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Abstract. This paper outlines our Deep Learning Lifecycle Data Management system. It consists 

of two major parts: the LDM Core Tool – a simple data logging tool; and an Extension Mechanism 

– this mechanism allows the user to extend the simple LDM Core Tool to match their specific 

requirements. Current extensions support adding new visualisations for data stored on the server. 

Our approach allows the Core Tool to be a complete black box; we need only a metamodel 

denoting the logical structure of the stored data. By then specialising this metamodel we can define 

an Extension Metamodel which, when communicated to the tool through configuration, allows us 

to define and thus add the extensions. 
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1. Introduction 

The Deep Learning process is long and tedious, with many parameters and code versions 

and other features to keep track of. Therefore, we need tools for Deep Learning lifecycle 

data management (DL LDM) to streamline the process, allowing to focus on the project, 

not how to remember what combination of features gave which results. There are many 

tools available that attempt to solve this problem. We look at these tools in more detail in 

Section 2. The general conclusion is that they fall into one of two pitfalls – they are 

either missing vital functionality or grow incomprehensibly complex when trying to fit 

all use cases. 

This is similar to the situation in the system modelling area. There the Universal 

Modeling Language (UML) was developed, and it was highly complex. Many UML 

tools (WEB, a; WEB, b; WEB, c; WEB, d; WEB, e; Streinberg et al., 2008; etc.) were 

developed which were very complicated as well. At the same time, most real tasks either 

needed a tiny subset of these many possibilities, or something was still missing for tasks 

in the given domain. As a result, in the world of system modeling the idea of Domain 

Specific Languages (DSL) and tools emerged. What was needed was not a single 
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universal tool, but a DSL tool building framework. By using such a framework an expert 

of the given problem domain could relatively easily build the required tool himself. 

Many commercial development environments contain such frameworks for DSL 

creation – Microsoft DSL Tools (Cook et al., 2007) and various Eclipse DSL tools, such 

as GMF (Gronback, 2009) and Obeo Designer (Sirius + Acceleo + EMF) (WEB, f), 

MetaCase (Kelly et al., 2008; Tolvanen et al., 2007). These frameworks typically create 

the relevant code (in C#, Java, etc.) from a DSL. 

There are two ways to build such frameworks. One is to create a configuration 

language and implement it directly; this is complicated to do. The other is to use a 

model-based approach. For the relevant domain a metamodel is built, call it a Universal 

Metamodel (UMM), then the specific DSLs for this domain are obtained from the UMM 

by either instantiation (OMG, 2015; Barzdins et al., 2008; WEB, u) or specialisation 

(Kalnins et al., 2019). To get the tools themselves, the UMM needs an engine that would 

understand the DSL models. It would then either compile or interpret the models to get 

the corresponding DSL tool. There is also a third option, where the engine, upon 

receiving the DSL model, interprets it to then itself act as the respective DSL tool 

(Sprogis, 2016). This third option is the one used in this paper. 

The main problem investigated in this paper is the development of DSL tool building 

technology for the DL LDM field. The first option for achieving this is adopting the 

same DSL path taken in the modeling field. But the DL LDM field differs significantly 

with the most important difference – in this field, any sane DSL tool has to offer the base 

necessities of communication between the data server and the workstations, and data 

storage on the data server. The parts that are changed and specified could then be 

different views and actions with the data stored on the data server. Thus, this field 

requires its own specific DSL tool building technology. The goal of this paper is the 

development of such technology. 

First, we define a base LDM Core Tool, which implements the mentioned minimum 

necessities on the data server. We also define a LDM Core Library which facilitates the 

exchange of data between Workstations and the Data Server. The LDM Core Tool and 

LDM Core Library together we will call the LDM Core System. Section 3 describes this 

system; it already has practical uses since it satisfies the base necessities. 

As a result, the DL LDM DSL tool building problem is reduced to the problem of 

building LDM Core System extensions. The main contributions of this paper are: 

1) The development of an advanced LDM Core System extension definition 

method. 

