
Dmitrijs Rutko
Fuzzified Algorithm for Game Tree Search with Statistical and ..

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 90–111 P.

Fuzzified Algorithm for Game Tree Search with
Statistical and Analytical Evaluation

Dmitrijs Rutko1

Faculty of Computing, University of Latvia
Raina blvd. 19, Riga, LV-1586, Latvia

dim_rut@inbox.lv

This paper presents a new game tree search algorithm which is based on the idea that the
exact game tree evaluation is not required to find the best move. Therefore, pruning
techniques may be applied earlier resulting in faster search and greater performance. The
experiments show that applied to an abstract domain, the presented algorithm outperforms the
existing ones such as PVS, Negascout, NegaC*, SSS*/ Dual* and MTD(f). This paper also
provides improvements for algorithm such as statistical and analytical game tree evaluation.

Keywords: game tree search, alpha-beta pruning, fuzzified search algorithm, performance.

1 Introduction

Games are usually represented with the help of a game tree which starts at the
initial position and contains all the possible moves from each position. Classical
game tree search algorithms such as Minimax and Negamax operate using a
complete scan of all the nodes of the game tree and are considered to be too
inefficient. The most practical approaches are based on the Alpha-beta pruning
technique, which seeks how to reduce the number of nodes to be evaluated in the
search tree. It is designed to completely stop the evaluation of a move if at least one
possibility is found, the one that proves the current move to be worse than the
previously examined move. Such moves do not need to be evaluated further.

The examples of more advanced algorithms that are even faster while still being
able to compute the exact minimax value, are PVS, Negascout and NegaC*. The
other group of algorithms like SSS* / Dual* and MTD(f), use best-first strategy,
which can potentially make them more time-efficient, however, typically at a heavy
cost of space-efficiency.

Through analyzing and comparing these algorithms it can be seen that in many
cases the decision about the best move can be made before the exact game tree
minimax value is obtained. The author introduces a new approach which allows
finding the best move faster while visiting less nodes.

The paper is organized as follows: the current situation in the game tree search
is discussed; then the idea that allows performing game tree search in a manner

1 This research is supported by the European Social Fund project
 No. 2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004.

91Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

based on the move that leads to the best result is proposed; the algorithm structure
and implementation details are explained. Thereafter, improvements to the
algorithm, such as statistical selflearning and analytical evaluation, are discussed.
Then, the experimental setup and empirical results on the search performance
obtained in abstract domain are shown. The paper is concluded with future research
directions.

2. State of the Art

Classical game tree search algorithms are based on the lphabeta pruning
techniue. lphabeta is a search algorithm which tries to reduce the number of
nodes to be evaluated in the search tree by the Minimax algorithm. It completely
stops evaluating a move when at least one possibility has been found that proves the
move to be worse than a previously examined one. Such moves need not be
evaluated further. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision [12].

The illustration of the lphabeta approach is given in .

 Traditional lphaeta approach

The game tree in  has two branches with minimax values 2 and 8 for

the left and right subtrees respectively. In order to find the best move, the lpha
beta algorithm is scanning all the subtrees from the left to the right and is forced to
evaluate almost each node. The possible cutoffs are depicted with a dashed line (at

1 2 7 4 3 6 8 9 5 4

2 7 8 9

2 8

8

√ √

√

Χ

Χ

√

√

√

Χ

Χ

max

min

max

based on the move that leads to the best result is proposed; the algorithm structure
and implementation details are explained. Thereafter, improvements to the
algorithm, such as statistical self-learning and analytical evaluation, are discussed.
Then, the experimental setup and empirical results on the search performance
obtained in abstract domain are shown. The paper is concluded with future research
directions.

2 State of the Art

Classical game tree search algorithms are based on the Alpha-beta pruning
technique. Alpha-beta is a search algorithm which tries to reduce the number of
nodes to be evaluated in the search tree by the Minimax algorithm. It completely
stops evaluating a move when at least one possibility has been found that proves the
move to be worse than a previously examined one. Such moves need not be
evaluated further. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision [12].

The illustration of the Alpha-beta approach is given in Fig. 1.

Fig. 1 Traditional Alpha-Beta approach

The game tree in Fig. 1 has two branches with minimax values 2 and 8 for the

left and right sub-trees respectively. In order to find the best move, the Alpha-beta
algorithm is scanning all the sub-trees from the left to the right and is forced to
evaluate almost each node. The possible cut-offs are depicted with a dashed line (at

1 2 7 4 3 6 8 9 5 4

2 7 8 9

2 8

8

√ √ √ Χ Χ √ √ √ Χ Χ

max

min

max

based on the move that leads to the best result is proposed; the algorithm structure
and implementation details are explained. Thereafter, improvements to the
algorithm, such as statistical self-learning and analytical evaluation, are discussed.
Then, the experimental setup and empirical results on the search performance
obtained in abstract domain are shown. The paper is concluded with future research
directions.

2 State of the Art

Classical game tree search algorithms are based on the Alpha-beta pruning
technique. Alpha-beta is a search algorithm which tries to reduce the number of
nodes to be evaluated in the search tree by the Minimax algorithm. It completely
stops evaluating a move when at least one possibility has been found that proves the
move to be worse than a previously examined one. Such moves need not be
evaluated further. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision [12].

The illustration of the Alpha-beta approach is given in Fig. 1.

Fig. 1 Traditional Alpha-Beta approach

The game tree in Fig. 1 has two branches with minimax values 2 and 8 for the

left and right sub-trees respectively. In order to find the best move, the Alpha-beta
algorithm is scanning all the sub-trees from the left to the right and is forced to
evaluate almost each node. The possible cut-offs are depicted with a dashed line (at

1 2 7 4 3 6 8 9 5 4

2 7 8 9

2 8

8

√ √ √ Χ Χ √ √ √ Χ Χ

max

min

max

92 Computer Science and Information Technologies

each step, the previous evaluation is smaller than the value of currently checked
node).

When all the nodes are checked, the algorithm compares the top-level sub-trees.
The evaluation of the left and the right branches are 2 and 8 respectively; the highest
outcome is chosen, and the best move goes to the right sub-tree.

The benefit of alpha-beta pruning lies in the fact that branches of the search tree
can be eliminated. The search time can in this way be limited to the 'more promising'
subtree, and a deeper search can be performed in the same time.

