
Baltic J. Modern Computing, Vol. 10 (2022), No. 2, pp. 121–131
https://doi.org/10.22364/bjmc.2022.10.2.02

Data Model for Rich Time Series Data and
Chameleon Query Language

Marta Jadwiga BURZANSKA ?

Nicolaus Copernicus University, Torun, Poland

quintria@mat.umk.pl

Abstract. Nowadays time-stamped data is being generated by a variety of applications and
stored in a variety of database systems. Depending on the data structure and the importance
of the time aspect those database systems may be either general-purpose or time-series oriented.
Most popular time-series DBMS use only simple data types for non-time values, whereas general-
purpose databases usually lack specialized query methods designed for time-series aspects. Each
of those solutions has some drawbacks as far as data handling is concerned. Extending SQL with
built-in time series focused components enables the combination of relational queries with doc-
ument and time-series-oriented queries. At the same time, the popularity of SQL among data
analysts and data scientists would give them the benefit of an easy start. This paper presents such
an extension and introduces ChQL, a query language designed to work with both document data
and multivariate time series. This language is designed to imitate the syntax of the Python lan-
guage, so that it could be easily integrated as a library into object-oriented languages such as
Python, Javascript, or PHP. The main architectural concept behind the data model for both lan-
guages is to use a mixed data model based on both document and time-series storage. This paper
is focused on the languages time-series related features and their architectural consequences

Keywords: query languages, data model, time series, ChQL, SQL

1 Introduction

The analytical needs of modern medium and large companies are on a steady rise and
demands on real-time generated data analysis are increasing. The analysis of time se-
ries is often a central issue in economic research and many other scientific applications.
Companies wish to adapt machine-learned prediction models in response to changing
user behavior, public safety organizations monitoring weather or seismic activity need
quick and reliable warning systems, producers of semi-autonomous machines need to

? The research presented in this paper was supported by the Polish National Centre for Research
and Development (NCBiR) under Grant No. POIR.01.01.01-00-1205/18

122 Burzanska

monitor them and gather data for further research and enhancements. Those are just
a few examples where efficient reliable database systems working with time-stamped
data are in high demand. But nowadays a good database management system is not
enough. We live in a world of Big Data, where the most valuable is the knowledge
and skills of data analysts and data scientists. And the two most popular computer lan-
guages that these specialists utilize in their everyday work are SQL and Python (Haq
et al. (2020)). This is one of the reasons that many NoSQL systems, apart from a vendor-
specific query language, also adapt parts of the SQL language as an alternative querying
method. Database systems designed for time-series data usually have their own query
language, sometimes heavily influenced by SQL syntax (Sharma (2020); Rith et al.
(2014)). But this approach, intended for people fluent with SQL, has some serious draw-
backs. Despite similarities, data analysts still need to learn new structures, search for
specific functions and, when faced with a problem, look for help in a limited user com-
munity or documentation. A much better approach has been adapted by TimescaleDB,
which is based on the PostgreSQL DBMS. Timescale developers took the full Post-
greSQLs SQL dialect and extended it with only a few necessary capabilities by either
implementing user-defined functions or adding a group of additional clauses or key-
words (Mazak et al. (2020); Borkar et al. (2016)). However, despite SQLs popularity
and expressiveness, it is well known that more complex queries are difficult to construct
and maintain. Also, solving very complex issues quickly becomes a tedious task. An-
other aspect worth considering is the variety of collected data and common changes of
the sales models which require database modification. A plain multivariate time-series
model may not be enough. After considering and testing out different solutions for
their clients the developers at Synerise S.A. company have decided on creating a novel
DBMS ”Chameleon”. It is intended as an in-memory distributed database with a hybrid
document-multivariate time-series model which can serve multiple purposes. This data
model required a query language capable of dealing at the same time with JSON-style
documents and with time-series data with all its complexities. Such language should
be easy enough for a data analyst to quickly master it, but also for software developers
to be able to effortlessly incorporate it into their products. And yet, those two groups
usually have different skill sets and different preferences when it comes to computer
languages. After long consideration, the development team has decided to implement
a dual-language approach. In order to give data analysts a quick start on our product,
we have adapted an SQL dialect based on the 2013 standard with some enhancements
like simplified Row Pattern Matching, JSON support, and time-series-specific elements.
And for those more accustomed to programming languages, we provide a python-like
ChQL query language with the same expressiveness. Both approaches are intended to
complement each other.

