three properties, assumed at the beginning of
the section. In the present paper its modification is proposed to improve the performance
with respect to the fourth property.

Assuming that the statistical model of ξx is Gaussian, Calvin et al. (2015) propose a
criterion, in some sense equivalent to the maximum probability (1), computed, however,
for a single hyper-rectangular subset of A. In other words, a computationally-efficient
criterion value is assigned to each rectangle in the current decomposition of A. Given
a rectangle R, its volume VR and the mean of the function values at its vertices LR, the
criterion is computed as follows:

ρ(R, ε) =
VR

LR − y0N + ε
, (2)

here ε depending on the smallest rectangle volume vmin in the current decomposition

ε(vmin) =


q · d (vmin · ln(1/vmin))

2/d
, 0 < vmin ≤ 1

2

q · d, otherwise ; (3)

q =
3 · 22/3e−1

2 ln(2)
, (4)

is defined to satisfy the conditions needed for the high convergence rate of the algo-
rithm; see (Calvin et al., 2015).

The original algorithm by Calvin et al. (2015) operates iteratively. At first, the rect-
angles in the current decomposition are ranked according to the value of (2). Then, a
single rectangle with the maximum criterion value is bisected into two equal parts. This
is done by performing function evaluations in the middle of the edges along its longest
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dimension. Then, again the rectangles are ranked, and so on. The process continues
until the maximum allowed number of function evaluations is exceeded.

In the next section we reuse this algorithm as a core of a two-stage approach, where
the global and standard phases of operation alternate. Specifically, the criterion (Eq.
2-4) and the bisection procedure are reused.

2.2 The two-phase algorithm

The pseudo-code of the proposed algorithm is given in Algorithm 1.
The algorithm operates by alternating between the two phases: standard and global.

Initially, the feasible region is partitioned uniformly into equally-sized rectangles, by
dividing each dimension into k equal parts. The rectangles are added to D - the list of
active rectangles, i. e. those eligible for further partitioning. Throughout the operation of
the algorithm the best known function value y0N and its location in the decision space
x0N are tracked. Moreover, the volume histograms of the active, as well as the best
rectangle volumes are employed. The best rectangles are those that have a vertex where
y0N has been achieved. Accordingly, the values of vmin, vbest, as the smallest and the
largest of active rectangle volumes, and vbest, as the largest best rectangle volume, are
available.

Iterations of the algorithm are represented by the main while loop. They continue,
while the number of function evaluations performed N is smaller than a predefined
maximum number Nmax and while there have been new function evaluations during
the previous M consecutive iterations. It is heuristically assumed that once the latter
condition fails, the algorithm has found the global minimum and will stagnate around
it. Each iteration starts calling the procedure do iteration, that divides one or more
rectangles.

In the beginning of each phase, y0N is memorized as sbest (current phase start best
value). Initially the phase is set to standard. After the call to do iteration the sufficient
decrease condition

y0N ≤ sbest − 0.01|sbest| (5)

is tested. If it is true, sbest is updated and boost best is set to concentrate the search
around the new minimum in the next call to do iteration. The phase is extended for
another iteration, if there is a sufficient decrease or if the volume of the smallest ac-
tive rectangle is not smaller than ∆. Otherwise, this means that the algorithm has ap-
proached some local minimum with the precision ∆ and it is time to switch to the global
phase. In this case sbest is updated and all the rectangles produced up to this point are
filtered, so that D contains only the large ones, i. e. those with volume not smaller than
Tvolume:

Tvolume(vbest, vmax) = min
(
vmax,

vmax
2exp(τ)

)
, τ = log2

vmax
vbest

+ 1. (6)

The global phase is intended to look for the global minimum in the large previ-
ously unexplored areas. The switch back to the standard phase occurs only after the
sufficient decrease condition (5) is satisfied. Then the sbest value is set to the minimum
y0N and the search is concentrated around it by setting boost best. If no sufficient de-
crease has been achieved, the global phase iterations counter iglobal is incremented and
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the new iteration starts. Every gperiod iterations a chance is given for the smaller inac-
tive rectangles to be divided by activating rectangles not smaller than vbest, invoking
do iteration once, and again filtering the rectangles according to Tvolume.

