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Abstract. The quantum and electronic noise generated by the physical principles of X-ray 

Computed Tomography (CT) degrade the quality of the projection data obtained. These 

components, as well as the possible anatomical noise, are propagated as pixel noise in the obtained 

CT images by means of reconstruction algorithms. The different characteristics of the medium 

through which the X-rays pass determine the direction and the non-stationary nature of the noise in 

the CT slices. This determines our choice of an adaptive statistical noise reduction algorithm based 

on the wavelet-threshold method and the correlation between two quasi-identical images. The 

hyperbolic wavelet transform (HWT) is used in the present paper, because the Hilbert transform 

(HT) does not change the variance of a random variable. The conducted experiments show that the 

proposed method gives results comparable or superior to the corresponding ones obtained by 

similar methods. 

Keywords: Entropy of Shannon, Hyperbolic Wavelet Transform, Statistical Noise Reduction, X-

ray Computed Tomography. 

1. Introduction 

During X-ray computed tomography, tissues and structures inside the body are scanned, 

and their visualization is based on their ability to absorb X-ray photons. The raw data 

(sinogram) obtained by the detectors when projecting a particular part of the body at 

different angles sets the image of the scanned object during the Radon transformation. 

The CT slice is obtained by the inverse Radon transformation applied to the sinogram. 

The noise in the CT image is divided mainly into quantum and electronic. The first 

one is due to the photons measured by detectors, and the second - to the equipment used. 

Through projection data reconstruction algorithms, it is transformed into pixel noise in 

the CT slice. Since the decrease in the intensity of the penetrating X-rays depends on the 

amount of the substance and its density, the noise in the CT image is non-stationary and 

directed, characterizing the direction of the strongest attenuation. 

The CT scan protocol implies a certain compromise between the noise level and the 

radiation dose. Lower radiation doses decrease the signal-to-noise ratio and the 
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information content of the image, which reduces its diagnostic value. Conversely, the 

noise level decreases when increasing the radiation dose, but this leads to risks to the 

patient's health. 

Therefore, the development of more sophisticated detectors and new methods for 

image processing are topical tasks (Gruber et al., 2011; Liu et al., 2011). The quality of 

such algorithms requires a reduction in the noise level in the resulting slices, as well as 

improved resolution characteristics without increasing the radiation dose. Various noise 

suppression techniques have been proposed in the CT scanned images. In terms of 

implementation, they can be defined as follows: methods in the sinogram space, methods 

in the field of the reconstructed images, and iterative-reconstructive algorithms (Ehman 

et al., 2014). The present paper will not discuss the conditions for their applications or 

their advantages and disadvantages. Detailed information on some methods of noise 

reduction in CT images is presented in (Kaur et al., 2018; Diwakar and Kumar, 2018). 

In the field of multiscale transformations, the most commonly used techniques for 

reducing noise in images are the wavelet shrinkage methods. The evaluated image is 

obtained by the inverse conversion of the wavelet coefficients obtained after the 

corresponding threshold processing. There are various ways to determine the threshold 

values: Visu Shrink; Sure Shrink; Bayes Shrink, etc. (Donoho and Johnstone, 1994). 

Noise reduction algorithms using certain statistical distribution models may not lead 

to the desired results due to inaccurate representation of the actual noise characteristics 

in the CT image. Using the images reconstructed from the even and odd data in the 

sinogram, the paper presents a locally adaptive algorithm for noise reduction in CT slices 

by means of threshold processing in the field of HWT. The next section is devoted to the 

motivation and theoretical foundations of the method, and the multiscale HWT is 

described in Section 2.3. Section 3 contains a detailed description of the method in 

question, and Section 4 presents the results of the conducted experimental studies and 

the corresponding comparative evaluations. In the concluding part, there are some notes 

on the method, the results obtained and the corresponding conclusions.  

2. Motivation and Theoretical Foundations 

2.1. Motivation and Reasoning 

In (Tischenko et al., 2005b), the authors investigate the effect of the patient’s inevitable 

movements during exposure on the X-ray image in different radiographs. Significant 

changes of small indistinguishable anatomical structures are observed resulting in the so-

called anatomical noise. Comparing two X-ray images of the same anatomy obtained 

with small changes in the geometry of the image, they propose a method for reducing the 

anatomical noise. The algorithm is implemented in the wavelet domain, taking into 

account the correlation between the corresponding characteristics of the two images. 

When there are no geometric changes, the reduction refers to the quantum and electronic 

noise. 

Using the fact that, unlike structural information, the noise in two quasi-identical 

projection X-ray images of the same object is almost uncorrelated in time, the authors 

suggest a noise reduction method (Tischenko et al., 2005a). This wavelet shrinkage 

method makes use of an appropriate similarity criterion for both images in order to 

obtain the corresponding weighting matrices. Thus, the weighting wavelet coefficients 
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are set, and, by means of inverse transform, the evaluated image is obtained based on 

them. 

