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This paper presents a new game tree search algorithm which is based on the idea that the 
exact game tree evaluation is not required to find the best move. Therefore, pruning 
techniques may be applied earlier resulting in faster search and greater performance. The 
experiments show that applied to an abstract domain, the presented algorithm outperforms the 
existing ones such as PVS, Negascout, NegaC*, SSS*/ Dual* and MTD(f). This paper also 
provides improvements for algorithm such as statistical and analytical game tree evaluation. 
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1 Introduction 
 

Games are usually represented with the help of a game tree which starts at the 
initial position and contains all the possible moves from each position. Classical 
game tree search algorithms such as Minimax and Negamax operate using a 
complete scan of all the nodes of the game tree and are considered to be too 
inefficient. The most practical approaches are based on the Alpha-beta pruning 
technique, which seeks how to reduce the number of nodes to be evaluated in the 
search tree. It is designed to completely stop the evaluation of a move if at least one 
possibility is found, the one that proves the current move to be worse than the 
previously examined move. Such moves do not need to be evaluated further. 

The examples of more advanced algorithms that are even faster while still being 
able to compute the exact minimax value, are PVS, Negascout and NegaC*. The 
other group of algorithms like SSS* / Dual* and MTD(f), use best-first strategy, 
which can potentially make them more time-efficient, however, typically at a heavy 
cost of space-efficiency. 

Through analyzing and comparing these algorithms it can be seen that in many 
cases the decision about the best move can be made before the exact game tree 
minimax value is obtained. The author introduces a new approach which allows 
finding the best move faster while visiting less nodes. 

The paper is organized as follows: the current situation in the game tree search 
is discussed; then the idea that allows performing game tree search in a manner 
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based on the move that leads to the best result is proposed; the algorithm structure 
and implementation details are explained. Thereafter, improvements to the 
algorithm, such as statistical selflearning and analytical evaluation, are discussed. 
Then, the experimental setup and empirical results on the search performance 
obtained in abstract domain are shown. The paper is concluded with future research 
directions. 

 
 

2. State of the Art 
 

Classical game tree search algorithms are based on the lphabeta pruning 
techniue. lphabeta is a search algorithm which tries to reduce the number of 
nodes to be evaluated in the search tree by the Minimax algorithm. It completely 
stops evaluating a move when at least one possibility has been found that proves the 
move to be worse than a previously examined one. Such moves need not be 
evaluated further. When applied to a standard minimax tree, it returns the same 
move as minimax would, but prunes away branches that cannot possibly influence 
the final decision [12]. 

The illustration of the lphabeta approach is given in . 
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The game tree in  has two branches with minimax values 2 and 8 for 

the left and right subtrees respectively. In order to find the best move, the lpha
beta algorithm is scanning all the subtrees from the left to the right and is forced to 
evaluate almost each node. The possible cutoffs are depicted with a dashed line (at 
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each step, the previous evaluation is smaller than the value of currently checked 
node). 

When all the nodes are checked, the algorithm compares the top-level sub-trees. 
The evaluation of the left and the right branches are 2 and 8 respectively; the highest 
outcome is chosen, and the best move goes to the right sub-tree. 

The benefit of alpha-beta pruning lies in the fact that branches of the search tree 
can be eliminated. The search time can in this way be limited to the 'more promising' 
subtree, and a deeper search can be performed in the same time. 

Since the minimax algorithm and its variants are inherently depth-first, a 
strategy such as iterative deepening is usually used in conjunction with alpha-beta so 
that a reasonably good move can be returned even if the algorithm is interrupted 
before it has finished execution. Another advantage of using iterative deepening is 
that searches at shallower depths give move-ordering hints that can help produce 
cutoffs for higher-depth searches much earlier than would otherwise be possible 
[11]. 

More advanced algorithms are the following: 
• PVS (Principal Variation Search) is an enhancement to Alpha-Beta based 

on null or zero window searches of none PV-nodes to prove whether a 
move is worse or not than the already safe score from the principal 
variation [1][10]. 

• NegaScout, which is an Alpha-Beta enhancement. The improvements rely 
on a Negamax framework and some fail-soft issues concerning the two last 
plies which did not require any re-searches [3] [4]. 