2) The development of the corresponding extension building framework. 

These contributions are described in detail in Section 4; the following is an overview of 

techniques. First is the construction of a Universal Metamodel (UMM) for describing 

possible extensions (Section 4.2); then through metamodel specialisation (Section 4.1) 

we obtain models of specific extensions (Section 4.3); lastly an engine that is defined for 

the UMM (Section 4.4) can accept the extension specifications (Section 4.6) and then 

change its workings accordingly (Section 4.5). 

The extension mechanism as described in authors’ previous works (Celms et al., 

2020a; Celms et al., 2020b) was based on partially revealing the inner data structure of 

the Core Tool; we had defined the Core Tool as a “grey box”. But feedback from 

practical applications revealed that having the Core Tool be a grey box was inconvenient 

for the end user. In this paper we propose a different approach to extending the Core 

Tool – we now regard the tool as a complete black box (no longer minding its 
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implementation and data structure), instead we ask for the black box to understand the 

extension language that we will propose later in this paper. This way the black box is 

made “wiser” and as a result serves as an extension building framework named LDM 

Core Tool Plus (see Section 4.3 to 4.5). 

2. Related Work 

There are many tools available that attempt to solve the lifecycle data management task, 

but they fall into one of two pitfalls – they are either missing vital functionality (Miao et 

al., 2017; Bisong, 2019; WEB, g; WEB, h; WEB, i; WEB, j; Haifeng et al., 2019; etc.), 

or grow incomprehensibly complex when trying to fit all use cases (WEB, k; WEB, l). A 

more detailed comparison and analysis of these tools is available in papers (Celms et al., 

2020a; Celms et al., 2020b; Barzdins et al., 2020a). 

In the last couple of years, the existing tools for machine learning lifecycle support 

have become more mature, as well as new tools have emerged. The whole Machine 

Learning (ML) tools market has grown from general tools for Directed Acyclic Graph 

(DAG) execution, logging, and dashboards to a multibillion-dollar industry. The term 

MLOps has been coined. A lot of tools exist under this umbrella, many of them 

promising to cover the full spectrum of the ML lifecycle. 

All-in-one tools promise a swiss knife but are usually expensive and often over-

promise and under-deliver. Open-source tools offer solutions at zero cost but have 

maintenance and integration overheads. All of them lack in customisation possibilities if 

the out-of-the-box solution does not fully fit the needs. 

From the cloud-based solutions prominent are SageMaker ToolKit (WEB, m) and 

Azure Machine Learning (WEB, n), which now also include the MLflow toolkit (WEB, 

o) which by itself is an open-source platform. They follow the platform-as-a-service 

paradigm and are tightly integrated with model training on their own clouds.  

From stand-alone platforms which support machine learning lifecycle management 

for model training on-premises notable are Comet (WEB, l), Neptune (WEB, p), 

ClearML (WEB, q), Aim (WEB, r), PiniTree (Barzdins et al., 2020b) and cnvrg.io 

CORE (WEB, s). Most of them are commercial solutions containing an open-source 

subset. All of them support experiment and run tracking and some sort of dashboards for 

comparing and visualising experiment runs. Comet even supports custom visualisations, 

although it requires writing custom JavaScript code to extend the built-in classes. 

Neptune allows for easy creation of custom charts from the built-in chart types, 

visualising hyperparameters and metrics. ClearML can show Tensorboard visualisations 

as well as custom ones, created via Matplotlib and Seaborn. For Aim and cnvrg.io as 

well, some easy views can be created visually, but further customisation would involve 

digging into the source and writing some code. Finally, PiniTree is a graph database with 

universal low-level visualisation and API resembling the LDM Core Tool described in 

this paper, it was used for prototyping the described techniques. 