Since the minimax algorithm and its variants are inherently depth-first, a
strategy such as iterative deepening is usually used in conjunction with alpha-beta so
that a reasonably good move can be returned even if the algorithm is interrupted
before it has finished execution. Another advantage of using iterative deepening is
that searches at shallower depths give move-ordering hints that can help produce
cutoffs for higher-depth searches much earlier than would otherwise be possible
[11].

More advanced algorithms are the following:
• PVS (Principal Variation Search) is an enhancement to Alpha-Beta based

on null or zero window searches of none PV-nodes to prove whether a
move is worse or not than the already safe score from the principal
variation [1][10].

• NegaScout, which is an Alpha-Beta enhancement. The improvements rely
on a Negamax framework and some fail-soft issues concerning the two last
plies which did not require any re-searches [3] [4].

• NegaC* – an idea to turn a Depth-First to a Best-First search like MTD(f)
to utilize null window searches of a fail-soft Alpha-Beta routine and to use
the bounds that are returned in a bisection scheme [5].

• SSS* and its counterpart Dual* are search algorithms which conduct a state
space search traversing a game tree in a best-first fashion similar to that of
the A* search algorithm and retain global information about the search
space. They search fewer nodes than Alpha-Beta in fixed-depth minimax
tree search [2].

• MTD(f), the short name for MTD(n, f), which stands for Memory-enhanced
Test Driver with node n and value f. MTD is the name of a group of driver-
algorithms that search minimax trees using null window alpha-beta with
transposition table calls. In order to work, MTD(f) needs a first guess as to
where the minimax value will turn out to be. The better than first guess is,
the more efficient the algorithm will be, on average, since the better it is,
the less passes the repeat-until loop will have to do to converge on the
minimax value [6] [7] [8] [9].

Transposition tables are another technique which is used to speed up the search
of the game tree in computer chess and other computer games. In many games, it is
possible to reach a given position, which is called transposition, in more than one
way. In general, after two moves there are 4 possible transpositions since either
player may swap their move order. So it is still likely that the program will end up
analyzing the same position several times. To avoid this problem transposition tables
store previously analyzed positions of the game [11].

93Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

3 Fuzzy Approach

The author proposes a new approach, which is based on the attempt to
implement a human way of thinking adapted to logical games. A human player
rarely or almost never evaluates a given position precisely. In many cases, the
selection process is limited to rejecting less promising nodes and making certain that
the selected option is better than others. The important moment is that we are not
interested in the exact position evaluation but in the node which guarantees the
highest outcome.

Let the given problem be explained in details.
We could look at our game tree from a relative perspective like “is this move

better or worse than some value X” (Fig. 2). At each level, we identify if a sub-tree
satisfies “greater or equal” criteria. So passing search algorithm, for instance, with
argument 5, we can obtain the information that the left branch has value less than 5
and the right branch has value greater or equal than 5. We do not know exact sub-
tree evaluation, but we have found the move, which leads to the best result.

In this case, different cut-offs are possible:
• at max level, if the evaluation is greater (or equal) than the search value;
• at min level, if the evaluation is less than the search value.

In the given example, reduced nodes are shown with dashed line. Comparing to
Fig. 1 it can be seen that not only more cut-offs are possible, but also pruning occurs
at higher level which results in better performance.

Fig. 2 Fuzzy best node approach

In this approach, the best/worst cases are the same as for alpha-beta pruning:
O(wd/2) for the best case as only one branch should be checked at cut-off level, and
O(wd) for worst case as all nodes should be checked (w is width, d is depth of the
tree). But in the presented approach, cut-offs are more often possible in general.

1 2 7 4 3 6 8 9 5 4

<5 ? ≥5 ≥5

<5 ≥5

≥5

√ √ Χ Χ Χ √ Χ √ Χ Χ

max

min

max

3. Fuzzy Approach

The author proposes a new approach, which is based on the attempt to
implement a human way of thinking adapted to logical games. A human player
rarely or almost never evaluates a given position precisely. In many cases, the
selection process is limited to rejecting less promising nodes and making certain that
the selected option is better than others. The important moment is that we are not
interested in the exact position evaluation but in the node which guarantees the
highest outcome.

Let the given problem be explained in details.
We could look at our game tree from a relative perspective like “is this move

better or worse than some value X” (). At each level, we identify if a sub
tree satisfies “greater or equal” criteria. So passing search algorithm, for instance,
with argument 5, we can obtain the information that the left branch has value less
than 5 and the right branch has value greater or equal than 5. We do not know exact
subtree evaluation, but we have found the move, which leads to the best result.

In this case, different cutoffs are possible
 at max level, if the evaluation is greater (or equal) than the search value;
 at min level, if the evaluation is less than the search value.

In the given example, reduced nodes are shown with dashed line. Comparing to
 it can be seen that not only more cutoffs are possible, but also pruning
occurs at higher level which results in better performance.

 Fuzzy best node approach

In this approach, the best/worst cases are the same as for alphabeta pruning
O(wd/2) for the best case as only one branch should be checked at cutoff level, and
O(wd) for worst case as all nodes should be checked ( is width,  is depth of the
tree). ut in the presented approach, cutoffs are more often possible in general.

1 2 7 4 3 6 8 9 5 4

<5 ? ≥5 ≥5

<5 ≥5

≥5

√ √

Χ

Χ

Χ

√

Χ

√

Χ

Χ

max

min

max

3 Fuzzy Approach

The author proposes a new approach, which is based on the attempt to
implement a human way of thinking adapted to logical games. A human player
rarely or almost never evaluates a given position precisely. In many cases, the
selection process is limited to rejecting less promising nodes and making certain that
the selected option is better than others. The important moment is that we are not
interested in the exact position evaluation but in the node which guarantees the
highest outcome.

Let the given problem be explained in details.
We could look at our game tree from a relative perspective like “is this move

better or worse than some value X” (Fig. 2). At each level, we identify if a sub-tree
satisfies “greater or equal” criteria. So passing search algorithm, for instance, with
argument 5, we can obtain the information that the left branch has value less than 5
and the right branch has value greater or equal than 5. We do not know exact sub-
tree evaluation, but we have found the move, which leads to the best result.

In this case, different cut-offs are possible:
• at max level, if the evaluation is greater (or equal) than the search value;
• at min level, if the evaluation is less than the search value.

In the given example, reduced nodes are shown with dashed line. Comparing to
Fig. 1 it can be seen that not only more cut-offs are possible, but also pruning occurs
at higher level which results in better performance.