This paper presents the overview of our data model and the key concepts of both the
extended SQL dialect and the ChQL language. The focus is placed on complex prob-
lems and explaining some decisions behind specific solutions. This paper is organized
as follows: Section 2 gives an overview of the data model. Section 3 introduces the
time-series related extensions to SQL dialect and discusses the use of the Row Pattern
Recognition (RPR) extension. Section 4 contains an overview of the ChQL query lan-

Data Model for Rich Time Series 123

guage and shows its correlation with our SQL dialect. Section 5 contains conclusions
and future work.

2 Data Model

This section presents the models and concepts that form the foundation of Synerises
Chameleon DBMS project and its query languages. It starts with a presentation of a
motivating example and then proceeds to the technical details.

2.1 Motivating example

One of our baseline motivating examples deals with a hypothetical retail chain. Each
store gathers customer receipts info as a JSON document. When a customer shows their
loyalty card, their receipt is stored in a time series labeled as purchase with customers
uid. Also, the customer has a loyalty app. The basic customer data (uid, name, phone
no, etc.) is stored as a single JSON document per uid. The app gathers info on products
viewed by the customer as a time series with values such as uid, timestamp, product id,
time spent viewing.

After launching a campaign in the loyalty app that showed a selected discounted
product, the retail chain wishes to analyze how many of the customers that had viewed
the product, have bought it in the week span.

2.2 Hybrid data model

The above example illustrates the main idea behind the Chameleon DBMS: its user
should not be confined only to a time-series database functionality, nor to a plain
document-type DB. It is often the case that both functionalities are needed to a sim-
ilar extent. Therefore we propose a hybrid data model so that our clients are not forced
to use dual DBMS architecture and to migrate data between systems. Most architectural
concepts come from the document storage domain.

2.2.1 Data types Besides the basic data types like int, double, string or boolean,
Chameleon DB also provides support for arrays of elements with different data types.
Our DBMS also supports a range of data types for storing date and time values. The
most important is the timestamp type, which is used while defining time series. In order
to store document data, Chameleon supports a JSON-based document type. An instance
of this type is a tree-like structure, with named nodes on each level. Node names on a
specific level are unique. Node values may be of any type supported by Chameleon DB.
Also, the order of nodes is not preserved.

Example 1. A sample time-stamped document stored as a single record

{"uid": "24b7afdd-bfd2-4823-86b4-bb0cf4eec96f",

"event_id": 123469146807, "timestamp": 12357684,

"seriesuid": "purchases", "params": {

124 Burzanska

"item": [{"sku": "code2", "unitprise": 453,

"name": "xyz1", "quantity": 2.0},

{"sku": "code10", "unitprise": 662,

"name": "xyz2", "quantity": 1.5}],

"sum": 2229.0},

"guid": "med22-pl", "action_id": 6}

2.2.2 Data structures Basic data types are used to store singular data, however, to
organize it, more complex structures are required. In Chameleon DB, each database
instance consists of collections. A collection is a set of data with a predefined structure.
In some way, it resembles a table in a relational DBMS. The collection structure must be
defined by an ordered, non-empty list of named key attributes and a list of named value
attributes. Each attribute has a specific type - one of the basic types or a document type.
A collection must have a defined primary key. According to intuition, the primary key
is defined by an ordered, non-empty subset of the collection’s attributes, and it should
uniquely identify a database record.

A collection may also have an ordering key defined. The ordering key consists of
one or more of the collection’s attributes. It determines the logical and physical ordering
of the database records. The ordering key does not have to be unique. A typical example
is the timestamp of the event described by the database record. However, this is not the
only possible data type. All basic data types may be used, and it is easy to imagine using
a string type representing product names.

A very useful feature known from relational DBMSs is a view. Its equivalent in
ChameleonDB database is called a projection. It is a defined operator which selects a
set of collections attributes. It is also capable of selecting a set of documents nodes.

It should be noted here, that Chameleon DB is designed with centralized in-memory
storage enhanced with a capability of placing indexes on any part of a collection, in-
cluding any node of a document. Also, when a collection is both timestamp-ordered
and contains document data, the system may choose to compress on-the-fly JSON type
fields of a record.