3. LDM Core System 

The LDM Core System is what realises the base necessities, described in the 

Introduction, which any tool in the DL LDM ought to offer – communication between 

workstations and the data server, as well as data storage on the data server. The 



20  Barzdins et al. 

 

following subsections will explain the approach taken to achieve these base 

functionalities. 

3.1. General Structure of the LDM Core System 

The LDM Core System consists of the LDM Core Tool and LDM Core Library. These 

components and access to them are then split amongst three “machines”, though they 

need not be physically separate ones (Fig. 1). 

The LDM Core Tool is installed on a Data Server by the tool Configurator. This 

server then hosts the tool and stores uploaded data. The LDM Core Tool is minimalistic 

in functionality, but usable in practice. 

 
 

Fig. 1. General structure of the LDM Core System. 

The Core Library is installed by the Programmer on his Workstation, where the DL 

program is run, and from which experiment data and results will be sent to the server. 

Finally, there is the web access from any machine, which allows the End-User to 

view the experiment data and results. This could be the same or a different programmer 

looking to analyse or replicate work, or a client wanting to track results and progress. 

3.2. LDM Core Library 

The Workstation communicates with the Server using the following five library 

commands. 

 
login(user_id, psw): a trial to authorise the user with 

user_ID using the password psw, in case of success returns 

the token_id 

startRun(project_name): start new run in the project 

project_name 

log(msg, role_name): store on DS the message msg and the 

corresponding role_name in the current run 

uploadFile(file_name, role_name): upload the file file_name 

and the corresponding role_name in the current run 

finishRun(): finish the current run 
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      From a higher abstraction level, we can say that with these functions the Workstation 

sends the messages seen in Fig. 2 to the Data Server. “//” before the attribute name 

means that the value of this attribute is inserted by the LDM Core Library. “/” before the 

attribute name means that the value of this attribute is not sent from the Workstation but 

generated by the LDM Core Tool upon message reception. 

The most important here for the content of this paper are commands Log and 

UploadFile; these are used to send data from the workstation to the server, data which 

extension programs will then visualise (explained in Section 4). The log function is more 

capable than it might appear, as the string message could be any JSON encoded data, 

thus encoding well-structured information of almost any scale. 

 
Fig. 2. Class diagram of messages. 

3.3. LDM Core Tool 

The messages and files sent by the end user are organised according to the structure 

shown in Fig. 3. It is a class diagram, named here the Core Logical Metamodel (Core 

LMM). 

 
Fig. 3. Core Logical Metamodel. 

     It shows that the data is organised by Projects, each of which can have multiple 

ProjectFiles and Runs. Each Run can have its own RunFiles and LoggedMessages (the 

ones sent by the DL program execution with the commands Log and UploadFile). This 

model doesn’t enforce anything for the server black box program itself, it can store this 

data in whatever structure the programmer decides. And for our later extension (in 

Section 4) we have no need to reveal the physical structure that the black box is actually 

using for storage, we just need the end user and the server program to be aware of this 

Core LMM. 
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Fig. 4 shows an instance of the Core LMM, to help understand the relation of 

projects and runs, as well as the files and logged messages. Fig. 5 shows this same 

instance as web pages; this is the view that the users accessing the LDM Core Tool via 

the web would see. 

 
Fig. 4. Instance of the Core Logical Metamodel. 
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Fig. 5. Web views of the instance of the Core LMM. 

     The LDM Core Tool requires every user to log in, which is how it knows which 

projects to show to the user and allow them to edit. New projects are added via the web 

access with the “Create New Project” button. Project files are added in the “Project 

Details” view, using the “Upload Project Files” button. This would then ask the user to 

upload the file and give it a role-name. 

Thus, the LDM Core System satisfies communication between workstations and the 

data server through the LDM Core Library, then the LDM Core Tool stores data on the 

data server, as well as allows web access to browse the data. 