Fig. 2 Fuzzy best node approach

In this approach, the best/worst cases are the same as for alpha-beta pruning:
O(wd/2) for the best case as only one branch should be checked at cut-off level, and
O(wd) for worst case as all nodes should be checked (w is width, d is depth of the
tree). But in the presented approach, cut-offs are more often possible in general.

1 2 7 4 3 6 8 9 5 4

<5 ? ≥5 ≥5

<5 ≥5

≥5

√ √ Χ Χ Χ √ Χ √ Χ Χ

max

min

max

94 Computer Science and Information Technologies

If we use geometric interpretation and put our sub-tree minimax values on
coordinate axis, then our task is to separate/divide branches so that only one branch
would have higher value than the test value. Fig. 3 illustrates our previous example.
Alpha-beta window is initially set to leaf node range α = 0, β = 10; then the
following test values are used X1, X2, X3. If value X2 is chosen, then the successful
separation is obtained after the first iteration – we know that the second sub-tree has
higher estimation. If values X1 or X3 are chosen, then no separation is possible at
this point – both values are on the same side of the test value. In this case, the
algorithm continues with reduced alpha-beta search window: 1) α = X1 in the first
case; or 2) β = X3 in the second.

Fig. 3 Geometric interpretation of separation in the fuzzified game tree search

In a game tree with three or more sub-trees, the algorithm workflow remains the

same. Our task is to separate sub-trees in a way that only one branch has higher
estimation than the test value. However, more cases are possible – 0, 1, 2, 3
branches fall in on one side of separation line. In this case, alpha-beta window is
reduced correspondingly and the algorithm proceeds with the next iteration.

Comparing to existing algorithms such as MTD(f) in order to work, it needs the
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the
minimax value to start with, it will only do two passes, the bare minimum: one to
find an upper bound of value x, and one to find a lower bound of the same value.

In the presented algorithm, it is possible to find the best move with a single
iteration and we are not limited to the accurate first guess. For the presented
example, any value from interval 3..7 (inclusive) would apply.

4 Fuzzified Search Algorithm

Best Node Search (BNS) is a new game tree search algorithm based on the idea
described in the previous section. The main difference between the classical
approach and the proposed algorithm is that BNS does not require the knowledge of
the exact game tree minimax value to select a move. We only need to know which
sub-tree has higher estimation. By iteratively performing search attempts the
algorithm can obtain information about which branch has higher estimation without
knowing the exact value. So less information is required and, as a result, the best
move can be found faster – total number of searched nodes is smaller and total

α β

2 8

X2

X1 X3

If we use geometric interpretation and put our subtree minimax values on
coordinate axis, then our task is to separate/divide branches so that only one branch
would have higher value than the test value.   illustrates our previous
example. lphabeta window is initially set to leaf node range α = 0, β = 10; then the
following test values are used X1, X2, X3. If value X2 is chosen, then the successful
separation is obtained after the first iteration – we know that the second subtree has
higher estimation. If values X1 or X3 are chosen, then no separation is possible at
this point – both values are on the same side of the test value. In this case, the
algorithm continues with reduced alphabeta search window: 1) α = X1 in the first
case; or 2) β = X3 in the second.

 Geometric interpretation of separation in the fuzzified game tree search

In a game tree with three or more subtrees, the algorithm workflow remains the

same. ur task is to separate subtrees in a way that only one branch has higher
estimation than the test value. However, more cases are possible – 0, 1, 2, 3
branches fall in on one side of separation line. In this case, alphabeta window is
reduced correspondingly and the algorithm proceeds with the next iteration.

Comparing to existing algorithms such as MTD(f) in order to work, it needs the
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the
minimax value to start with, it will only do two passes, the bare minimum: one to
find an upper bound of value x, and one to find a lower bound of the same value.

In the presented algorithm, it is possible to find the best move with a single
iteration and we are not limited to the accurate first guess. For the presented
example, any value from interval 3..7 (inclusive) would apply.

4. Fuzzified Search Algorithm

Best Node Search (BNS) is a new game tree search algorithm based on the idea
described in the previous section. The main difference between the classical
approach and the proposed algorithm is that BNS does not require the knowledge of
the exact game tree minimax value to select a move. We only need to know which
subtree has higher estimation. By iteratively performing search attempts the
algorithm can obtain information about which branch has higher estimation without
knowing the exact value. So less information is required and, as a result, the best
move can be found faster – total number of searched nodes is smaller and total

α β

2 8

X2

X1 X3

If we use geometric interpretation and put our sub-tree minimax values on
coordinate axis, then our task is to separate/divide branches so that only one branch
would have higher value than the test value. Fig. 3 illustrates our previous example.
Alpha-beta window is initially set to leaf node range α = 0, β = 10; then the
following test values are used X1, X2, X3. If value X2 is chosen, then the successful
separation is obtained after the first iteration – we know that the second sub-tree has
higher estimation. If values X1 or X3 are chosen, then no separation is possible at
this point – both values are on the same side of the test value. In this case, the
algorithm continues with reduced alpha-beta search window: 1) α = X1 in the first
case; or 2) β = X3 in the second.

Fig. 3 Geometric interpretation of separation in the fuzzified game tree search

In a game tree with three or more sub-trees, the algorithm workflow remains the

same. Our task is to separate sub-trees in a way that only one branch has higher
estimation than the test value. However, more cases are possible – 0, 1, 2, 3
branches fall in on one side of separation line. In this case, alpha-beta window is
reduced correspondingly and the algorithm proceeds with the next iteration.

Comparing to existing algorithms such as MTD(f) in order to work, it needs the
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the
minimax value to start with, it will only do two passes, the bare minimum: one to
find an upper bound of value x, and one to find a lower bound of the same value.

In the presented algorithm, it is possible to find the best move with a single
iteration and we are not limited to the accurate first guess. For the presented
example, any value from interval 3..7 (inclusive) would apply.

4 Fuzzified Search Algorithm

Best Node Search (BNS) is a new game tree search algorithm based on the idea
described in the previous section. The main difference between the classical
approach and the proposed algorithm is that BNS does not require the knowledge of
the exact game tree minimax value to select a move. We only need to know which
sub-tree has higher estimation. By iteratively performing search attempts the
algorithm can obtain information about which branch has higher estimation without
knowing the exact value. So less information is required and, as a result, the best
move can be found faster – total number of searched nodes is smaller and total

α β

2 8

X2

X1 X3

95Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

algorithm execution time is reduced comparing to the algorithms based on the exact
game tree evaluation.

