
Baltic J. Modern Computing, Vol. 4 (2016), No. 1, 89-97

Improved LabVIEW Code Generation

Evita VAVILINA, Gatis GAIGALS

Ventspils University College, Inzenieru Street 101, Ventspils, LV-3600, Latvia

evita.vavilina@venta.lv, gatis.gaigals@venta.lv

Abstract. Before implementation into hardware signal processing algorithms are tested in

simulation mode. LabVIEW provides highly convenient environment for simulation development

and also tools for generation of simulation environment that can include simulation itself and

collection of simulation data. Despite the fact that these tools use LabVIEW for code generation, it

is not easy to understand the principles of code generation and effectively develop simulation

generators. This paper presents toolbox for improved LabVIEW code generation. The developed

toolbox is based on standard LabVIEW code generation functions maximally simplifying the

application and minimizing the necessary amount of tools for code generation.

This paper consists of theoretical part about LabVIEW code generation methods, practical part

about principles of LabVIEW code generation using scripting and a graphical presentation of

improved LabVIEW code generation advantages. The presented graphical results show that the

improved LabVIEW code generation is simpler (thus better) and more understandable for practical

realization and the code generator is clearer and more comprehensible than the original one.

Keywords: automatic programming, parallel programming, object oriented modeling, signal

processing algorithms, virtual prototyping

1 Introduction

Before implementation into hardware signal processing algorithms are tested in

simulation mode. Conventional simulation environments are not well suited for

simulating massive parallel signal processing algorithms, which refer to parallel signal

processing of an array of signals.

Most popular simulation environments, such as Matlab, use sequential signal

processing simulation model, graphical environments – Simulink and LabVIEW (WEB

(c)) come with development difficulties. Both graphical simulation environments

provide convenient parallel signal processing path, but parallel code complexity exceeds

the ability by humans to develop precise and accurate codes. Moreover, LabVIEW

provides also scripting tools for generation of simulation environment, which is then

well suited for development of simulation codes applicable in the most commonly used

hardware for signal processing – field - programmable gate array (FPGA). The greatest

advantages of FPGA are the rapid non-stop technology development – increase in speed

performance and parallel code execution. Therefore simulation code should exclude any

kind of loops to make full use of the FPGA advantages.

This is where LabVIEW tools for simulation code generation become efficient with

unlimited, e.g. loop, replication facilities. Using LabVIEW generation tools it is possible

to generate a new simulation code in LabVIEW environment. Once a generation code

prototype with LabVIEW tools is created, there is no extra effort needed to generate

90 Vavilina and Gaigals

unlimited size or number of this kind of simulation codes. The only limit is the number

of available resources on the target device. At this point the main difficulty for reaching

unlimited simulation code generation is the complexity in the application of existing

LabVIEW code generation tools. The principle of LabVIEW code generation tools is not

easy to understand and not even worth considering effective development of simulation

code generators.

In general LabVIEW is a very convenient environment for developing simple and

complex signal processing algorithms graphically from the perspective of electrical

engineers. LabVIEW provides error tracking tools for easy code debugging. When it

comes to complex signal processing algorithm development it is more convenient and

effective to use LabVIEW simulation generation tools. These tools facilitate the

repetitive actions, where the main benefits are time and effort economy, as well as

accuracy and correctness in generating complex codes. For example, using these tools a

complex parallel signal processing simulation code with guaranteed code correctness can

be generated.

As mentioned before, the provided standard LabVIEW tools are too sophisticated for

an easy application and understanding in developing any kind of complexity simulation

codes. Therefore, not all of the advantages provided by LabVIEW are used in full.

Improved LabVIEW code generation tools simplify the development of simulation

generation and greatly improve the LabVIEW code generation functionality.

2 Theory

For effective usage of FPGA advantage regarding parallel signal processing LabVIEW

simulation code implementation on FPGA should avoid signal processing in loops

anywhere where possible and transform them to calculations in parallel code blocks.

Manual replication process takes a lot of time and may have an adverse impact on the

final code accuracy. Therefore, it is effective to use one of the presented LabVIEW code

generation methods.

A. LabVIEW code generation methods

LabVIEW provides two code generation methods:

a. Using prepared code in hardware description language (HDL) – VHDL or

Verilog.

Using this method the desired code functionality is defined in one of the HDL

programming languages. This method is used when algorithm or application is

prepared in HDL language, thus, no need to rewrite it in LabVIEW graphical

code. It does not solve a problem how to correctly transfer LabVIEW code to

VHDL. Traditionally third party proprietary HDL code generation tools are used.

In this case LabVIEW code has to be transferred to third party environment

manually taking into account environment specific code building principles.

b. Scripting

LabVIEW provides specific scripting functions for generation of LabVIEW

code – virtual instrument (VI) in the same LabVIEW environment. Scripting

functions allow generating new VIs, front panel controls, block diagram objects

and connections, as well as modify an existing VI (WEB (a)).

Comparing these two code generation methods it is concluded that, even though

VHDL Intellectual Property (IP) offers similar functionality for code generation with

various configurations, scripting is more effective. Since scripting VI generates a new VI

 Improved LabVIEW Code Generation 91

with highly parallel executable programme code in LabVIEW environment, it can be

easily debugged and modified.