4. LDM Core System Extension Framework 

So far, we’ve defined the LDM Core System, which by itself is a minimalistic but usable 

solution for DL LDM. What we will introduce now is an extension framework, which 

will build on top of this minimalistic tool to allow users to create specialised solutions 

for their DL LDM problems, with functionalities extended beyond the ones possessed by 

the pure LDM Core Tool. 

When describing the extension framework, we only mention the LDM Core Tool, not 

the LDM Core Library. This is due to the library already being rather universal and 

unlikely to require new additions. Thus, the extension framework deals only with the 

Tool end – creating new visualisations for gathered data. 

PROJECTS

CreateNewProject

projNo : 1
projID : 597384
projName : name1
projType : captioning
projAuthor : auth1
lastUpdate : . . .
numRuns : . . . 

projNo : 2
projID : 634547
projName : name2
projType : 
projAuthor : auth2
lastUpdate : . . .
numRuns : . . . 

PROJECT DETAILS

projNo : 1
projID : 597384
projName : name1
projType : captioning
projDescription : . . .
projAuthor : auth1
PROJECT FILES: 

PROJECT RUNS:

# RunID Start End UserIP UserName

1 378257 . . . . . . . . . user1

2 868349 user2

ProjName :
ProjType : 
ProjDescription : 

OK

RUN DETAILS

UserName :
Password:

OK

Role :
File:

OK

# RoleName FileRelativePath

1 trainingData …   …

2 validationData …   …

3 testingData LogPlatform\...\Test1.zip

UploadProjectFiles

projNo : 1
projID : . . .
Start : . . .
End: . . .
UserIP: . . . 
UserName : . . .
LOGGED MESSAGES :

UPLOADED FILES :

# RoleName Message

1 runType testing

2 lossPairs 1/0.4

3 lossPairs 2/0.5

4 lossPairs 3/0.5

5 lossPairs 4/0.6

6 lossPairs 5/0.7

7 lossPairs 6/0.7

8 accuracy 0.95

# RoleName FileRelativePath UploadTime

1 code . . .py . . . 
2 checkpoint . . . . . .

3 checkpoint . . . . . .

4 checkpoint . . . . . .

5 silver . . .json . . .
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4.1. Metamodel Specialisation 

The extension framework proposed in the following subsections will, to a great degree, 

be achieved through the medium of metamodel specialisation – an approach to DSL 

modeling tools introduced by the authors (Kalnins et al., 2016; Kalnins et al., 2019). The 

main idea of metamodel specialisation is that we first define the Universal Metamodel 

(UMM) for a domain and then for each use case in this domain define a Specialised 

Metamodel (SMM). The SMM contains a set of subclasses of the UMM classes, 

however many we need. The subclasses are defined according to UML rules, but with 

some restrictions. New fixed values may be assigned to class attributes, but new 

attributes may not be added. Similarly, for associations the role names may be redefined 

(as sub- role names) and multiplicities may be changed (shrunk). In our new domain we 

also allow attribute names and types to be redefined. If necessary, OCL expressions 

(OMG, 2014) can be used as well. Fig. 6 demonstrates a simple UMM example – a class 

diagram defining graphical diagrams. 

 
 

Fig. 6. UMM example. 

     This UMM is purposefully simplified, compared to metamodels used in practice, to 

make it easily understandable. In turn, Fig. 7 demonstrates a possible specialisation of 

this metamodel – a simple flowchart SMM. Fig. 7 also demonstrates the shorthand 

notation used for SMM presentation: class notation “Aaa {Bbb}” means that “Aaa” is a 

subclass of class “Bbb” (e.g., “Flowchart {GraphDiagram}”). Similarly, association 

notation “ccc {ddd}” means that association “ccc” is a subclass of association “ddd” 

(e.g., “condFlow {arrow}”). 

 
 

Fig. 7. SMM example. 