The actual division of rectangles happens in the do iteration procedure. Initially,
ε(vmin) is computed according to (Eq. 3 and 4). Based on the value of boost best,
either one or more rectangles are bisected, as in the original algorithm (Calvin et al.,
2015). If boost best is false, a single rectangle Ri with the largest ρ(Ri, ε) value (see
Eq. 2) is divided. If boost best is set, then a list of rectangle center distances to x0N is
composed and sorted (repeating entries are not removed). The 2d-th (d is the problem
dimension) smallest entry is taken as a distance threshold Tdist, and all rectangles with
the distance not smaller than that are subdivided.

Several of the above-mentioned values are user-defined parameters. The objective
function to be minimized is objective function, which includes the specification of
the feasible region and problem dimension d. The maximum number of function eval-
uations is Nmax. During initialization the feasible region is divided into k equal parts
along each dimension, in order to increase the search globality in the beginning. The
parameter controlling the exploration of the surroundings of any local minimum is ∆.
When no function evaluations occur during M consecutive iterations, the program exe-
cution terminates, as the algorithm is likely to have found the global minimum. After a
multiple of gperiod global phase iterations has been executed, a single equivalent of the
standard phase is invoked.

2.3 Function evaluations data structure

As the rectangles are divided by the points on a regular grid, i. e. xij ∈ { 1
2m ,m ∈ N},

i = 1, . . . , N, j = 1, . . . , d, and every point might be a vertex of up to 2d different
rectangles, the repeated function evaluations at the same point are very likely. To avoid
them, a tree data structure is developed, storing pairs (xi, f(xi)) ∈ Rd × R. Once a
need to evaluate the function at some point arises, it is looked up in the history. In case
an existing entry is found, it is used and the total number of function evaluations N is
not incremented.

The data structure employed is a range tree (Bentley, 1979), i. e. a multi-layered
self-balancing binary search tree. Each of its levels corresponds to a single dimension
of the feasible region. Namely, the first level is an AVL tree (Knuth, 2010), holding
the distinct values of the first coordinate of the input points xi in its nodes. Moreover,
each node itself holds a nested AVL tree. A nested, or k-th layer, tree stores the distinct
values of the k-th coordinate of the input points with equal first k− 1 coordinate values
and the nodes have nested AVL trees for further dimensions.

3 Experimental comparison

In this section the operation of the proposed algorithm is illustrated experimentally.
The comparison to the original (Calvin et al., 2015) algorithm and the well-known
global optimization algorithm DIRECT (Web, a), usually used for similar problems,
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Algorithm 1 A two-phase global optimization algorithm pseudo-code.
1: procedure OPTIMIZE(objective function,Nmax, k,∆,M, gperiod)
2: D ← rectangles, obtained by partitioning the feasible region into k equal parts along

each dimension
3: y0N , x0N ← best function value and its location found so far
4: sbest ← y0N
5: boost best← False
6: iglobal ← 0
7: phase← STANDARD
8: N ← 0
9: while N < Nmax and there have been new function evaluations in the M previous

consecutive iterations do
10: DO ITERATION(D,xbest, boost best, vmin)
11: boost best← False
12: vbest ← volume of the largest rectangle containing the value y0N
13: sufficient decrease← is y0N better than sbest by 1%?
14: if phase == STANDARD then
15: if sufficient decrease then
16: sbest ← y0N
17: boost best← True
18: else if vmin < ∆ then
19: sbest ← y0N
20: phase← GLOBAL
21: D ← rectangles that are not smaller than Tvolume(vbest, vmax)
22: end if
23: else
24: iglobal ← iglobal + 1
25: if sufficient decrease then
26: sbest ← y0N
27: boost best← True
28: iglobal ← 0
29: phase← STANDARD
30: D ← rectangles that are not smaller than vbest
31: else if iglobal mod gperiod == 0 then
32: D ← rectangles that are not smaller than vbest
33: DO ITERATION(D,x0N , boost best, vmin)
34: D ← rectangles that are not smaller than Tvolume(vbest, vmax)
35: end if
36: end if
37: end while
38: end procedure
39: procedure DO ITERATION(D,x0N , boost best, vmin)
40: ε← ε(vmin)
41: if boost best then
42: Tdist ← largest of the 2d smallest distances of rectangles from x0N
43: Divide rectangles with the distance to x0N not less than thres
44: else
45: Divide the rectangle Ri, for which rho(Ri, ε) is maximum
46: end if
47: Update N, y0N , x0N , vmin, vmax, vbest
48: end procedure
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Table 1. Testing results with functions from Hansen and Jaumard (1995) defined over a 2-
dimensional region. Optimization stops after a predefined number of function evaluations N .