3 Querying Chameleon DB

While analyzing different use cases it quickly became apparent that the potential users
of Chameleon DB would mostly fall into one of two categories. Either they could be
programmers, skilled in object-oriented programming languages like C], Java, Python,
or JavaScript, or they could be data analysts, working on their daily basis with SQL and
Python/R languages (for building machine learning models). Those two groups have
different predispositions and habits. Many developers, when given a choice, prefer to
communicate with a DBMS using either some form of an ORM library or a query
language resembling one of the most popular programming languages. Therefore many
NoSQL DBMSs provide a query language resembling either JSON documents or a
scripting language (Sharma (2020); Ramesh et al. (2016)).

On the other hand, one of the basic skills required from a data analyst is proficiency
in SQL. Unfortunately, this language, by design, has limited capabilities when it comes

Data Model for Rich Time Series 125

to handling other data structures than those from relational DBMSs. Thus, a lot of ven-
dors decide to implement a query language resembling, to a lesser or greater extent,
SQL (Rith et al. (2014); Borkar et al. (2016)). The degree of similarity usually depends
on the similarity of their data model to the relational model.

In ChameleonDB it has been decided that only one approach is not enough. The
main assumption was that two user profiles will form the majority. Firstly there will
be users fluent with SQL but not so much in other technologies. And yet, some prob-
lems will still require advanced algorithmics where SQL would be troublesome. Those
problems will be solved by the second group of users - software developers. Therefore
ChameleonDB implements a dual approach: SQL dialect extended with basic function-
alities required when dealing with time-series data and ChameleonQL (ChQL in short)
- an interpreted python-style object-query language.

3.1 SQL dialect for time series

When analyzing different approaches to SQL-based query languages for non-relational
databases we may encounter a lot of various designs. From limited versions based on
the sole core of the SQL to dialects with proprietary extensions highly influencing the
shape of queries. Usually, those extensions are necessary to unlock the full potential
of a DBMS. However, considering that this query language is dedicated to analysts
proficient in standard SQL, the differences are often problematic and unintuitive, and
solutions known to users are not available. Also, since such language exists only in one
DBMS, there is limited access to professional help at user-forums and a limited amount
of learning materials. Thus, in ChameleonDB our goal was to limit such extensions to
a bare minimum. The design choices were made while constantly bearing in mind the
profile of the target user - a data analyst or a business representative, not fluent with
advanced algorithmics. Our user should be able to start querying a database without
having to read through stacks of documentation.

The core syntax is based on the SQL:2016 with SQL/JSON standards (Michels
et al. (2018)). In a use case, where a user would not require time-series specific func-
tionalities, a query on a collection would not be any different from a query on a single
table. However, to address the aspect of time series and to utilize the collection ordering
aspect some additional functionality had to be added.

When dealing with time series not only date parts extraction is needed. It is often
necessary to aggregate parts of a series based on a specific time interval. For example,
one may need to calculate the number of page visits in a span of 10 minutes or to find the
minimum oxygen blood saturation level every 30 seconds. After careful consideration,
it has been decided to simply extend the well-known EXTRACT, ROUND, CEIL and
FLOOR functions with the possibility of defining intervals of any length required by
the user.

Examples of such calls are:
ROUND(timeVal, ’m’, 15) - rounding with interval of 15 min, EXTRACT(timeVal, ’day’)
- extracting weekday name from date, FLOOR(timeVal, ’s’, 30, startingPoint) - assigns a
timestamp value calculated by adding 30 second intervals to a startingPoints timestamp
value.

126 Burzanska

Another functionality, useful when dealing with ordered data series, is extracting a
given element. Thus Chameleons SQL dialect includes functions: FIRST, LAST, GET-
NTH(n, valNode). In the last case, the ’n’ value may be positive or a negative, where,
for example, -2 would mean the second last element

3.2 Row Pattern Matching

A very important part of time series analysis is finding patterns. SQL:2016 standard
introduced the Row Pattern Recognition feature. It heavily utilizes regular expression
and currently is available in only a selection of database systems (like Oracle or Apache
Flink). The main clause for this feature is MATCH RECOGNIZE extending the From
clause. The main ideas behind this feature are to logically partition and order the data,
define patterns using variables and regular expressions which are matched against a
sequence of rows. An example of a query containing RPM is presented in Example 2
and is taken from (Michels et al. (2018)).