The presented algorithm uses a standard call of Alpha-Beta search with ‘zero
window’. The proposed implementation relies on the transposition tables but
variation without memory (transposition tables) usage is also possible. While
scanning a game tree, algorithm checks all sub-trees and returns node which leads to
the best result. In general, BNS is expected to be more efficient comparing to the
classical algorithms in terms of number of nodes checked as it does not obtain
additional information which is not required in many cases – the exact game tree
minimax value.

BNS algorithm is given in Fig. 4 which makes use of the following functions:
1. NextGuess() – returns next separation value tested by algorithm;
2. AlphaBeta() – alpha-beta search with Zero Window (Null Window)

performs a boolean test whether a move produces a worse or better score
than the passed value.

All sub-trees are tested with separation values (this information is stored in the
transposition tables and reused in subsequent iterations). If exactly one branch
exceeds test value, then the best node is found. If all branches have smaller
estimation, then the number of sub-trees that exceeds separation test value remains
the same, beta value is reduced. If several nodes exceed test value, then
subtreeCount is updated correspondingly, and alpha value is updated to test
value, and algorithm continues with the next iteration. If a single sub-tree that
exceeds test value cannot be found and alpha-beta range is reduced to 1, it means
that several sub-trees have the same estimation and we can choose any of them.

function BNS(node, α, β)
 subtreeCount := number of children of node
 do
 test := NextGuess(α, β, subtreeCount)
 betterCount := 0
 foreach child of node
 bestVal := -AlphaBeta(child, -test, -(test - 1))
 if bestVal ≥ test
 betterCount := betterCount + 1
 bestNode := child
 update number of sub-trees that exceeds separation
test value

 update alpha-beta range
 while not((β - α < 2) or (betterCount = 1))
 return bestNode

Fig. 4 The BNS algorithm

One of the main parts of this algorithm is the method NextGuess(α, β,

subtreeCount) which returns the next value to be checked by the algorithm. In
the simplest case, it could be a formula based on linear distribution – alpha-beta
range is proportionally divided into sections according to the sub-tree count:

NextGuess = α + (β - α) * (subtreeCount - 1) / subtreeCount;

96 Computer Science and Information Technologies

where alpha and beta are the lower and the upper bounds of the search window
respectively; subtreeCount is the number of sub-trees which satisfies the
previous test call (the branches that have higher estimation than the test value).
However, the best algorithm performance is achieved after its statistical training or
analytical game tree evaluation resulting in non-linear distributions. These methods
are described in the following chapters.

5 BNS Enhancement through Statistical Training

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to
where the minimax value will turn out to be. The better than first guess is, the more
efficient the algorithm will be, on average.

The BNS algorithm can greatly benefit from good separation value as well. The
better separation value is, the faster the best node will be found, on average. So self-
training becomes an important part of the BNS algorithm as it helps us to tune
separation test values used by algorithm during consecutive search attempts and
results in reduced search space and improved performance [12].

In this section, the author proposes a new multi-dimensional statistics approach
which is developed to work in conjunction with BNS algorithm.

It is possible to collect this statistics before the game starts analyzing multiple
test data or on-line during the game process reusing previous estimations.

Table 1
Game tree minimax value distribution over 1000 trees

Minimax
value

Tree
count

25 1

26 5

27 11

28 38

29 124

30 206

31 252

32 189

33 111

34 42

35 14

36 7

 1000

The statistical approach for finding initial value (first guess) can be
demonstrated in the following example. 1000 game trees were generated with fixed

where alpha and beta are the lower and the upper bounds of the search window
respectively; subtreeCount is the number of subtrees which satisfies the
previous test call (the branches that have higher estimation than the test value).
However, the best algorithm performance is achieved after its statistical training or
analytical game tree evaluation resulting in nonlinear distributions. These methods
are described in the following chapters.

5.  nancement trou tatistical Trainin

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to
where the minimax value will turn out to be. The better than first guess is, the more
efficient the algorithm will be, on average.

The BNS algorithm can greatly benefit from good separation value as well. The
better separation value is, the faster the best node will be found, on average. So self
training becomes an important part of the BNS algorithm as it helps us to tune
separation test values used by algorithm during consecutive search attempts and
results in reduced search space and improved performance [12].

In this section, the author proposes a new multidimensional statistics approach
which is developed to work in conjunction with BNS algorithm.

It is possible to collect this statistics before the game starts analyzing multiple
test data or online during the game process reusing previous estimations.


Game tree minimax value distribution over 1000 trees

Minimax
value

Tree
count

25 1

26 5

27 11

28 38

29 124

30 206

31 252

32 189

33 111

34 42

35 14

36 7

 1000

The statistical approach for finding initial value (first guess) can be
demonstrated in the following example. 1000 game trees were generated with fixed

0

50

100

150

200

250

300

25 26 27 28 29 30 31 32 33 34 35 36

Minimax value

where alpha and beta are the lower and the upper bounds of the search window
respectively; subtreeCount is the number of sub-trees which satisfies the
previous test call (the branches that have higher estimation than the test value).
However, the best algorithm performance is achieved after its statistical training or
analytical game tree evaluation resulting in non-linear distributions. These methods
are described in the following chapters.

5 BNS Enhancement through Statistical Training

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to
where the minimax value will turn out to be. The better than first guess is, the more
efficient the algorithm will be, on average.

The BNS algorithm can greatly benefit from good separation value as well. The
better separation value is, the faster the best node will be found, on average. So self-
training becomes an important part of the BNS algorithm as it helps us to tune
separation test values used by algorithm during consecutive search attempts and
results in reduced search space and improved performance [12].

In this section, the author proposes a new multi-dimensional statistics approach
which is developed to work in conjunction with BNS algorithm.

It is possible to collect this statistics before the game starts analyzing multiple
test data or on-line during the game process reusing previous estimations.

Table 1
Game tree minimax value distribution over 1000 trees

Minimax
value

Tree
count

25 1

26 5

27 11

28 38

29 124

30 206

31 252

32 189

33 111

34 42

35 14

36 7

 1000

The statistical approach for finding initial value (first guess) can be
demonstrated in the following example. 1000 game trees were generated with fixed

97Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

structure and randomly assigned values for leaf nodes in a specific range (for given
example, the following values were used – width 2, depth 14, leaf node values are in
interval [0; 80]). For these game trees, statistics was collected and results are shown
in Table 1

It can be seen that there are 252 trees with minimax value 31 and there is only
one tree out of one thousand with minimax value 25. These statistics results are
used, for example, to determine the first guess in MTD(f) algorithm, and in all tests
it was called with argument f = 31 showing its best results.