However, in this paper, the notation of specialisation will be extended. In (Kalnins et al., 

2019) it was assumed that the semantics of specialised classes are directly determined by 

their attribute values or a default attribute value set. We will call such specialisation – 

simple specialisation. But for this paper, we need a broader specialisation concept where 
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the semantics are determined by some additional information as well. Such specialisation 

will be called functional specialisation. In the context of this paper, additional custom 

programs will be invoked by the LDM Core Tool at appropriate times. Formally, the 

functional specialisation will only describe how such custom programs can be found, but 

semantically the program now influences the workings of the framework engine. Both 

simple and functional specialisation will be used in this paper. 

4.2. First step towards the Extension Framework: Universal Metamodel 

The first problem we must solve is how to precisely define the set of valid LDM Core 

Tool extensions. Within the context of this paper, we will limit these to extensions that 

create new visualisations for data stored on the server. One powerful method for doing 

this is with UML class diagrams. As mentioned in the Introduction, this was the path 

taken in the field of modeling DSL tools; only here, instead of the modeling field, we 

deal with the more complex DL LDM. 

The main result of this section is the class diagram shown in Fig. 8. It precisely 

defines a wide set of valid extensions that the framework should support. Following 

DSL tradition, the diagram is named Universal Metamodel (UMM).This diagram 

consists of two parts – the light classes (in yellow) and the bold classes (in pink). The 

light classes precisely match the Core LMM from Fig. 3, but the additional bold classes 

are the most important ones, as they together with the relevant associations precisely 

describe the supported extensions for the LDM Core Tool. The Project and Run classes 

have new Tab classes associated with them (more precisely, when accounting for the 

cardinalities, every Project and Run instance can have multiple Tab instances associated 

with it). Every Tab then is associated with an Extension Program, the parameters of 

which can be files that are either Project Files or Run Files.  

 
Fig. 8. Universal Metamodel (UMM) 
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     To be precise, what is passed to the Tab are the file paths of these files (this can also 

be seen in the UMM). The associated Extension Program will lead to a web page that 

shows the results of running the program, thus serving new visualisations of the Core 

LMM instances for the end-user. What follows in Section 4.3 is the definition of specific 

extension models using metamodel specialisation. 

4.3. From the UMM to LDM Core Tool Extension Metamodels 

LDM Core Tool Extension Metamodels (EMM) are metamodels obtained from the 

UMM (in Fig. 8) by way of metamodel specialisation (described in Section 4.1). One 

such EMM example is shown in Fig. 9, but many other versions are possible for 

describing different extensions. The specialisation only affects the bold classes, as only 

those are relevant to the extension. The non-bold classes are the Core LMM classes and 

those will remain unchanged, as the base functionality of the LDM Core Tool needs to 

be maintained (the aforementioned base necessities). Fig. 9 shows an example of a LDM 

Core Tool EMM, which, besides the Core LMM in yellow, also includes the additional 

Run Tab titled TestGoldSilverView, together with its extension program and parameters. 

Fig. 10 shows an instance of this metamodel. This instance corresponds to the 

instance of the Core LMM shown in Fig. 11. Fig. 10 differs from Fig. 11 with the 

addition of the Tab instances and their specific Extension Program and Parameters, as 

well as all the respective associations. By looking at the instances of Par1 and Par2, one 

can see that they now contain the specific file paths of the files they are associated with 

(e.g., Par2 contains the file path ending in Silver1.json, which is the same as the file path 

of the Silver instance it is associated with). 

 
Fig. 9. Example of a LDM Core Tool Extension Metamodel 
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Fig. 10. Instance of the Extension Metamodel. 

4.4. A basic remark concerning the building of the LDM Core System 

Extension Framework 

Assume we are given a Core Tool Extension Metamodel (e.g., the one in Fig. 9) and an 

instance of the Core LMM (e.g., the one in Fig. 11) – is this knowledge sufficient to 

update the instance with the pink classes, which concern the extension (seen in Fig. 10)? 