• NegaC*  – an idea to turn a Depth-First to a Best-First search like MTD(f) 
to utilize null window searches of a fail-soft Alpha-Beta routine and to use 
the bounds that are returned in a bisection scheme [5]. 

• SSS* and its counterpart Dual* are search algorithms which conduct a state 
space search traversing a game tree in a best-first fashion similar to that of 
the A* search algorithm and retain global information about the search 
space. They search fewer nodes than Alpha-Beta in fixed-depth minimax 
tree search [2]. 

• MTD(f), the short name for MTD(n, f), which stands for Memory-enhanced 
Test Driver with node n and value f. MTD is the name of a group of driver-
algorithms that search minimax trees using null window alpha-beta with 
transposition table calls. In order to work, MTD(f) needs a first guess as to 
where the minimax value will turn out to be. The better than first guess is, 
the more efficient the algorithm will be, on average, since the better it is, 
the less passes the repeat-until loop will have to do to converge on the 
minimax value [6] [7] [8] [9]. 

Transposition tables are another technique which is used to speed up the search 
of the game tree in computer chess and other computer games. In many games, it is 
possible to reach a given position, which is called transposition, in more than one 
way. In general, after two moves there are 4 possible transpositions since either 
player may swap their move order. So it is still likely that the program will end up 
analyzing the same position several times. To avoid this problem transposition tables 
store previously analyzed positions of the game [11]. 
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3  Fuzzy Approach 
 

The author proposes a new approach, which is based on the attempt to 
implement a human way of thinking adapted to logical games. A human player 
rarely or almost never evaluates a given position precisely. In many cases, the 
selection process is limited to rejecting less promising nodes and making certain that 
the selected option is better than others. The important moment is that we are not 
interested in the exact position evaluation but in the node which guarantees the 
highest outcome. 

Let the given problem be explained in details. 
We could look at our game tree from a relative perspective like “is this move 

better or worse than some value X” (Fig. 2). At each level, we identify if a sub-tree 
satisfies “greater or equal” criteria. So passing search algorithm, for instance, with 
argument 5, we can obtain the information that the left branch has value less than 5 
and the right branch has value greater or equal than 5. We do not know exact sub-
tree evaluation, but we have found the move, which leads to the best result. 

In this case, different cut-offs are possible: 
• at max level, if the evaluation is greater (or equal) than the search value; 
• at min level, if the evaluation is less than the search value. 

In the given example, reduced nodes are shown with dashed line. Comparing to 
Fig. 1 it can be seen that not only more cut-offs are possible, but also pruning occurs 
at higher level which results in better performance. 

 

 
Fig. 2  Fuzzy best node approach 

 

In this approach, the best/worst cases are the same as for alpha-beta pruning: 
O(wd/2) for the best case as only one branch should be checked at cut-off level, and 
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tree). But in the presented approach, cut-offs are more often possible in general. 
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If we use geometric interpretation and put our sub-tree minimax values on 
coordinate axis, then our task is to separate/divide branches so that only one branch 
would have higher value than the test value. Fig. 3 illustrates our previous example. 
Alpha-beta window is initially set to leaf node range α = 0, β = 10; then the 
following test values are used X1, X2, X3. If value X2 is chosen, then the successful 
separation is obtained after the first iteration – we know that the second sub-tree has 
higher estimation. If values X1 or X3 are chosen, then no separation is possible at 
this point – both values are on the same side of the test value. In this case, the 
algorithm continues with reduced alpha-beta search window:  1) α = X1 in the first 
case; or 2) β = X3 in the second. 

 

 
Fig. 3 Geometric interpretation of separation in the fuzzified game tree search 

 
In a game tree with three or more sub-trees, the algorithm workflow remains the 

same. Our task is to separate sub-trees in a way that only one branch has higher 
estimation than the test value. However, more cases are possible – 0, 1, 2, 3 
branches fall in on one side of separation line. In this case, alpha-beta window is 
reduced correspondingly and the algorithm proceeds with the next iteration. 

Comparing to existing algorithms such as MTD(f) in order to work, it needs the 
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the 
minimax value to start with, it will only do two passes, the bare minimum: one to 
find an upper bound of value x, and one to find a lower bound of the same value. 