Alg. Proposed Original DIRECT
N N N

func. 500 1000 3000 500 1000 3000 500 1000 3000
1 5.30 5.30 5.80 4.30 4.30 5.30 4.14 4.14 ∞
2 6.93 6.93 6.93 5.65 5.65 6.93 3.71 3.71 3.71
3 6.77 6.77 8.18 12.48 13.47 13.47 5.58 5.58 5.58

3.1 6.75 6.75 7.21 12.29 13.39 13.47 5.58 5.58 5.58
3.2 6.75 6.75 7.21 12.29 13.39 13.47 5.58 5.58 5.58
3.3 8.07 8.07 8.18 13.34 13.34 13.34 5.58 5.58 5.58
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
5 3.97 4.14 6.01 3.12 5.33 5.33 4.48 4.48 4.48
6 2.66 4.49 4.49 3.87 3.87 3.87 1.78 1.78 1.78
7 2.15 4.02 9.42 ∞ ∞ ∞ 2.87 3.74 6.67
8 6.12 6.12 6.23 4.91 4.91 6.12 4.30 4.70 4.70
9 ∞ ∞ ∞ -1.43 -1.43 -1.43 ∞ ∞ ∞

9.1 ∞ ∞ ∞ -1.43 ∞ ∞ ∞ ∞ ∞
9.2 6.40 9.41 12.40 ∞ ∞ ∞ ∞ ∞ ∞
9.3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
10 9.17 9.22 11.23 13.40 13.78 13.78 4.64 4.64 4.64
11 7.03 9.17 9.17 5.62 7.44 12.36 ∞ ∞ ∞
12 4.65 6.02 9.04 4.23 5.16 7.84 4.32 4.32 4.32
13 1.20 1.51 1.56 0.99 1.02 1.29 1.29 1.29 1.86

is included. Throughout the section, the three algorithms are denoted by ”Proposed”,
”Original” and ”DIRECT”, respectively.

Two types of experiments have been carried out. First, a number of 2-dimensional
testing functions from (Hansen and Jaumard, 1995) have been minimized. The results
are presented in Table 1. The first column contains the IDs of the objective functions, as
they appear in the original source. For each algorithm, the obtained precision eN after
N = 500, 1000, 3000 function evaluations is given, where eN = −log10(f∗ − y0N ),
f∗ is the global minimum and y0N is the best value found. The larger eN , the higher
precision has been achieved. The symbol∞ means that the exact global minimum has
been found. The results for DIRECT have been obtained with an implementation from
(Web, a). The following values of the parameters of the proposed algorithm have been
used: ∆ = 10−9, M = 5, k = 4, gperiod = 20.

It can be seen that the Proposed and Original algorithms perform similarly on the
first set of testing functions, and DIRECT performs slightly worse. The Original algo-
rithm fails in approximating the global minimum of the 9-th function. All algorithms
find it difficult to approximate the 13-th objective function, due to its global minimizer
being hidden behind areas of high function levels. Also, DIRECT found a relatively
rough solution to the 6-th problem. Apart from that, all algorithms manage to find the
global minima with acceptable precision.

For the second experiment, the free implementation (Web, b) of the GKLS test
function generator (Gaviano et al., 2003)) was used. Its authors emphasize the need
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to have the testing functions of controllable difficulty with known properties, such as
the number and locations of local minima. It is possible to generate non-differentiable,
continuously differentiable or twice continuously differentiable testing functions. The
functions are obtained by distorting a quadratic function by polynomials. There are sev-
eral parameters, that are needed to specify a completely reproducible function class: d -
the problem dimension, nlocal - the number of local minima, f∗ - the global minimum
value, ρ∗ - the radius of the attraction region of the global minimizer, r∗ - the distance
between the global minimizer and the quadratic function vertex. Problem difficulty in-
creases with d, nlocal and r∗. Each class contains 100 different testing functions.

We based our experiment on the methodology presented in Sergeyev and Kvasov
(2006) and Paulavičius et. al (2014). In our experiment we used the first 6 continuously
differentiable function classes with dimensionality d = 2, 3 and 4 from the aforemen-
tioned sources. The parameters common to all classes are f∗ = −1 and nlocal = 10.
The rest of the class parameters are specified in the results tables (Tables 2 and 3) next
to the class number.