The answer is yes! From Fig. 9 we see what Tabs are to be added to each project and 

run, as well as what Extension Programs they connect to (in our example a run tab 

TestGoldSilverView with the program Arturs). The non-trivial part is correctly updating 

the attributes and associations of the Parameter classes. For this both the EMM and the 

Core LMM instance are needed. From the EMM (in Fig. 9) we know which run and 

project files each parameter is associated with. But, vitally, the instance (in Fig. 11) has 

the precise file paths, which we add to the attributes of Parameter instances. Thus, we’ve 

managed to accurately update the instance with the extension classes. 

The LDM Core System Extension Framework can now be defined a meta tool 

(named LDM Core Tool Plus), which upon receiving an Extension Metamodel (e.g., the 

one in Fig. 9) through configuration, starts to work as an extended LDM Core Tool 

according to the specifications of the received EMM. 

What remains is only the implementation of the visualisation of the EMM instance 

(see Section 4.5), part of which requires calling the Extension Program, and 

communicating the EMM itself to the tool (see Section 4.6). 
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Fig. 11. Instance of the Core LMM (a shortened version of Fig. 4). 

 
 

Fig. 12. Web views of instance of the EMM 

PROJECTS
Extensions

CreateNewProject

projNo : 1
projID : 597384
projName : name1
projType : captioning
projAuthor : auth1
lastUpdate : . . .
numRuns : . . . 

projNo : 2
projID : 634547
projName : name2
projType : 
projAuthor : auth2
lastUpdate : . . .
numRuns : . . . 

PROJECT DETAILS

projNo : 1
projID : 597384
projName : name1
projType : captioning
projDescription : . . .
projAuthor : auth1
PROJECT FILES: 

PROJECT RUNS:

# RunID Start End UserIP UserName

1 378257 . . . . . . . . . user1

2 868349 user2

RUN DETAILS

CustomRunTabs :

CustomProjectTabs :

# RoleName FileRelativePath

1 trainingData …   …

2 validationData …   …

3 testingData LogPlatform\...\Test1.zip

UploadProjectFiles

GoldSilver

projNo : 1
projID : . . .
Start : . . .
End: . . .
UserIP: . . . 
UserName : . . .
LOGGED MESSAGES :

UPLOADED FILES :

# RoleName Message

1 runType testing

2 lossPairs 1/0.4

3 lossPairs 2/0.5

4 lossPairs 3/0.5

5 lossPairs 4/0.6

6 lossPairs 5/0.7

7 lossPairs 6/0.7

8 accuracy 0.95

# RoleName FileRelativePath UploadTime

1 code . . .py . . . 
2 checkpoint . . . . . .

3 checkpoint . . . . . .

4 checkpoint . . . . . .

5 silver . . .json . . .

EXTENSIONS

ExtensionPrograms:
. . . . . . . .
ExtPrgName1

ExtensionDefinitions:
. . . . . . . .

Captioning.json

. . . . . . . .
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4.5. LDM Core Tool Plus: Visualising the EMM instance 

Fig. 12 shows the instance from the previous section (Fig. 10) displayed in the form of a 

web page, as it would be by the Plus component of the LDM Core Tool Plus. This is one 

of the main responsibilities of the Plus component. Compared to Fig. 5 the only visual 

difference is the addition of a single Tab (labelled TestGoldSilverView under Run 

Details). But this single tab plays a significant role, which also needs to be facilitated by 

the Plus component! A click on the tab must open a web page on which the result of the 

relevant Extension Program is shown when it is passed the specified attribute values. 

       Fig. 13 shows one possible way the web page resulting from executing the 

Extension Program might look. In this example the DL project is image captioning, and 

the tab displays the results of the program on the data sets. The tab takes as parameters 

the data sets, as well as the results sent to the server by the Workstation. Under the 

images the names of the flowers are in red if they were labelled incorrectly; the names in 

gold were labelled correctly. 

 
 

Fig. 13. Results of executed GoldSilver tab extension program. 