In the presented algorithm, it is possible to find the best move with a single 
iteration and we are not limited to the accurate first guess. For the presented 
example, any value from interval 3..7 (inclusive) would apply. 
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algorithm execution time is reduced comparing to the algorithms based on the exact 
game tree evaluation. 

The presented algorithm uses a standard call of Alpha-Beta search with ‘zero 
window’. The proposed implementation relies on the transposition tables but 
variation without memory (transposition tables) usage is also possible. While 
scanning a game tree, algorithm checks all sub-trees and returns node which leads to 
the best result. In general, BNS is expected to be more efficient comparing to the 
classical algorithms in terms of number of nodes checked as it does not obtain 
additional information which is not required in many cases – the exact game tree 
minimax value. 

BNS algorithm is given in Fig. 4 which makes use of the following functions: 
1. NextGuess() – returns next separation value tested by algorithm; 
2. AlphaBeta() – alpha-beta search with Zero Window (Null Window) 

performs a boolean test whether a move produces a worse or better score 
than the passed value. 

All sub-trees are tested with separation values (this information is stored in the 
transposition tables and reused in subsequent iterations). If exactly one branch 
exceeds test value, then the best node is found. If all branches have smaller 
estimation, then the number of sub-trees that exceeds separation test value remains 
the same, beta value is reduced. If several nodes exceed test value, then 
subtreeCount is updated correspondingly, and alpha value is updated to test 
value, and algorithm continues with the next iteration. If a single sub-tree that 
exceeds test value cannot be found and alpha-beta range is reduced to 1, it means 
that several sub-trees have the same estimation and we can choose any of them. 

 
function BNS(node, α, β) 
    subtreeCount := number of children of node 
    do 
        test := NextGuess(α, β, subtreeCount) 
        betterCount := 0 
        foreach child of node 
            bestVal := -AlphaBeta(child, -test, -(test - 1)) 
            if bestVal ≥ test 
                betterCount := betterCount + 1 
                bestNode := child 
        update number of sub-trees that exceeds separation 
test value 

        update alpha-beta range 
    while not((β - α < 2) or (betterCount = 1)) 
    return bestNode 

Fig. 4  The BNS algorithm 

 
One of the main parts of this algorithm is the method NextGuess(α, β, 

subtreeCount) which returns the next value to be checked by the algorithm. In 
the simplest case, it could be a formula based on linear distribution – alpha-beta 
range is proportionally divided into sections according to the sub-tree count: 

 
NextGuess = α + (β - α) * (subtreeCount - 1) / subtreeCount; 
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where alpha and beta are the lower and the upper bounds of the search window 
respectively; subtreeCount is the number of sub-trees which satisfies the 
previous test call (the branches that have higher estimation than the test value). 
However, the best algorithm performance is achieved after its statistical training or 
analytical game tree evaluation resulting in non-linear distributions. These methods 
are described in the following chapters. 

 
 

5  BNS Enhancement through Statistical Training 
 

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to 
where the minimax value will turn out to be. The better than first guess is, the more 
efficient the algorithm will be, on average. 

The BNS algorithm can greatly benefit from good separation value as well. The 
better separation value is, the faster the best node will be found, on average. So self-
training becomes an important part of the BNS algorithm as it helps us to tune 
separation test values used by algorithm during consecutive search attempts and 
results in reduced search space and improved performance [12]. 

In this section, the author proposes a new multi-dimensional statistics approach 
which is developed to work in conjunction with BNS algorithm. 

It is possible to collect this statistics before the game starts analyzing multiple 
test data or on-line during the game process reusing previous estimations. 

 

Table 1 
Game tree minimax value distribution over 1000 trees  

Minimax 
value 

Tree 
count 

25 1 

26 5 

27 11 

28 38 

29 124 

30 206 

31 252 

32 189 

33 111 

34 42 

35 14 

36 7 

 1000 

 

 
 

The statistical approach for finding initial value (first guess) can be 
demonstrated in the following example. 1000 game trees were generated with fixed 

 

where alpha and beta are the lower and the upper bounds of the search window 
respectively; subtreeCount is the number of subtrees which satisfies the 
previous test call (the branches that have higher estimation than the test value). 
However, the best algorithm performance is achieved after its statistical training or 
analytical game tree evaluation resulting in nonlinear distributions. These methods 
are described in the following chapters. 