B. LabVIEW code generation using scripting functions

LabVIEW VI scripting helps programmatically generate, edit, and inspect LabVIEW

code. First, VI scripting allows dynamically change the dimension of generated code by

replicating once defined generation code. Secondly, VI scripting can adjust an existing

simulation code working in simulation environment by automatically replacing specific

functions to fit the planned hardware restrictions.

Giving the first impression about LabVIEW code generation using scripting a simple

code generator is presented in Fig. 1. The generated LabVIEW code (Fig. 2) consists of

While Loop and Add function. Comparing both codes it is obvious that the code

generator has a bigger dimension than the generated code.

Fig. 1. LabVIEW code generator.

Fig. 2. Generated LabVIEW code.

When generating LabVIEW code with scripting functions, it is possible to generate

all standard LabVIEW functions and complex signal processing algorithms. Since the

code generator gets too complex even for a simple code generation, there are more

drawbacks than benefits on using this code generation method. Thus improved

LabVIEW code generation tools are necessary to make the application of scripting

functions maximally effective.

3 Scripting toolbox

For full and convenient application of LabVIEW code generation functions a new

LabVIEW function toolbox named Scripting is created. The Scripting toolbox (Fig. 3)

includes functions which are similar to the standard LabVIEW functions or in other

words to the function it generates and also some adjustment functions necessary for the

realization of code generation.

92 Vavilina and Gaigals

Fig. 3. LabVIEW Scripting toolbox.

In this toolbox LabVIEW function generation scripts for the most commonly used

functions are developed. It is possible to develop function generation scripts for all

LabVIEW function generation and use them for a general application the same way as

standard LabVIEW functions. As an extra, this Scripting toolbox also includes FPGA

High Throughput Math script functions for the basic FPGA math function generation.

In terms of functionality and visual representation the Scripting toolbox functions

similar to the original LabVIEW functions are placed in the same directories and

hierarchy levels in Function Palette as the standard LabVIEW functions. This kind of

layout organization eases application of Scripting toolbox.

The Scripting toolbox function application is the same as for any standard LabVIEW

function – choose function from the Function Palette and drag it into block diagram. If

more information is needed, in LabVIEW Help window a small description of every

Scripting toolbox function can be found.

 Fig. 4 presents an icon of standard LabVIEW Add function (a) and Add generation

script function (b). The developed Scripting toolbox functions all have a square form,

but the visual representation is specific to the functionality, e.g. Add generation script

function design is made using the same design as the standard LabVIEW Add function.

 Improved LabVIEW Code Generation 93

a)

b)

Fig. 4. LabVIEW Add function icons: a) Original LabVIEW Add function; b) LabVIEW Add

generation script function.

All Scripting toolbox functions have the same terminals (with the same name) as the

representing standard functions and also every scripting function has extra default

terminals:

 Diagram/Structure (input);

 error in (input);

 error out (output).

LabVIEW standard functions dynamically adjust to the given input data type; to

realize this dynamic dispatching in Scripting toolbox functions an object oriented

programming technique – polymorphism is used (Rick, 2001). Polymorphism is the

ability of VIs and functions to automatically adapt to accepting input data of different

data types (Smith, 2000).

4 Evaluation of scripting toolbox

A classical algorithm and a good example for code generation in signal processing is

Fast Fourier transform (FFT) (Smith, 2000). To demonstrate this, Fig. 5 shows one

2 - input butterfly code of LabVIEW. Butterfly code is a computation element that

combines the results of smaller Discrete Fourier transforms (DFTs) into a larger DFT, or

vice versa.

Fig. 5. One 2 - input butterfly code.

Two types of code generation tools are evaluated below.

A. Standard LabVIEW code generation functions

The preview of 1 part out of 6 of LabVIEW butterfly code generator with standard

scripting functions (Fig. 6) shows that it is more complex than the generated LabVIEW

butterfly code (Fig. 5).

It can be seen that even in a simple code generation case it is easier to develop a code

manually not using the standard scripting functions. Even though code generation using

scripting should bring benefits and make the code generation more efficient, the standard

LabVIEW scripting functions are very complex even for a simple code generation.

94 Vavilina and Gaigals

Fig. 6. One 2 - input butterfly code generator with standard LabVIEW scripting functions (1 part

out of 6).

B. The developed Scripting toolbox functions

The improved LabVIEW code generation functions from Scripting toolbox are easier

to use and the created butterfly code generator (Fig. 7) is clearer, visually less complex

and more similar to the standard LabVIEW butterfly code (Fig. 5). Since the code

generator with improved functions visually looks similar to the generated code, it is

easier to understand and follow the realized algorithm.

Fig. 7. One 2 - input butterfly code generator with improved scripting functions.

A simple butterfly code example with 2
1
 - inputs does not show the advantages of

scripting. When it comes to butterfly code with 2
10

 - inputs, the generation code

development becomes very time consuming and is subject to an extreme accuracy by the

developer due to its dimension.