2.2. The Wavelet Shrinkage Denoising Method 

The Adaptive Wavelet Shrinkage (AWShrink) method for noise reduction in CT images 

announced in (Borsdorf et al., 2008) has been considered in connection with the method 

proposed in this paper. It is adjusted to the noise by statistically evaluating its locally and 

orientationally dependent strength. 

The proposed method for noise reduction in CT slices uses the results of (Tischenko 

et al., 2005a, b)  and can be combined with various methods for projection data 

reconstruction. It is based on the assumption that the sinogram consists of structural 

information and time-uncorrelated noise. The required pair of quasi-identical images can 

be obtained in different ways: reconstructing two disjoint sinogram subsets; Dual source 

CT scanners; two consecutive scans without geometric changes in the object. 

The main steps of the AWShrink method are: obtaining the pair of structurally 

identical input CT slices; wavelet-decomposition of input images; noise assessment by 

their high-frequency coefficients; averaging and threshold processing; obtaining the 

noise-estimated image by inverse wavelet transform. 

2.3. The Hyperbolic Wavelet Transform 

In (Klih et al., 2004), an approach is proposed for constructing a multiscale 

transformation with a hyperbolic wavelet based on the theory of generalized functions 

(distributions). The wavelet transform uses the hyperbole family  
1
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3. The Proposed Denoising Method 

The proposed technique for noise reduction in CT images contains three main stages: 

obtaining the pair of input images; statistical assessment of the noise and determining the 

adaptive threshold constant; obtaining the denoised image. The sequence of the 

individual steps of the proposed noise reduction algorithm is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Fig. 1. Methodology of the proposed noise reduction method. 

3.1. Obtaining the Input Images 

There are various possibilities for obtaining a pair of quasi-identical input CT images. 

This can be done with a single-source CT scanner or a dual-source scanner. With a 

single-source CT scanner, it is necessary to scan the object twice in succession, under 

identical conditions. In order to avoid exposing the patient to radiation twice, these 

images can be obtained in a single scan, by two separate reconstructions of two non-

intersecting subsets of the complete set of projection data. In addition, the averaged 

image of the two reconstructions corresponds to the image reconstructed from the full set 

of projections (Natterer, 1986). An example of such subsets are respectively the sets of 

odd and even projections obtained at a single scan. 

3.2. Determining the Adaptive Threshold Constant 

Let 
1I  and 

2I  be the input images obtained by a separate reconstruction of the even and 

odd numbered projections, assuming that the total number of the projection data is an 

even number. The way of dividing the projection data provides the relation between the 

respective standard deviations of the noise in m -th
 pixel:    1 2m mI I  . 

Furthermore, the noise level in each of the images is increased by a factor of 2  

compared to the noise level in the reconstructed slice of the full set of projections 

(Natterer, 1986). It follows from the above that the standard deviation of the noise in the 

input images, and therefore in their averaged image 1 2
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 , where the parameter r  regulates the 

amount of suppressed noise. The optimal value 
0

r  of this parameter, at the scale s , is 

determined on the basis of the relative change in the entropy of Shannon (see Petrov, 

2021, Sect. 3.3). 

3.3. Obtaining the Noise-Estimated Image 

There are different rules for threshold processing of the wavelet coefficients in shrinkage 

methods, with noise reduction in the obtained data. The most popular ones are the 

nonlinear functions of the “hard” and “soft” thresholds introduced by Donoho and 

Johnstone (1994). 

The main idea of the method is to preserve the wavelet coefficients, which carry the 

structural information of the image, and to zero the insignificant coefficients. Due to the 

discontinuity of the function, small changes in the processed data become a problem for 

hard threshold processing. The proposed algorithm employs the continuous function of 

the soft threshold. The estimated wavelet coefficients of image I  are 

         0

, , , , 0sgn max ,0 ,s m s m s m s mw I w I w I r    by means of which the estimated 

original CT image is obtained through Inverse HWT (IHWT). 

4. Experimental Results and Comparative Analysis 

Two types of measures are used to evaluate the quality of the denoised CT images. They 

are based on: 

 Pixel Difference Measurement – Mean Absolute Error (MAE) and Peak Signal-

to-Noise Ratio (PSNR); 

 Human Visual Measurement – Structural Similarity Index (SSIM) and 

Universal Image Quality Index (UIQI). 
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The algorithms for calculating the listed measures are implemented in Matlab. Two 

experiments are conducted in order to evaluate the effectiveness of the proposed method 

for reducing noise in CT images.  

In Section 2, it was noted that the proposed method for estimating and reducing noise 

in CT slices was generated by the research published in (Borsdorf et al., 2008; Tischenko 

et al., 2005a,b). The main objectives of the planned experimental studies and the 

corresponding comparative analysis are determined based on this basis. The first goal is 

to evaluate the performance of some multiscale transformations in the adaptive wavelet-

shrinking methods for reducing pixel noise using a pair of non-intersecting subsets of 

synogram data. Then, the different approaches for determining the local threshold 

constants as a function of the noise characteristics are compared. 