 
 

5.  nancement trou tatistical Trainin 
 

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to 
where the minimax value will turn out to be. The better than first guess is, the more 
efficient the algorithm will be, on average. 

The BNS algorithm can greatly benefit from good separation value as well. The 
better separation value is, the faster the best node will be found, on average. So self
training becomes an important part of the BNS algorithm as it helps us to tune 
separation test values used by algorithm during consecutive search attempts and 
results in reduced search space and improved performance [12]. 

In this section, the author proposes a new multidimensional statistics approach 
which is developed to work in conjunction with BNS algorithm. 

It is possible to collect this statistics before the game starts analyzing multiple 
test data or online during the game process reusing previous estimations. 

 


Game tree minimax value distribution over 1000 trees 

 

Minimax 
value 

Tree 
count 

25 1 

26 5 

27 11 

28 38 

29 124 

30 206 

31 252 

32 189 

33 111 

34 42 

35 14 

36 7 

 1000 

 

 
 

The statistical approach for finding initial value (first guess) can be 
demonstrated in the following example. 1000 game trees were generated with fixed 

0

50

100

150

200

250

300

25 26 27 28 29 30 31 32 33 34 35 36

Minimax value

 

where alpha and beta are the lower and the upper bounds of the search window 
respectively; subtreeCount is the number of sub-trees which satisfies the 
previous test call (the branches that have higher estimation than the test value). 
However, the best algorithm performance is achieved after its statistical training or 
analytical game tree evaluation resulting in non-linear distributions. These methods 
are described in the following chapters. 
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Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to 
where the minimax value will turn out to be. The better than first guess is, the more 
efficient the algorithm will be, on average. 

The BNS algorithm can greatly benefit from good separation value as well. The 
better separation value is, the faster the best node will be found, on average. So self-
training becomes an important part of the BNS algorithm as it helps us to tune 
separation test values used by algorithm during consecutive search attempts and 
results in reduced search space and improved performance [12]. 
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structure and randomly assigned values for leaf nodes in a specific range (for given 
example, the following values were used – width 2, depth 14, leaf node values are in 
interval [0; 80]). For these game trees, statistics was collected and results are shown 
in Table 1 

It can be seen that there are 252 trees with minimax value 31 and there is only 
one tree out of one thousand with minimax value 25. These statistics results are 
used, for example, to determine the first guess in MTD(f) algorithm, and in all tests 
it was called with argument f = 31 showing its best results. 

However, this information does not provide additional benefits. So new 
approach is proposed – single-dimension statistics is extended into two-dimension 
statistics meaning collecting all possible pair info – for each sub-tree in our binary 
tree. As a result, we have a matrix showing a number of trees having respectively 
one sub-tree value (columns) and other sub-tree value (rows) – Table 2 Due to 
symmetry reasons (according to the main diagonal) one half is shown. Tree count 
column has summed up matrix values in the row resulting in the previous single-
dimension statistics (Table 1). 

It can be seen that there are 78 trees which have sub-trees correspondingly with 
branch values 31 and 29 (in this case, tree minimax value is 31). 

 
Table 2 

Two dimensional game sub-tree distribution over 1000 trees 

 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Tree 

count 
23 0              0 
24 0 0             0 
25 0 1 0            1 
26 0 0 2 3           5 
27 0 0 5 3 3          11 
28 0 1 0 12 12 13         38 
29 0 0 2 10 35 43 34        124 
30 1 2 6 9 26 58 71 33       206 
31 0 0 6 10 27 41 78 57 33      252 
32 0 1 3 13 17 30 32 41 38 14     189 
33 0 0 1 2 8 12 26 28 21 11 2    111 
34 0 0 0 1 3 5 13 8 6 2 2 2   42 
35 0 0 0 0 0 2 4 3 2 3 0 0 0  14 
36 0 0 0 0 0 0 1 2 2 1 1 0 0 0 7 

               1000 
 
BNS algorithm divides search interval into parts and verifies if sub-tree values 

stay in different parts or not. If one branch value is less than separation value and 
another branch value is higher, then algorithm immediately returns better move and 
stops its work. If the branch values lay in the same part, then the interval is reduced 
and the algorithm continues with an updated alpha-beta window. So, the algorithm 
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becomes more efficient with the accurate first guess when the most of the game trees 
get separated into parts after the first iteration. 