4.6. LDM Core Tool Plus: Extension Configuration 

For the LDM Core Tool Plus to work according to the chosen extension specification, 

we need a mechanism that facilitates passing this specification to the LDM Core Tool 

Plus. For this we need a configuration tab (Fig. 12 already has this tab, titled Extensions 

under the Projects view). As can be seen in Fig. 14, this tab leads to a web page with the 

option of entering configuration specification. Two things must be entered – the 

extension specification (named Extension Definition) and extension program (thus 

named). 
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Fig. 14. Web views of the LDM Core Tool Plus extension configuration pages. 

     As mentioned before, the Extension Program the Configurator writes themselves, and 

uploads on this configuration page. But a question arises – how do we pass the 

Extension Specification to the LDM Core Tool Plus as we only have its graphical form? 

What is needed is to serialise the metamodel, which we can do by using JSON. Fig. 15 

shows a metamodel serialised into the JSON format. This then is a JSON file which 

should be uploaded on the configuration page as the Extension Definition. 

 

 
Captioning.json 

--- 

{ 

projectType: Captioning, 

projectFiles: [ 

  TrainingData, 

  ValidationData, 

  TestingData 

], 

runFiles: [ 

  Code, 

  Checkpoint, 

  Silver 

], 

runLogs: [ 

  RunType, 

  Accuracy, 

  LossPairs 

], 

projectTabs: [], 

runTabs: [ 

  { 

    tabName: GoldSilver, 

    extensionProgram: Arturs, 

    parameters: { 

      Par1: { 

        level: Project, 

EXTENSIONS

ExtensionPrograms ExtensionDefinitions

ExtensionPrograms:

ExtensionDefinitions:

PROJECTS

Extensions

CreateNewProject

. . . . . . . .

# ExtensionProgramName Comment

1 extPrgName1 . . .

2 extPrgName2 . . .

. . . . . . . . . . .

# ExtensionDefinitionName Comment

1 Captioning . . .

2 ImageRecognition . . .

. . . . . . . . . . .

ExtensionProgramName:
Comment:

OK

ExtensionDefinitionName:
Comment:

OK

«ExtensionDefinitionName» must
be equal with
«projectTypeName» to whom
this extention is meant
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        rolename: TestingData 

      }, 

      Par2: { 

        level: Run, 

        rolename: Silver 

      } 

    } 

  } 

] 

} 

Fig. 15. Specialised Metamodel serialised with JSON. 

 

     This example clearly shows how metamodels of this style can be serialised with the 

help of JSON. The UMM in a way acts as our JSON schema. 

5. Discussion and Conclusion 

The results of this paper can be looked at in two ways. The first is the viewpoint we used 

in the paper: how to build an easily extendable DL Lifecycle Data Management system. 

The second way to view the results is the Model Driven Architecture (MDA) viewpoint. 

The basic idea of MDA, according to (Kleppe, 2007), can be described with Fig. 16. 

PIM is the Platform Independent Model of the system; usually this model is a class 

diagram, and it is conceptually the same as what we called the Logical Metamodel of the 

system. Next is the Platform Specific Model (PSM) and finally the system Code. 

Currently we aren’t concerned with the PSM, thus Fig. 16 is replaced by Fig. 17. 

 
 

Fig. 16. MDA conceptual schema (Kleppe, 2007). 
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Fig. 17. Simplified MDA conceptual schema. 

     The extension idea offered in this paper is applicable to systems whose PIM models 

match the schema shown in Fig. 18.  

 
 

Fig. 18. PIM schema. 

     Classes Aaa, Bbb, Ccc will be called main classes (having bold frames in Fig. 18). 

The other classes we will call auxiliary classes (in Fig. 18 they are AaaFiles, 

AaaMessages, BbbFiles, etc.). Many data servers work according to such PIM models, 

including the DL LDM data server considered in this paper (Aaa corresponds to Project, 

Bbb to Run, Ccc could be Epoch). A hospital data server could also work according to 

such a PIM model, where Aaa corresponds to Patient, Bbb to Diagnosis, Ccc to 

Treatment. 