However, this information does not provide additional benefits. So new
approach is proposed – single-dimension statistics is extended into two-dimension
statistics meaning collecting all possible pair info – for each sub-tree in our binary
tree. As a result, we have a matrix showing a number of trees having respectively
one sub-tree value (columns) and other sub-tree value (rows) – Table 2 Due to
symmetry reasons (according to the main diagonal) one half is shown. Tree count
column has summed up matrix values in the row resulting in the previous single-
dimension statistics (Table 1).

It can be seen that there are 78 trees which have sub-trees correspondingly with
branch values 31 and 29 (in this case, tree minimax value is 31).

Table 2

Two dimensional game sub-tree distribution over 1000 trees

 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Tree

count
23 0 0
24 0 0 0
25 0 1 0 1
26 0 0 2 3 5
27 0 0 5 3 3 11
28 0 1 0 12 12 13 38
29 0 0 2 10 35 43 34 124
30 1 2 6 9 26 58 71 33 206
31 0 0 6 10 27 41 78 57 33 252
32 0 1 3 13 17 30 32 41 38 14 189
33 0 0 1 2 8 12 26 28 21 11 2 111
34 0 0 0 1 3 5 13 8 6 2 2 2 42
35 0 0 0 0 0 2 4 3 2 3 0 0 0 14
36 0 0 0 0 0 0 1 2 2 1 1 0 0 0 7

 1000

BNS algorithm divides search interval into parts and verifies if sub-tree values

stay in different parts or not. If one branch value is less than separation value and
another branch value is higher, then algorithm immediately returns better move and
stops its work. If the branch values lay in the same part, then the interval is reduced
and the algorithm continues with an updated alpha-beta window. So, the algorithm

98 Computer Science and Information Technologies

becomes more efficient with the accurate first guess when the most of the game trees
get separated into parts after the first iteration.

The grayed-out rectangle in Table 2 gives us separation distribution for X = 30.
All marked cells represent trees with one branch greater or equal than 30 (by row)
and the other branch less than 30 (by column). It means that all these trees will be
separated into parts after the first iteration. To calculate the number of trees for
separation value X = 30, we need to sum up all the marked cells. For the given
example, 509 trees will get separated.

So, to find such value X when the highest number of trees will be divided, we
need to build remaining rectangles along the main diagonal for each X value and
sum up the cells bounded by X along axis as it is done in the previous example. The
resulting table is shown in Table 3

As it can be seen from Table 3, the best results are given with X = 30, meaning
that if we call BNS algorithm with argument 30, then 509 game trees will be divided
into two parts and the best node will already be found after the first iteration. So
trained BNS is more efficient and if we continue this idea we can find the best X
value for the second, third etc. iteration, until the best node is found.

Table 3
Statistical sub-tree separation over 1000 trees

Separation
value

Tree
count

23 0

24 1

25 6

26 30

27 88

28 208

29 374

30 509

31 475

32 325

33 167

34 61

35 21

36 7

 2272

Note: the total count of the game trees is higher than 1000 as many values are

overlapping – the same X value could divide different trees and the same tree could
be divided by different X values.

99Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

If we take a look at the tree with branching factor 3, we can apply similar
techniques for finding the best separation value. In this case, we have triplets [x, y,
z] defining minimax value of each sub-trees, so we can build corresponding 3D
matrix displaying the total number of the game trees with the given triplet.

While searching this matrix, we look for such separation value X, so one sub-
tree would be greater or equal with X, and two other sub-trees would have smaller
estimation. And, therefore, we maximize the number of trees which would be
separated after the first method call, so the best move is found after the first
iteration.

6 Game Tree Analytical Evaluation

In the previous chapter (BNS enhancement through self-training), statistical
analysis, which can improve BNS algorithm performance by calculating and
applying “good” separation values, was discussed. Therefore, in the development of
this idea, the author offers a new approach which is based on fully analytical
determination of best successful separation value generally for any type of tree with
various structures (alpha-beta range, tree width, depth, etc).

As it was stated before, we use abstract domain search in our experiments –
meaning tree generation with fixed structure (width / depth) and randomly assigning
leaf values based on uniform distribution within a given range.

In Fig. 5, leaf nodes are noted as probabilistic function FX. Here, our task is to
calculate resulting function starting from the lowest level (leaf nodes) up to the top
level (root node).

Fig. 5 Application of probabilistic function to maximum and

minimum levels

In this case, the following functions demonstrate the behavior of leaf nodes:
• Probability density function describes the relative likelihood for this

random variable to occur at a given point. For our example (leaf node
values are in interval [0; 80]), this likelihood is given in Fig. 6;

• Cumulative distribution function describes the probability that a real-
valued random variable X with a given probability distribution will be

FX FX FX FX

Fmin

Fmax

100 Computer Science and Information Technologies

found at a value less than or equal to X. For our example, it is given in
Fig. 7.

Fig. 6 Probability density

Fig. 7 Cumulative distribution

To calculate probabilistic values correspondingly at maximum and minimum
levels, the author proposes the following formulas which are applicable for binary
tree (square of probabilistic function) – for max level, it is probability that both sub-
trees are less than our cumulative distribution function; for min level, that not both
elements are greater than our cumulative distribution function:

 (1)

 (2)

For trees with larger branching factor, the following general formula should be
used, where w is the width of the tree:

 (3)

 (4)

Correspondingly, if we apply this formula to our example with binary tree with
leaf nodes in the given range [0..80], we receive the following equations:

 (5)

 (6)

By using these formulas we can build up the following matrix (Table 4) with
iteration results and iteration values for each minimum and maximum level up to
level of depth 14 (actually, we start from the lowest level with leaf nodes and go up
to the highest level – the root node).

 Probability density

 Cumulative distribution

To calculate probabilistic values correspondingly at maximum and minimum
levels, the author proposes the following formulas which are applicable for binary
tree (square of probabilistic function) – for max level, it is probability that both sub
trees are less than our cumulative distribution function; for min level, that not both
elements are greater than our cumulative distribution function:

  =  (1)

 = 1 − 1 −  (2)

For trees with larger branching factor, the following general formula should be
used, where  is the width of the tree:

 =  (3)

 = 1 − 1 −  (4)

Correspondingly, if we apply this formula to our example with binary tree with
leaf nodes in the given range [0..80], we receive the following equations:

 =  


 (5)

 = 1 − 1 − 


 (6)

By using these formulas we can build up the following matrix () with
iteration results and iteration values for each minimum and maximum level up to
level of depth 14 (actually, we start from the lowest level with leaf nodes and go up
to the highest level – the root node).