4.1. Test CT Image 

A medical 16-bit monochrome CT-MONO2-16-ankle.dcm with   resolution 512 512  is 

used as a test image in Matlab workspace, to which Gaussian noise has been added. Each 

of the images obtained is subjected to the Radon transform in order to obtain and 

separate the projection data, numbered by odd and even numbers respectively. At the 

next stage, the corresponding reconstructed CT slices are decomposed by HWT, at a pre-

selected level of decomposition. 

Table 1. MAE, PSNR and SSIM for the CT-MONO2-16-ankle.dcm image, at the respective noise 

levels 

σ 

[%] 

AWShrink 
RWT-based 

method  

Shearlet-based  

method  

Proposed   

method 

MAE 
PSNR 

[dB] 
SSIM MAE 

PSNR 

[dB] 
SSIM MAE 

PSNR 

[dB] 
SSIM MAE 

PSNR 

[dB] 
SSIM 

10 1.57 30.43 0.70 0.78 39.56 0.83 0.24 37.89 0.95 0.21 40.34 0.96 

20 1.7 27.86 0.48 1.33 33.49 0.66 0.32 27.83 0.94 0.27 38.25 0.95 

30 1.78 26.44 0.32 1.67 28.89 0.54 0.49 33.68 0.91 0.36 35.43 0.93 

Table 1 provides the corresponding values for three of the four of those quality 

measures obtained when using the four methods: AWShrink; RWT-based method  

(Petrov, 2019); Shearlet-based method (Petrov, 2021) and the Proposed method. The 

comparative analysis, which has been conducted, shows that the proposed method  

 

 

 

 

 

 

Fig. 2. Test images: (a) original image; (b) noisy image, 10  ; (c) noisy image, 20.   

 

(a) (b) (c) 
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Fig. 3. Denoised results of CT-MONO2-16-ankle.dcm (noise level 10  ) obtained by the four 

wavelet-shrinkage methods: (a) Denoised image and the corresponding residual information, 

obtained through AWShrink; (b) Denoised image and the corresponding residual information, 

obtained through RWT-based method; (c) Denoised image and the corresponding residual 

information, obtained through shearlet-based method; (d) Denoised image and the corresponding 

residual information, obtained through the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Denoised results of CT-MONO2-16-ankle.dcm (noise level 20  ) obtained by the four 

wavelet-shrinkage methods: (a) Denoised image and the corresponding residual information, 

obtained through AWShrink; (b) Denoised image and the corresponding residual information, 

obtained through RWT-based method; (c) Denoised image and the corresponding residual 

information, obtained through shearlet-based method; (d) Denoised image and the corresponding 

residual information, obtained through the proposed method. 

achieves higher values for the PSNR and SSIM, as well as lower values for the MAE, in 

comparison with the other methods considered for all noise levels. 

(a) (b) (d) (c) 

(a) (b) (d) (c) 
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Figure 2 shows the original image and the images to which Gaussian noise has been 

added with a standard deviation of 10   and 20   respectively. 

Figures 3 and 4 show the results obtained when using some multiscale tranforms 

noise reduction methods, whose standard deviation is 10   and 20   respectively. 

4.2. Real CT Image 

The purpose of the next experiment is to evaluate visually the effectiveness of the 

proposed method, as well as to confirm it by means of the quantitative measure UIQI. 

The comparative analysis is again conducted by means of the multiscale methods in 4.1, 

using real CT image of a pancreas as shown in Figure 5. This image was obtained from 

publicly available medical databases (see WEB) and are in the DICOM format. 

 

 

 

 

 

 

 

 

Fig. 5. Real CT image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Denoised image  0.632UIQI   and the corresponding residual information, obtained 

through AWShrink; (b) Denoised image and the corresponding residual information, obtained 

through RWT-based method  0.918UIQI  ; (c) Denoised image and the corresponding residual 

information, obtained through shearlet-based method  0.948UIQI  ; (d) Denoised image and the 

corresponding residual information, obtained through the proposed method  0.973UIQI  . 

 

(a) (b) (c) (d) 
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Figure 6 presents the denoised CT image and the corresponding images containing 

the residual information, which has been removed from the image when applying the 

methods in question. In addition, the corresponding values obtained for UIQI are 

presented. 

5. Concluding Remarks 

Phantom and real CT images are used to assess the qualities of the proposed method. 

The algorithm used allows to suppress the noise while preserving the structural 

information and it does not increase the patient’s radiation exposure. The proposed 

methodology is based on the lack of time correlation between the noise components of 

the pair of quasi-identical CT images obtained from the projection data from a single 

scan. The HWT filed is chosen to estimate the noise components, because the HT does 

not change the variance of a random variable. The threshold constant in the proposed 

wavelet-shrinkage method is determined based on the analysis of Shannon's entropy. 

The denoised image is obtained by IHWT applied to the averaged and WT-processed 

coefficients. The conducted tests show that the proposed method achieves higher values 

of PSNR, SSIM and UIQI, as well as lower MAE values than those resulting from the 

methods under consideration. 
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