Example 2. SQL:2016 Row Pattern Recognition example

SELECT M.Symbol, M.Matchno, M.Startp, M.Bottomp,

M.Endp, M.Avgp FROM Ticker

MATCH_RECOGNIZE

(PARTITION BY Symbol

ORDER BY Tradeday

MEASURES MATCH_NUMBER() AS Matchno,

A.Price AS Startp,

LAST (B.Price) AS Bottomp,

LAST (C.Price) AS Endp,

AVG (U.Price) AS Avgp

ONE ROW PER MATCH

AFTER MATCH SKIP PAST LAST ROW

PATTERN (A B+ C+)

SUBSET U = (A, B, C)

DEFINE /* A defaults to True, matches any row */

B AS B.Price < PREV (B.Price),

C AS C.Price > PREV (C.Price)) AS M

In simple cases, like the one presented above, the naming of parameters is self-
explanatory. However, the details may quickly become complicated. Let us take a closer
look at the PATTERN element. Patterns are built according to POSIX regular expres-
sion definition. They may contain a number of modifiers. For example, the expression:
^X{1,3} Y|(Z+) $(V|W{3,}) means that a pattern should start with one to three el-
ements of X condition matching rows, followed by a single Y condition matching row
or at least one row matching the Z condition and ending with either exactly one V row
or at least 3 W rows. And here we are faced with a difficult design choice. Row Pattern
Recognition is a necessary functionality when dealing with data series. But it is also a
well known fact, that regular expressions tend to quickly become overly complicated
and difficult to maintain. It takes a good programmer to fluently work with them.

Data Model for Rich Time Series 127

While designing ChameleonDB a series of use cases that require RPR feature have
been analyzed. And after very careful consideration it has been decided against the
implementation of this form of queries in ChameleonDB. The base assumption for its
query languages is that the SQL dialect would be mostly used by non-programmer
users, whereas users more skilled in algorithmics would be provided with a more pow-
erful, object-oriented query language. The target SQL users should be given basic row
pattern matching capabilities, but presented in a very readable, easy to master, form.
Thus the idea to enhance the WHERE clause with a THEN parameter which may be
used to specify the order of conditions for a pattern. Our version of the query from
Example 2 would take the form presented in Example 3.

Example 3. Row pattern matching example for ChameleonDB

SELECT Symbol, FIRST(T.A.Price) as Startp, LAST(T.B.Price)

AS Bottomp, LAST (T.C.Price) AS Endp, AVG (Price) AS Avgp,

FunnelCount(), FunnelTag

FUNNEL UNBOUND

FROM Ticker T

WHERE True AS ’A’,

THEN price < PREV(price) AS ’B’,

THEN price > PREV(price) AS ’C’

GROUP BY Symbol, FunnelTag

ORDER BY Tradeday

The Order By clause is optional when the queried collection has an ordering key.
What needs to be explained here is the FUNNEL clause. It is an optional clause that
actually serves multiple purposes. It is often the case where business analysis creates
conditional funnels where the first level of a funnel shows elements matching a first of
the set of conditions, the second level - those matching first and a second condition,
and so on. Using the funnel clause gives access to functions: FunnelCount resulting in
a JSON document whose node names are the step aliases, and node values store the
number of rows matching the step. FunnelTag is the sequential number representing
which pattern in a series is currently displayed (since a pattern may occur multiple
times in a data series). When users would like to utilize the ALL ROWS PER MATCH
functionality, they may simply remove FunnelTag property from the group by clause.
The FUNNEL clause comes with 3 modifiers: UNBOUND, BOUND and OVERLAP.
UNBOUND means that a pattern is matched when at least the first two conditions match
(A and B in the above example). It may be useful when looking for customers, who have
viewed a promotional item in a loyalty app and made some purchases within a span of
a week, but we wish to check how many of them have bought the item in question. The
BOUND modifier means that all conditions must be met in order to match a pattern.
But the OVERLAP modifier is the most interesting one.

Let us consider a case when we want to find drivers who tend to drive recklessly.
Let us define reckless driving as firstly with accelerating above 8 m

s2 , at some point
exceeding the speed of 100 km

h and then hard braking when acceleration drops below
-9 m

s2 . However, there may be points in time when two of those three conditions are met
at the same time. What is more, there may not be a point in time where the speed is

128 Burzanska

above 100 and neither of the two acceleration conditions are met (driver accelerated up
to 120 km

h and then hit the brakes). This situation is very hard to define in SQL:2016
RPR standard, because a row is tagged with the first condition tag it matches. Example
5 shows a fragment of an SQL:2016 query corresponding to the proposition in Example
4.

Example 4. Example of the usage of the FUNNEL OVERLAP modifier

SELECT CAR_ID FROM CARS

FUNNEL OVERLAP

WHERE ACCEL > 8 AS A

THEN SPEED > 100 AS B

THEN ACCEL < -9 AS C

GROUP BY CAR_ID

Example 5. Fragment of a RPR query matching with Example 4

SELECT * FROM CARS

PARTITION BY CAR_ID

PATTERN A+ B+ C* D+ E+.