0

0,005

0,01

0,015

1 9 1725334149576573
Leaf values

0

0,5

1

1 9 17 25 33 41 49 57 65 73
Leaf values

101Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Table 4
Calculated cumulative distribution for binary tree with leaf node

values from interval [0; 80] and depth 14

Level
Leaf values

1 – min 2 – max 3 – min … 14 – max

x Fx 1-(1-Fx)2 (Fx)2 1-(1-Fx)2 … (Fx)2

1 1 / 80 0,02484375 0,00061721 0,00123404 … 0

2 2 / 80 0,049375 0,00243789 0,00486984 … 0

3 3 / 80 0,07359375 0,00541604 0,01080275 … 0

… … … … … … …

80 80 / 80 1 1 1 … 1

Fig. 8 demonstrates the progress of cumulative probability function bottom up

changing its slope and coming nearer to vertical. Correspondingly, the transformed
probability density function is displayed in Fig. 9 with higher and higher peaks at
each next level where the highest peak corresponds to level 14.

Fig. 8 Cumulative probability function by level for depth 14


Calculated cumulative distribution for binary tree with leaf

node values from interval [0; 80] and depth 14




1 – min 2 – max 3 – min … 14 – max

  11)2 2 11)2 … 2

1 1 / 80 0,02484375 0,00061721 0,00123404 … 0

2 2 / 80 0,049375 0,00243789 0,00486984 … 0

3 3 / 80 0,07359375 0,00541604 0,01080275 … 0

… … … … … … …

80 80 / 80 1 1 1 … 1

 demonstrates the progress of cumulative probability function bottom

up changing its slope and coming nearer to vertical. Correspondingly, the
transformed probability density function is displayed in   with higher and
higher peaks at each next level where the highest peak corresponds to level 14.

 Cumulative probability function by level for depth 14

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Game Tree Minimax Value

1 min

2 max

3 min

4 max

5 min

6 max

7 min

8 max

9 min

10 max

11 min

12 max

13 min

14 max

Table 4
Calculated cumulative distribution for binary tree with leaf node

values from interval [0; 80] and depth 14

Level
Leaf values

1 – min 2 – max 3 – min … 14 – max

x Fx 1-(1-Fx)2 (Fx)2 1-(1-Fx)2 … (Fx)2

1 1 / 80 0,02484375 0,00061721 0,00123404 … 0

2 2 / 80 0,049375 0,00243789 0,00486984 … 0

3 3 / 80 0,07359375 0,00541604 0,01080275 … 0

… … … … … … …

80 80 / 80 1 1 1 … 1

Fig. 8 demonstrates the progress of cumulative probability function bottom up

changing its slope and coming nearer to vertical. Correspondingly, the transformed
probability density function is displayed in Fig. 9 with higher and higher peaks at
each next level where the highest peak corresponds to level 14.

Fig. 8 Cumulative probability function by level for depth 14

102 Computer Science and Information Technologies

Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in  . The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

 Error function between analytical estimation and

experimentally received results

0

0,05

0,1

0,15

0,2

0,25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Game Tree Minimax Value

1 min

2 max

3 min

4 max

5 min

6 max

7 min

8 max

9 min

10 max

11 min

12 max

13 min

14 max

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

1 4 7 101316192225283134374043464952555861646770737679

Game Tree Minimax Value

Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in  . The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

 Error function between analytical estimation and

experimentally received results

0

0,05

0,1

0,15

0,2

0,25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Game Tree Minimax Value

1 min

2 max

3 min

4 max

5 min

6 max

7 min

8 max

9 min

10 max

11 min

12 max

13 min

14 max

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

1 4 7 101316192225283134374043464952555861646770737679

Game Tree Minimax Value

Fig. 9 Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in Fig. 10. The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

Fig. 10 Error function between analytical estimation and experimentally

received results

Fig. 9 Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in Fig. 10. The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

Fig. 10 Error function between analytical estimation and experimentally

received results

103Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Resulting probability density function is given in Fig. 11. These results
correspond to the statistically received results in previous section.

Fig. 11 Resulting zoomed-in function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing long-running experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1-P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

Resulting probability density function is given in  . These results
correspond to the statistically received results in previous section.

 Resulting zoomedin function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing longrunning experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

       




Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

             

0

0,05

0,1

0,15

0,2

0,25

26 27 28 29 30 31 32 33 34 35 36 37 38

Game Tree Minimax Value

Resulting probability density function is given in  . These results
correspond to the statistically received results in previous section.

 Resulting zoomedin function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing longrunning experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

       




Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

             

0

0,05

0,1

0,15

0,2

0,25

26 27 28 29 30 31 32 33 34 35 36 37 38

Game Tree Minimax Value

Resulting probability density function is given in Fig. 11. These results
correspond to the statistically received results in previous section.

Fig. 11 Resulting zoomed-in function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing long-running experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1-P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

104 Computer Science and Information Technologies

So, we should find such separation value that maximizes amount of information
received after querying the tree. For the first iteration, we receive value 30. For the
second iteration, we do the same way – if separation is not obtained after the first
query, that means all sub-trees are either less (fall down) or greater (fall up). So, we
chose the next separation value in the given range maximizing probability of
successful separation. Correspondingly, the separation values for the second
iteration are 29 and 31 respectively.

In Fig. 12, separation value X1 is shown for the first iteration. If no successful
separation is obtained after the first query, then we use the next group of separation
values X2 going to the left or to the right.

Fig. 12 Separation usage by resulting density function

Similarly, we seek for separation values for the third, the fourth etc. iterations

until the best value is found. At each step, we reduce alpha-beta window. This
process is similar to binary search, except for the selection separation coefficients
where we use probability density function.

7 Experimental Results

More than 10 algorithms were implemented and over 40000 test runs were
conducted during this research. Both versions with transposition tables and without
them were used in our setup.

These algorithms were tested in an abstract domain – generating the game tree
test set with fixed structure (width / depth) and randomly assigning leaf node values
from the given range. Then, these experiments extended to trees with a different
branching factor starting from 2 to 5 and full alpha-beta window (not limited range
[-infinity, +infinity]).