The grayed-out rectangle in Table 2  gives us separation distribution for X = 30. 
All marked cells represent trees with one branch greater or equal than 30 (by row) 
and the other branch less than 30 (by column). It means that all these trees will be 
separated into parts after the first iteration. To calculate the number of trees for 
separation value X = 30, we need to sum up all the marked cells. For the given 
example, 509 trees will get separated. 

So, to find such value X when the highest number of trees will be divided, we 
need to build remaining rectangles along the main diagonal for each X value and 
sum up the cells bounded by X along axis as it is done in the previous example. The 
resulting table is shown in Table 3 

As it can be seen from Table 3, the  best results are given with X = 30, meaning 
that if we call BNS algorithm with argument 30, then 509 game trees will be divided 
into two parts and the best node will already be found after the first iteration. So 
trained BNS is more efficient and if we continue this idea we can find the best X 
value for the second, third etc. iteration, until the best node is found. 

 

Table 3 
Statistical sub-tree separation over 1000 trees 

Separation 
value 

Tree 
count 

23 0 

24 1 

25 6 

26 30 

27 88 

28 208 

29 374 

30 509 

31 475 

32 325 

33 167 

34 61 

35 21 

36 7 

 2272  

 

 
 

 
Note: the total count of the game trees is higher than 1000 as many values are 

overlapping – the same X value could divide different trees and the same tree could 
be divided by different X values. 
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If we take a look at the tree with branching factor 3, we can apply similar 
techniques for finding the best separation value. In this case, we have triplets [x, y, 
z] defining minimax value of each sub-trees, so we can build corresponding 3D 
matrix displaying the total number of the game trees with the given triplet. 

While searching this matrix, we look for such separation value X, so one sub-
tree would be greater or equal with X, and two other sub-trees would have smaller 
estimation. And, therefore, we maximize the number of trees which would be 
separated after the first method call, so the best move is found after the first 
iteration. 

 
 

6  Game Tree Analytical Evaluation 
 

In the previous chapter (BNS enhancement through self-training), statistical 
analysis, which can improve BNS algorithm performance by calculating and 
applying “good” separation values, was discussed. Therefore, in the development of 
this idea, the author offers a new approach which is based on fully analytical 
determination of best successful separation value generally for any type of tree with 
various structures (alpha-beta range, tree width, depth, etc). 

As it was stated before, we use abstract domain search in our experiments – 
meaning tree generation with fixed structure (width / depth) and randomly assigning 
leaf values based on uniform distribution within a given range. 

In Fig. 5, leaf nodes are noted as probabilistic function FX. Here, our task is to 
calculate resulting function starting from the lowest level (leaf nodes) up to the top 
level (root node). 

 

 
Fig. 5 Application of probabilistic function to maximum and 

minimum levels 
 

In this case, the following functions demonstrate the behavior of leaf nodes: 
• Probability density function describes the relative likelihood for this 

random variable to occur at a given point. For our example (leaf node 
values are in interval [0; 80]), this likelihood is given in Fig. 6; 

• Cumulative distribution function describes the probability that a real-
valued random variable X with a given probability distribution will be 

FX FX FX FX 

 

Fmin 
 
 
Fmax 
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found at a value less than or equal to X. For our example, it is given in 
Fig. 7. 

 

 
Fig. 6 Probability density 

 
Fig. 7 Cumulative distribution 

 

To calculate probabilistic values correspondingly at maximum and minimum 
levels, the author proposes the following formulas which are applicable for binary 
tree (square of probabilistic function) – for max level, it is probability that both sub-
trees are less than our cumulative distribution function; for min level, that not both 
elements are greater than our cumulative distribution function: 

 

   (1) 

  (2) 
 