/*A-Accel, B-Accel and Speeding, C-Speeding, D-... */

WHERE A.SPEED <= 75 mph AND A.ACCEL > 8

AND B.SPEED > 75 mph AND B.ACCEL > 8

AND C.SPEED > 75 mph AND C.ACCEL >= -9 AND C.ACCEL <= 8

AND D.SPEED > 75 mph AND D.ACCEL < -9

AND E.ACCEL < .

FUNNEL clause may also be used without the THEN subclauses. With Bound and
Unbound parameters it may be combined with the AND operator and thus becoming
a simple business funnel representation similar to the one from the New Reliq DBMS.
The Funneltag variable would then contain the number of logical expressions evaluated
to the True value. The query with the Unbound modifier would firstly return those
records, for which the Funneltag value is the lowest (but greater or equal to 2, according
to the abovementioned Unbound modifiers properties), unless specified otherwise in the
Order by clause.

Usage of the Bound modifier is no different from not using the FUNNEL clause at
all. The requirement to use the Funnel clause is that the WHERE clause should contain
only conjunctions of logically evaluated expressions.

As for the general approach, it has been decided for ChameleonDB to implement
the SQL grammar compliant with the SQL:2016 core specification, with the Funnel
clause being the only major modification. The time-series specific functionality, like
calculation of missing integer values in a time series, or timestamp rounding to a given
level of precision, is accessible through built-in function (like estimate missing() and
round to interval() for the abovementioned cases).

4 Chameleon Query Language

Chameleon QL (ChQL for short) was designed with professional programmers in mind.
It is based on the Python language design so that it would be as easily used as a stan-

Data Model for Rich Time Series 129

dalone query language and adapted as a library for Python or JavaScript. The basic data
types match those mentioned in Section 2. It has been decided that a data type should
be associated with a value and not with a variable (similarly to the Python approach),
the need arose to provide a distinction between string, timestamp, and date values. One
approach would be to use special objects (like in Pythons Pandas library), but in ChQL
it has been decided that another approach would be more convenient for a user. In
ChQL the user needs to provide a simple one-letter indicator to distinguish between a
timestamp (e.g. t402993000) or a date (e.g. d1995-02-04 22:45:00).

In order to work with simple data collections we designed the filter function. It
corresponds to the WHERE clause in SQL. An example of usage would be:

Buses.reading.filter(sensorName==’brake’ and MaxPower>50).

(sensorName, sensorNo)

The Buses in this example is a collection with one of its fields, called reading, be-
ing a JSON document storing information gathered during some buses route at some
point in time. As may be seen here, ChQL uses the dot operator in an extended way in
comparison to the Python language. It is not simply an operator used to access fields
and methods of an object, but rather an operator that evaluates the right expression in
the context of the whole left-side expression. Such an approach has firstly been used
in the SBQL proposed by K. Subieta in (Subieta et al. (1995)). According to this ap-
proach, when a class A would have static integer fields labeled x and y, we could request
A.(x,y,x+y) and the interpreter would return a three-valued tuple with fields calculated
based on the As values of x and y.

Other useful database functions, like count(), average(), distinct() are very similar
to those available in MongoDB. However, one of the most interesting functions would
be the one corresponding to the FUNNEL clause for the SQL dialect. It is called simply
series and it results in a tuple of lists of values that match the first condition, the first
and the second condition and so on. An example of usage of this operator is shown in
the example 6. It is a ChQL version of a query from example 4.

Example 6. Example of the series function usage

Cars.car_id.series(mode=’Overlap’, pattern=’A+B+C+’,

A=(accel > 8), B=(speed > 75), C=(accel < -9)).car_id

The series function accepts arguments passed in positional and keyword mode, as
in Python. This function has two special named parameters: mode corresponding to
FUNNEL modifiers, and pattern corresponding to the PATTERN subclause in SQLs
RPR. A, B and C serve as alias names and may be used in search pattern definition as
seen in example 7. The limitations on alias names is that only alphanumeric symbols
may be used.

Example 7. Another series function usage

Alarms.alarm_id.series(A=(alarm=True),

B=(B.alarm = False AND B.time - FIRST(A.time) <= t’5min’),

pattern=’(A+B+){50,}’).