All the algorithms were run on the same game tree test set (each consisting of
10000 generated samples) to compare algorithm efficiency under the same

X2 X1 X2

So, we should find such separation value that maximizes amount of information
received after querying the tree. For the first iteration, we receive value 30. For the
second iteration, we do the same way – if separation is not obtained after the first
query, that means all subtrees are either less (fall down) or greater (fall up). So, we
chose the next separation value in the given range maximizing probability of
successful separation. Correspondingly, the separation values for the second
iteration are 29 and 31 respectively.

In , separation value X1 is shown for the first iteration. If no successful
separation is obtained after the first query, then we use the next group of separation
values X2 going to the left or to the right.

 Separation usage by resulting density function

Similarly, we seek for separation values for the third, the fourth etc. iterations

until the best value is found. At each step, we reduce alphabeta window. This
process is similar to binary search, except for the selection separation coefficients
where we use probability density function.

7. Experimental Results

More than 10 algorithms were implemented and over 40000 test runs were
conducted during this research. Both versions with transposition tables and without
them were used in our setup.

These algorithms were tested in an abstract domain – generating the game tree
test set with fixed structure (width / depth) and randomly assigning leaf node values
from the given range. Then, these experiments extended to trees with a different
branching factor starting from 2 to 5 and full alphabeta window (not limited range
infinity, infinity).

All the algorithms were run on the same game tree test set (each consisting of
10000 generated samples) to compare algorithm efficiency under the same

0

0,05

0,1

0,15

0,2

0,25

26 27 28 29 30 31 32 33 34 35 36 37 38

Game Tree Minimax Value

X2 X1 X2

So, we should find such separation value that maximizes amount of information
received after querying the tree. For the first iteration, we receive value 30. For the
second iteration, we do the same way – if separation is not obtained after the first
query, that means all sub-trees are either less (fall down) or greater (fall up). So, we
chose the next separation value in the given range maximizing probability of
successful separation. Correspondingly, the separation values for the second
iteration are 29 and 31 respectively.

In Fig. 12, separation value X1 is shown for the first iteration. If no successful
separation is obtained after the first query, then we use the next group of separation
values X2 going to the left or to the right.

Fig. 12 Separation usage by resulting density function

Similarly, we seek for separation values for the third, the fourth etc. iterations

until the best value is found. At each step, we reduce alpha-beta window. This
process is similar to binary search, except for the selection separation coefficients
where we use probability density function.

7 Experimental Results

More than 10 algorithms were implemented and over 40000 test runs were
conducted during this research. Both versions with transposition tables and without
them were used in our setup.

These algorithms were tested in an abstract domain – generating the game tree
test set with fixed structure (width / depth) and randomly assigning leaf node values
from the given range. Then, these experiments extended to trees with a different
branching factor starting from 2 to 5 and full alpha-beta window (not limited range
[-infinity, +infinity]).

All the algorithms were run on the same game tree test set (each consisting of
10000 generated samples) to compare algorithm efficiency under the same

X2 X1 X2

105Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

conditions. For each algorithm, visited leaf nodes count (evaluation function call)
and total visited node count was measured and average count per tree was
calculated. In most cases, the first parameter is more important as in real games
evaluation functions are usually complex enough and require some computing
resources. The second parameter is usually less important but for some algorithms
total node count increases dramatically and should be considered while comparing
algorithm efficiency. In the algorithms with reiterative techniques based on
transposition tables when node is visited multiple times, the total node count is
increased and leaf node count remains the same as this info is stored in TT.

In the chart in Fig. 13, MTDF performance is taken as the base point (treated as
100%) and the performance of other algorithms is measured as a ratio to it, so a
result greater than 100% means larger number of search iterations and respectively
only BNS was able to show results less than 100%. It is a combined graph showing
trends increasing width of the search tree – from binary tree to a tree with 5-width
structure at each node. In this section, number of visited leaf nodes is counted.

Fig. 13 Algorithm relative performance across different tree widths

(leaf nodes visited)

BNS algorithm shows progress from 88% at 2-width stage to 96% at 5-width

stage.
Fig. 14 demonstrates the same data slice, but here, the total number of visited

nodes is measured. It can be seen that BNS performance still remains at the level of
approximately 80% comparing to MTDF algorithm across all branching factors.
Note: SSS and Dual algorithms show low results of 700% and 300%
correspondingly and fall outside of diagram range.

conditions. For each algorithm, visited leaf nodes count (evaluation function call)
and total visited node count was measured and average count per tree was
calculated. In most cases, the first parameter is more important as in real games
evaluation functions are usually complex enough and require some computing
resources. The second parameter is usually less important but for some algorithms
total node count increases dramatically and should be considered while comparing
algorithm efficiency. In the algorithms with reiterative techniques based on
transposition tables when node is visited multiple times, the total node count is
increased and leaf node count remains the same as this info is stored in TT.

In the chart in , MTDF performance is taken as the base point (treated
as 100%) and the performance of other algorithms is measured as a ratio to it, so a
result greater than 100% means larger number of search iterations and respectively
only BNS was able to show results less than 100%. It is a combined graph showing
trends increasing width of the search tree – from binary tree to a tree with width
structure at each node. In this section, number of visited leaf nodes is counted.

 Algorithm relative performance across different tree widths

(leaf nodes visited)

BNS algorithm shows progress from 88% at width stage to % at width

stage.
 demonstrates the same data slice, but here, the total number of visited

nodes is measured. It can be seen that BNS performance still remains at the level of
approximately 80% comparing to MTDF algorithm across all branching factors.
Note: SSS and Dual algorithms show low results of 700% and 300%
correspondingly and fall outside of diagram range.

60%

80%

100%

120%

140%

160%

180%

2-width 3-width 4-width 5-width

AlphaBeta

NegaScout

SSS

Dual

NegaC

MTDF

BNS

conditions. For each algorithm, visited leaf nodes count (evaluation function call)
and total visited node count was measured and average count per tree was
calculated. In most cases, the first parameter is more important as in real games
evaluation functions are usually complex enough and require some computing
resources. The second parameter is usually less important but for some algorithms
total node count increases dramatically and should be considered while comparing
algorithm efficiency. In the algorithms with reiterative techniques based on
transposition tables when node is visited multiple times, the total node count is
increased and leaf node count remains the same as this info is stored in TT.