For trees with larger branching factor, the following general formula should be 
used, where w is the width of the tree: 
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Correspondingly, if we apply this formula to our example with binary tree with 
leaf nodes in the given range [0..80], we receive the following equations: 
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By using these formulas we can build up the following matrix (Table 4) with 
iteration results and iteration values for each minimum and maximum level up to 
level of depth 14 (actually, we start from the lowest level with leaf nodes and go up 
to the highest level – the root node). 
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By using these formulas we can build up the following matrix () with 
iteration results and iteration values for each minimum and maximum level up to 
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Table 4 
Calculated cumulative distribution for binary tree with leaf node 

values from interval [0; 80] and depth 14 

Level 
Leaf values 

1 – min 2 – max 3 – min … 14 – max 

x Fx 1-(1-Fx)2   (Fx)2  1-(1-Fx)2  …  (Fx)2  

1 1 / 80  0,02484375 0,00061721 0,00123404 … 0 

2 2 / 80  0,049375 0,00243789 0,00486984 … 0 

3 3 / 80  0,07359375 0,00541604 0,01080275 … 0 

… …  …  …  …  …  …  

80 80 / 80  1 1 1 … 1 
 
Fig. 8 demonstrates the progress of cumulative probability function bottom up 

changing its slope and coming nearer to vertical. Correspondingly, the transformed 
probability density function is displayed in Fig. 9 with higher and higher peaks at 
each next level where the highest peak corresponds to level 14. 

 

 
Fig. 8 Cumulative probability function by level for depth 14 
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In the conducted experiments, statistical information is collected to prove the 

correctness of analytical game tree evaluation. The difference between analytically 
received data and statistical experiments is shown in  . The error rate is 
relatively low meaning that analytical estimation is really close to experimentally 
received results. 
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Resulting probability density function is given in Fig. 11. These results 
correspond to the statistically received results in previous section. 
 

 
Fig. 11 Resulting zoomed-in function 

 
Given the probability density function we can predict the most probabilistic 

outcome of the game tree. Thus, we can choose the best separation value for our 
BNS algorithm – such value X that the greatest number of trees will be separated / 
divided after the first iteration of the algorithm. 

These are the same values as in statistical evaluation we have been used before, 
except that analytically we could improve precision and make calculations much 
faster without performing long-running experiments. 

We are querying our tree with some separation value X. So, given density 
function, we can calculate probability, that the tree value is less than our test value, 
or the tree value is greater. So, our task is to maximize our chances to separate tree 
with the given value X. 

The entropy, H, of a discrete random variable X is a measure of the amount of 
uncertainty associated with the value of X. 
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Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the 
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So, we should find such separation value that maximizes amount of information 
received after querying the tree. For the first iteration, we receive value 30. For the 
second iteration, we do the same way – if separation is not obtained after the first 
query, that means all sub-trees are either less (fall down) or greater (fall up). So, we 
chose the next separation value in the given range maximizing probability of 
successful separation. Correspondingly, the separation values for the second 
iteration are 29 and 31 respectively. 

In Fig. 12, separation value X1 is shown for the first iteration. If no successful 
separation is obtained after the first query, then we use the next group of separation 
values X2 going to the left or to the right. 

 

 
Fig. 12 Separation usage by resulting density function 

 
Similarly, we seek for separation values for the third, the fourth etc. iterations 

until the best value is found. At each step, we reduce alpha-beta window. This 
process is similar to binary search, except for the selection separation coefficients 
where we use probability density function. 
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More than 10 algorithms were implemented and over 40000 test runs were 
conducted during this research. Both versions with transposition tables and without 
them were used in our setup. 

These algorithms were tested in an abstract domain – generating the game tree 
test set with fixed structure (width / depth) and randomly assigning leaf node values 
from the given range. Then, these experiments extended to trees with a different 
branching factor starting from 2 to 5 and full alpha-beta window (not limited range 
[-infinity, +infinity]). 

All the algorithms were run on the same game tree test set (each consisting of 
10000 generated samples) to compare algorithm efficiency under the same 
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So, we should find such separation value that maximizes amount of information 
received after querying the tree. For the first iteration, we receive value 30. For the 
second iteration, we do the same way – if separation is not obtained after the first 
query, that means all sub-trees are either less (fall down) or greater (fall up). So, we 
chose the next separation value in the given range maximizing probability of 
successful separation. Correspondingly, the separation values for the second 
iteration are 29 and 31 respectively. 

In Fig. 12, separation value X1 is shown for the first iteration. If no successful 
separation is obtained after the first query, then we use the next group of separation 
values X2 going to the left or to the right. 