The stopping condition for all algorithms was:

∃i ∈ {1, . . . , N} : |xij − x∗j | ≤
d√
∆|bj − aj |, (7)

where A = {t : Rd : aj ≤ tj ≤ bj , j = 1, . . . , d} is a hyper-rectangular feasible
region. This means that the algorithm generated a point xi such that the area of a rect-
angle with xi and the global minimizer x∗ as its opposite vertices has the volume not
larger than ∆ times the volume of the feasible region. In case an algorithm does not
satisfy this condition in Nmax = 1000000 function evaluations, its is stopped as well.

The performance of the algorithms has been assessed based on the number of func-
tion evaluations needed to reach the stopping condition (7) for the 100 functions in each
class. Two criteria are used:

1. The maximum number of function evaluations Nk performed for the class:

max
k=1,...,100

Nk. (8)

2. The average number of function evaluations performed for the class:

1

100

100∑
k=1

Nk . (9)

The parameters of the proposed algorithm were set as follows: M = ∞, k = 4,
gperiod = 20. The value of ∆ corresponds to the condition (7) and is given in Tables 2
and 3 for each function class. The results for DIRECT were taken from Sergeyev and
Kvasov (2006).

Table 2 shows the first criterion values for the compared algorithms. Each row rep-
resents a single function class. For each of the algorithms, the 100 functions were sorted
in an ascending order according to the number of function evaluations required to satisfy
the condition (7). The maximum among the first half of entries is given in the columns
under the ”50%” heading. The values of (8) are listed under the ”100%” heading. The
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best value in 50% and 100% categories is highlighted. The fact that an algorithm ex-
ceeded Nmax = 1000000 function evaluations, is denoted by > 1000000(k), where
k is the number of functions, for which this happened. The second criterion values are
listed in Table 3. The class parameters are given analogously to Table 2.

According to the first criterion, the Proposed algorithm significantly improves upon
the Original algorithm. It also performs better than DIRECT, which does not manage
to satisfy condition (7) for all the functions in the classes 4 − 6. This happens for the
Original algorithm as well, with 3 functions from the last class. The second criterion
shows that the Proposed algorithm is the best for the harder classes in the two and
three-dimensional cases, also for classes 5 and 6. It seems that DIRECT performs bet-
ter on average, but is less prone to the worst-case functions. The proposed two-phase
algorithm seems to effectively extend the Original algorithm, protecting against the
problems arising with harder-than-average functions.

Table 2. Results with GKLS-generated function classes. The maximum number of function eval-
uations for each class.

Class d ∆ r∗ ρ∗
50% 100%

Proposed Original DIRECT Proposed Original DIRECT
1 2 10−4 .90 .2 210 382 111 424 1992 1159
2 2 10−4 .90 .1 605 1638 1062 1295 13848 3201
3 3 10−6 .66 .2 2705 10117 386 5623 34009 12507
4 3 10−6 .90 .2 3446 14281 1749 8333 131325 >1000000(4)
5 4 10−6 .66 .2 10869 52593 4805 41151 569193 >1000000(4)
6 4 10−6 .90 .2 13604 95313 16114 47532 >1000000(3) >1000000(7)

Table 3. Results with GKLS-generated function classes. The average number of function evalu-
ations for each class.

Class d ∆ r∗ ρ∗
100%

Proposed Original DIRECT
1 2 10−4 .90 .2 217.76 477.22 198.89
2 2 10−4 .90 .1 602.5 2340.46 1063.78
3 3 10−6 .66 .2 2777.38 10667.24 1117.70
4 3 10−6 .90 .2 3814.69 21512.76 >42322.65
5 4 10−6 .66 .2 13208.57 77987.08 >47282.89
6 4 10−6 .90 .2 18098.15 >161152.25 >95708.25

4 Conclusions

An algorithm, based on the ideas of statistical modeling of the black-box objective
function, is extended to balance the global and local phases of the search for the global
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minimum. The proposed algorithm has been tested with over 600 objective functions
and compared to the original (Calvin et al., 2015) and the well-known DIRECT (Web,
a) algorithms. The results show that the extension is beneficial, when the functions
are hard, that is multimodal, having relatively small regions of attraction of the global
minimum, whose location is not quickly deducible from the information gathered about
the function. With this extension the algorithm becomes comparable to and better than
DIRECT. This means that it is worthwhile seeking further computational reductions by
balancing the global and local search phases in the statistical global optimization.
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