(alarm_id, First(A.time), Last(B.time))

130 Burzanska

The series function is dedicated to working with data series, but when we wish to
achieve the business funnel functionality, the pattern argument should be explicitly set
to None. In comparison to SQLs Funnel query, the series function is more complicated
but offers much more possibilities. The main difference lies with the definition of pat-
terns. Here the design choices return to the users profile. SQL dialect is intended for
people who may not be fluent with programming languages, and as a consequence,
may not be experienced with regular patterns. For users more experienced in program-
ming mastering the ChQL would not pose a problem, or, more precisely, would take
a similar time as mastering SQLs RPR functionality. Thus, the decision to put easier,
but limited, functionality in the SQL dialect, and allow for more robust, more powerful
functionalities through a new language.

To summarize, ChQL architectural design was mostly influenced by the SBQL
(Subieta et al. (1995); Burzańska and Wiśniewski (2007)), but also by MongoDBs query
language, and Python. Each database, collection, projection, and record is an object that
inherits its query methods from its generic class. Variables are not assigned a specific
type, instead, the type is associated with the data they hold. To distinguish between
database objects and user variables ChQL uses SBQLs naming-scoping-binding princi-
ple. ChQL offers a limited amount of basic data types and relies mostly on working with
objects and their methods. Generic classes offer constructors for new databases and col-
lections. ChQL also offers specific methods for creating and handling new records in a
given collection.

5 Conclusions and future work

This paper presented a dual querying approach implemented in a hybrid model Chame-
leonDB Database Management System. ChameleonDB may serve as a document stor-
age DBMS or a time series focused DBMS. The advantage of this model over popular
document databases lies in its capabilities when working with advanced time-related
operations and row pattern recognition aspects. On the other hand, the advantage of us-
ing ChameleonDB over popular time series DBMSs is the ability to use complex data
types as metrics and values.

In addition, two complementary query languages have been introduced. Their de-
sign is based on both the intended users profile and the similarity to well-established
solutions associated with data mining - SQL and Python. In this approach, some of the
more difficult functionalities have been separated and the design of the SQL dialect has
been adjusted to fit the intended user profile. At the same, a novel python-like query
language supporting the more advanced functionalities has been designed. Among the
novel aspects of both the ChQL and the SQL dialect are the support for Row Pattern
Recognition functionalities and business funnel construction.

As future work, we plan to design an automated translation tool that would trans-
late SQL queries into ChQL. We also plan to benchmark our concepts against DBMSs
like MongoDB and Timescale. Furthermore, there is ongoing development work on
the incorporation of elements such as advanced compression and extended indexing in
ChameleonDB.

Data Model for Rich Time Series 131

References

Borkar, D., Mayuram, R., Sangudi, G., Carey, M. (2016). Have your data and query it too: From
key-value caching to big data management, Proceedings of the 2016 International Confer-
ence on Management of Data, pp. 239–251.

Burzańska, M., Wiśniewski, P. (2007). L-value and r-value concept-proposition to solve ref &
deref chaos in sbql languages family, Pol. J. Environ. Stud 18(3B), 143–151.

Haq, H. B. U., Kayani, H. U. R., Toor, S. K., Zafar, S., Khalid, I. (2020). The popular tools of
data sciences: Benefits, challenges and applications, IJCSNS 20(5), 65.

Mazak, A., Wolny, S., Gómez, A., Cabot, J., Wimmer, M., Kappel, G. (2020). Temporal models
on time series databases, target 1, 1.

Michels, J., Hare, K., Kulkarni, K., Zuzarte, C., Liu, Z. H., Hammerschmidt, B., Zemke, F.
(2018). The new and improved sql: 2016 standard, ACM SIGMOD Record 47(2), 51–60.

Ramesh, D., Sinha, A., Singh, S. (2016). Data modelling for discrete time series data using cas-
sandra and mongodb, 2016 3rd international conference on recent advances in information
technology (RAIT), IEEE, pp. 598–601.

Rith, J., Lehmayr, P. S., Meyer-Wegener, K. (2014). Speaking in tongues: Sql access to nosql
systems, Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 855–
857.

Sharma, C. (2020). Flux: From sql to gql query translation tool, 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), IEEE, pp. 1379–1381.

Subieta, K., Beeri, C., Matthes, F., Schmidt, J. W. (1995). A stack-based approach to query
languages, East/West Database Workshop, Springer, pp. 159–180.

Received July 26, 2021 , revised March 12, 2022, accepted April 12, 2022