In the chart in Fig. 13, MTDF performance is taken as the base point (treated as
100%) and the performance of other algorithms is measured as a ratio to it, so a
result greater than 100% means larger number of search iterations and respectively
only BNS was able to show results less than 100%. It is a combined graph showing
trends increasing width of the search tree – from binary tree to a tree with 5-width
structure at each node. In this section, number of visited leaf nodes is counted.

Fig. 13 Algorithm relative performance across different tree widths

(leaf nodes visited)

BNS algorithm shows progress from 88% at 2-width stage to 96% at 5-width

stage.
Fig. 14 demonstrates the same data slice, but here, the total number of visited

nodes is measured. It can be seen that BNS performance still remains at the level of
approximately 80% comparing to MTDF algorithm across all branching factors.
Note: SSS and Dual algorithms show low results of 700% and 300%
correspondingly and fall outside of diagram range.

106 Computer Science and Information Technologies

Fig. 14 Algorithm relative performance across different tree widths

(total nodes visited)

8 Conclusions and Future Work

The main goal of this paper was to show that it is possible to find the best move
without the exact tree minimax value. After self-training based on multi-dimension
statistics, the proposed BNS algorithm was able to demonstrate better results than
other existing algorithms. Game tree analytical evaluation gives additional
improvement allowing us to use this algorithm as general purpose approach for
different tree types.

Having analyzed the results we can conclude the following:
• Among algorithms without Transposition Tables (TT) BNS shows

competitive results. Both leaf node count and total node count is less
comparing to other algorithms;

• The algorithms based on TT approach show different performance in
different conditions. Currently, MTD(f) is more preferable choice
providing the highest performance. But in the current experiments, BNS
demonstrated itself to be more efficient comparing both scanned leaf node
count and total node count;

• Considering leaf nodes visited, BNS algorithm demonstrates an
improvement in a range from 12% (for binary trees) to 4% (for 5-width
trees) comparing to MTD(f);

• Regarding total nodes visited, BNS algorithm demonstrates a stable
improvement up to 20% across different branching factors comparing to
MTD(f);

The current results are based on experiments in abstract domain and additional
research is needed to verify the behavior of the algorithm for wider trees (with

 Algorithm relative performance across different tree widths

(total nodes visited)

8. Conclusions and Future Work

The main goal of this paper was to show that it is possible to find the best move
without the exact tree minimax value. After selftraining based on multidimension
statistics, the proposed BNS algorithm was able to demonstrate better results than
other existing algorithms. Game tree analytical evaluation gives additional
improvement allowing us to use this algorithm as general purpose approach for
different tree types.

Having analyzed the results we can conclude the following:
 Among algorithms without Transposition Tables (TT) BNS shows

competitive results. Both leaf node count and total node count is less
comparing to other algorithms;

 The algorithms based on TT approach show different performance in
different conditions. Currently, MTD(f) is more preferable choice
providing the highest performance. But in the current experiments, BNS
demonstrated itself to be more efficient comparing both scanned leaf node
count and total node count;

 Considering leaf nodes visited, BNS algorithm demonstrates an
improvement in a range from 12% (for binary trees) to % (for width
trees) comparing to MTD(f);

 Regarding total nodes visited, BNS algorithm demonstrates a stable
improvement up to 20% across different branching factors comparing to
MTD(f);

40%

60%

80%

100%

120%

140%

160%

180%

2-width 3-width 4-width 5-width

AlphaBeta

NegaScout

SSS

Dual

NegaC

MTDF

BNS

107Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

branch factor larger than 15-20). Interesting results may be obtained in testing non-
regular trees with asymmetrical structure. Future experiments should also consider
analyzing algorithm performance in real games, but it is believable that proposed
approach could be successfully applied for real domain games as well.

9 Acknowledgments

The author would like to thank Nikolajs Nahimovs for valuable ideas in the field

of game tree analytical evaluation.

References

1. T. A. Marsland, M. Campbell. Parallel Search of Strongly Ordered Game Trees. ACM Comput.

Surv., 1982
2. Judea Pearl. The solution for the branching factor of the alpha-beta pruning algorithm and its

optimality. Communications of the ACM, 1982
3. Reinefeld, A. An Improvement to the Scout Tree-Search Algorithm. ICCA Journal, 1983, Vol. 6,

No. 4, pp. 4-14
4. A. Reinefeld. Spielbaum-Suchverfahren. Informatik-Fachbericht 200, Springer-Verlag, 1989
5. Jean Christophe Weill. The NegaC* search. ICCA Journal, March 1992
6. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. A New Paradigm for Minimax Search, Technical

Report EUR-CS-95-03, 1994
7. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. Best-First and Depth-First Minimax Search in

Practice, Proceedings of Computing Science in the Netherlands, 1995
8. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. An Algorithm Faster than NegaScout and SSS*

in Practice, Computer Strategy Game Programming Workshop at the World Computer Chess
Championship, 1995

9. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. Best-First Fixed-Depth Minimax Algorithms,
Artificial Intelligence, volume 87, 1996

10. Yngvi Björnsson. Selective Depth-First Game-Tree Search. Ph.D. thesis, University of Alberta,
2002

11. Russell, Stuart J.; Norvig, Peter, Artificial Intelligence: A Modern Approach (3rd ed.), Upper
Saddle River, New Jersey: Pearson Education, Inc., 2010

12. Dmitrijs Rutko, Fuzzified Algorithm for Game Tree Search. Second Brazilian Workshop of the
Game Theory Society, BWGT 2010

Appendix

The following section contains the performance results of algorithms

implemented during the current research for different tree structures and leaf node
ranges.

108 Computer Science and Information Technologies

Fig. 15 Tree width – 2, depth – 14

Leaf node range 0..80; full alpha-beta window

Fig. 16 Tree width – 2, depth – 14

Leaf node range 0..800; full alpha-beta window

109Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Fig. 17 Tree width – 3, depth – 10

Leaf node range 0..80; full alpha-beta window

Fig. 18 Tree width – 3, depth – 10

Leaf node range 0..800; full alpha-beta window

110 Computer Science and Information Technologies

Fig. 19 Tree width – 4, depth – 8

Leaf node range 0..80; full alpha-beta window

Fig. 20 Tree width – 4, depth – 8

Leaf node range 0..800; full alpha-beta window

111Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Fig. 21 Tree width – 5, depth – 6

Leaf node range 0..80; full alpha-beta window

Fig. 22 Tree width – 5, depth – 6

Leaf node range 0..800; full alpha-beta window