Using Scripting toolbox a butterfly code with 2n - inputs can be automatically

generated by setting only one variable in the LabVIEW front panel – n. Variable n

defines the size of butterfly code. This butterfly code generator can generate butterfly

code of any dimension. The only limit is the local computer processor power.

Modifying the butterfly code generator, the new code generator (Fig. 8) allows

dynamically generate butterfly code of any size. In case of n = 2, the generated butterfly

code looks like the one presented in Fig. 9.

Fig. 8. Dynamical butterfly code generator with improved scripting functions.

 Improved LabVIEW Code Generation 95

Fig. 9. Two 2 - input butterfly code.

In case of n = 2, the dimension of butterfly code generator and the generated code is

almost the same. Since the application of butterfly code in parallel signal processing

algorithms includes n >> 2, the generated butterfly code is more complex and with

greater dimension than the code generator. The butterfly code dimension increases very

rapidly, hence, screenshots of bigger generated codes are not presented in a figure here.

Advantages of Scripting toolbox

The butterfly code dimension depends on the number of inputs (2
n
). The bigger the

value of n, the greater is the generated code. Fig. 10 presents comparison of generated

butterfly code dimensions by defining different values of n in the same butterfly code

generator (Fig. 8). The dimensions were compared by analysing LabVIEW block

diagrams of all generated butterfly codes.

Fig. 10. Number of objects in generated butterfly code.

It can be concluded from Fig. 10 that for n > 2 the number of objects in the generated

butterfly code increases very rapidly. For n > 7 the dimension of generated code

increases tremendously and it is not in human power to repeat this manually.

96 Vavilina and Gaigals

In the same way there is no limit for generation of any other simulation or hardware

implementation code. The application of the developed Scripting toolbox functions is as

simple as the standard LabVIEW functions.

5 Conclusions

When it comes to development of complex signal processing algorithm simulation and

its implementation into hardware, the most advantageous choice is LabVIEW code

generation using scripting. In other words, LabVIEW code generation using scripting is

advantageous when repetitive actions have to be done, e.g. to avoid loops and efficiently

use the FPGA advantage – parallel signal processing.

Properly developed code generator allows quickly generating signal processing path

of any dimension preventing human errors. Once a code generator prototype is

developed, there is no extra effort needed to generate unlimited size or number of this

kind of codes.

The provided standard code generation functions in LabVIEW are too complex to

effectively use them in simulation code generation. The improved LabVIEW code

generation functions from developed Scripting toolbox provide easy application and

simulation code generation.

The Scripting toolbox provides improved functionality for the development of

simulation code generators since it is easy usable, understandable and also the user

developed code generator look similar to the standard LabVIEW code of the same

particular signal processing algorithm.

Acknowledgement

This work has been partially supported by the ESF project

Nr. 2013/0005/1DP/1.1.1.2.0/13/APIA/VIAA/049 and by the Latvian National Research

Program „Cyberphysical systems, ontologies and biophotonics for safe & smart city and

society.” within the project „Ontology-based knowledge engineering technologies

suitable for web environment” and by the ERDF project

Nr. 2DP/2.1.1.1.0/14/APIA/VIAA/072.

References

Rick, B. (2001). Object-Oriented Programming in LabVIEW, LabVIEW Advanced Programming

Techniques Boca Raton: CRC Press LLC.

Smith, S. W. (2000). The Scientist & Engineer's Guide to Digital Signal Processing, California

Technical Publishing.

WEB (a). Scripting language definition. http://www.webopedia.com/TERM/S/scripting_language.

html [Accessed: Sept 20, 2015];

WEB (b). Polymorphism definition. http://zone.ni.com/reference/en-XX/help/371361M-01/

lvconcepts/polymorphic_functions/.

WEB (c). LabVIEW popularity among IEEE publication topics. http://ieeexplore.ieee.org/search/

searchresult.jsp?newsearch=true&queryText=LabVIEW.

http://www.webopedia.com/TERM/S/scripting_language
http://zone.ni.com/reference/en-XX/help/371361M-01/%20lvconcepts/
http://zone.ni.com/reference/en-XX/help/371361M-01/%20lvconcepts/
http://ieeexplore.ieee.org/search/

 Improved LabVIEW Code Generation 97

Authors’ information

Evita Vavilina received the B.S. and M.S. in electronics from Ventspils University

College (VUC), Ventspils, Latvia in 2012 and 2014 respectively. She works as

researcher in Engineering Research Institute “Ventspils International Radio Astronomy

Centre” (VIRAC) of VUC. Her research interests include signal processing algorithm

realization in graphical programming environment and development of automatic code

generation tools.

Gatis Gaigals received the B.S. in electronics from Riga Technical University, Riga,

Latvia in 2004 and M.S. in computer sciences from VUC, Ventspils, Latvia in 2008. He

is currently pursuing the Ph.D. degree in electronics at Riga Technical University, Riga,

Latvia. His current research interests include applications of compressive sampling

technique. He works as researcher in VIRAC and as lecturer in VUC since 2007 and

2008 respectively.

Received March 14, 2016, accepted March 23, 2016