In Fig. 19 we see the website schema which naturally follows from the PIM schema 

in Fig. 18, using which a user can view the contents of the data server. In this example 

CodeA is a program which manages the data server, supports both data input as well as 

the data visualisation according to Fig. 19. 

 
 

Fig. 19. Website schema. 

      

C2 . . . . . . .
. . . . . . . . . .
C2 FILES:
. . . . . . . . . .
C2 MESSAGES:
. . . . . . . . . .

Aaa

Extensions

A1 . . . . . . .
A2 . . . . . . .
. . . . . . . . . .

CustomTabs : . . . 

A1 . . . . . . .
. . . . . . . . . .
A1 FILES:
. . . . . . . . . .
A1 MESSAGES:
. . . . . . . . . .
CORRESPONDING Bbb:
B1 . . . . . . . .
B2 . . . . . . . .
. . . . . . . . . . .

Selected Aaa DETAILS

CustomTabs : . . . 

B2 . . . . . . .
. . . . . . . . . .
B2 FILES:
. . . . . . . . . .
B2 MESSAGES:
. . . . . . . . . .
CORRESPONDING Ccc:
C1 . . . . . . . .
C2 . . . . . . . .
. . . . . . . . . . .

Selected Bbb DETAILS

CustomTabs : . . . 
Selected Ccc DETAILS

Notation:
if Zzz class, 
then z1, z2, . . . 
instances of Zzz
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     The data input mechanism, thanks to the Role concept, seems to be sufficiently 

universal (from the server side) and therefore will not be discussed in more detail. 

However, the standard view of the server data according to Fig. 19 may be insufficient 

for use in specific domains (e.g., DL LDM). In this paper we have offered a sufficiently 

universal mechanism for defining new visualisations by using the Custom Tab concept. 

This mechanism consists of two parts. From one side there is a new program written by 

the tool configurator, which displays the new view from the supplied parameter values. 

From the other side CodeA Plus “understands” the offered language for tab definition, 

i.e., it understands which program is assigned to the given tab and what parameter values 

should be supplied to this program when we click on the given tab in Fig. 19. 

In this paper we only described extensions that support visualisations, but this 

mechanism, with some additions, can handle more. For example, imagine a Custom Run 

Tab “Repeat Run”; in a dialogue it would ask if any hyper-parameters are to be changed, 

then execute the code of the run again with the new hyper-parameters. This is a much-

sought functionality, offered by Facebook’s Hydra (WEB, t). The new run would log as 

usual, as the executed code still contains all the logging commands from the Core 

Library, but getting to that point would require two things: 

1) That the run log contains all required logs and files (can be specified with the 

Extension Metamodel). 

2) That there is one or more workstations on which to execute the program. 

A problem arises, where the tab could be clicked ten times in a row, each tab starting 

in a separate execution thread, but the workstations will not manage to keep up – a queue 

is needed. If the extension followed the often-used RabbitMQ approach, it would have to 

form a job, enter it into a queue, later a worker would pull the job from the queue, then 

even later the extension can receive back the finished job. The authors have developed a 

simpler queue implementation named “Token Queue”, which mimics the real-life post 

office and similar places’ system of taking a ticket and then waiting to be called. A 

dedicated ticket server is set up (this is what we call the Token Queue); all that is left for 

the extension to do is ask the Token Queue for a URL of a free worker, and then just 

wait on this query until a worker is free, and a URL is then returned. Then the extension 

simply executes the run on that worker and after it is done returns the URL back to the 

token queue, so that it can be served to the next in line. 

The addition of the MDA viewpoint and Token Queue shows how our described 

Extension Mechanism can support quite powerful extensions, far beyond the 

visualisations described in this paper. 
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