 

 
Fig. 12 Separation usage by resulting density function 

 
Similarly, we seek for separation values for the third, the fourth etc. iterations 

until the best value is found. At each step, we reduce alpha-beta window. This 
process is similar to binary search, except for the selection separation coefficients 
where we use probability density function. 
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conditions. For each algorithm, visited leaf nodes count (evaluation function call) 
and total visited node count was measured and average count per tree was 
calculated. In most cases, the first parameter is more important as in real games 
evaluation functions are usually complex enough and require some computing 
resources. The second parameter is usually less important but for some algorithms 
total node count increases dramatically and should be considered while comparing 
algorithm efficiency. In the algorithms with reiterative techniques based on 
transposition tables when node is visited multiple times, the total node count is 
increased and leaf node count remains the same as this info is stored in TT. 

In the chart in Fig. 13, MTDF performance is taken as the base point (treated as 
100%) and the performance of other algorithms is measured as a ratio to it, so a 
result greater than 100% means larger number of search iterations and respectively 
only BNS was able to show results less than 100%. It is a combined graph showing 
trends increasing width of the search tree – from binary tree to a tree with 5-width 
structure at each node. In this section, number of visited leaf nodes is counted. 

 

 
Fig. 13 Algorithm relative performance across different tree widths  

(leaf nodes visited) 

 
BNS algorithm shows progress from 88% at 2-width stage to 96% at 5-width 

stage. 
Fig. 14 demonstrates the same data slice, but here, the total number of visited 

nodes is measured. It can be seen that BNS performance still remains at the level of 
approximately 80% comparing to MTDF algorithm across all branching factors. 
Note: SSS and Dual algorithms show low results of 700% and 300% 
correspondingly and fall outside of diagram range. 
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Fig. 14 Algorithm relative performance across different tree widths  

(total nodes visited) 

 
 

8  Conclusions and Future Work 
 

The main goal of this paper was to show that it is possible to find the best move 
without the exact tree minimax value. After self-training based on multi-dimension 
statistics, the proposed BNS algorithm was able to demonstrate better results than 
other existing algorithms. Game tree analytical evaluation gives additional 
improvement allowing us to use this algorithm as general purpose approach for 
different tree types. 

Having analyzed the results we can conclude the following: 
• Among algorithms without Transposition Tables (TT) BNS shows 

competitive results. Both leaf node count and total node count is less 
comparing to other algorithms; 

• The algorithms based on TT approach show different performance in 
different conditions. Currently, MTD(f) is more preferable choice 
providing the highest performance. But in the current experiments, BNS 
demonstrated itself to be more efficient comparing both scanned leaf node 
count and total node count; 

• Considering leaf nodes visited, BNS algorithm demonstrates an 
improvement in a range from 12% (for binary trees) to 4% (for 5-width 
trees) comparing to MTD(f); 

• Regarding total nodes visited, BNS algorithm demonstrates a stable 
improvement up to 20% across different branching factors comparing to 
MTD(f); 

The current results are based on experiments in abstract domain and additional 
research is needed to verify the behavior of the algorithm for wider trees (with 
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branch factor larger than 15-20). Interesting results may be obtained in testing non-
regular trees with asymmetrical structure. Future experiments should also consider 
analyzing algorithm performance in real games, but it is believable that proposed 
approach could be successfully applied for real domain games as well. 
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Appendix 

 
The following section contains the performance results of algorithms 

implemented during the current research for different tree structures and leaf node 
ranges. 
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Fig. 15 Tree width – 2, depth – 14 

Leaf node range 0..80; full alpha-beta window 

 
 

 
Fig. 16 Tree width – 2, depth – 14 

Leaf node range 0..800; full alpha-beta window 
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Fig. 17 Tree width – 3, depth – 10 

Leaf node range 0..80; full alpha-beta window 

 
 

 
Fig. 18 Tree width – 3, depth – 10 

Leaf node range 0..800; full alpha-beta window 
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Fig. 19 Tree width – 4, depth – 8 

Leaf node range 0..80; full alpha-beta window 

 
 

 
Fig. 20 Tree width – 4, depth – 8 

Leaf node range 0..800; full alpha-beta window 
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Fig. 21 Tree width – 5, depth – 6 

Leaf node range 0..80; full alpha-beta window 

 
 

 
Fig. 22 Tree width – 5, depth – 6 

Leaf node range 0..800; full alpha-beta window 




