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Abstract. This study describes a system with one-way trips and relocations of e-vehicles be-

tween sectors by service personnel according to a dynamically compiled list of service trips. 

The model includes an algorithm that uses model parameter values to optionalize expected 

income, depending on the dynamically selected e-vehicle transfer. The implementation of the 

MIP (Mixed-Integer Programming) type algorithm proposed in the study pays particular atten-

tion to its performance, as optimization should be performed dynamically with a few hours' 

interval. The developed optimization algorithm has been validated for its practical application in 

Riga, Latvia. 
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1. Introduction 
 

Today vehicle rentals are widespread throughout the world. Vehicle rental approaches 

tend to be classified in two large groups (Illgen et al., 2019): (1) traditional rental—

when customers receive and transfer vehicles after use at specially arranged points of 

leasing firms and rental will take one or more days—and (2) vehicle sharing—when 

vehicles can be taken for use anywhere, even for a very short period of time, and may 

be left anywhere at the end of the trip. Vehicle sharing has quickly gained popularity. 

The growth rate of the service has particularly increased during the COVID-19 pan-

demic, as it allows urban populations to avoid the need to travel to their destination 

via public transport. 

Vehicle sharing solutions are available for both segments – (1) cars, and (2) scoot-

ers/ bicycles. This study exclusively focuses on car sharing since the service models 

between the two segments differ substantially. 

The main challenge facing e-vehicle sharing rental systems is to achieve the opti-

mal (the most profitable) deployment of vehicles in a city. This requires relocating e-
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vehicles quickly to the most profitable sectors of the city which in turn causes addi-

tional costs. For example, the studies of (Vasconcelos et al., 2017) show that technical 

relocation of vehicles take approximately 14% of the total distance carried out by the 

vehicles. Optimization algorithms are used to address this problem, which gives users 

or system holders recommendations on the need to relocate vehicles to achieve a 

“more cost-effective” deployment and, hence, higher returns. 

According to (Boyaci et al., 2015) vehicle sharing systems benefit both users and 

the society in general. The two main benefits for individual users include reduced 

personal transport costs and improved mobility. Research has shown that car sharing 

reduces the average number of kilometres travelled by a vehicle and is likely to re-

duce traffic congestions (Crane et al., 2012) and CO2 emissions (Shaheen et al., 

2013). Ensuring mobility at affordable prices for economically vulnerable groups is 

another societal benefit of such public transport systems highlighted by the authors.  

Compared to traditional vehicle rental systems the development and operation of e-

vehicle (automotive) sharing systems face additional technological and practical chal-

lenges. For example, the relatively limited autonomy of the currently available elec-

tric cars requires the recharging of vehicles multiple times in the case of longer trips. 

This can only be carried out at specific charging stations. Furthermore, e-vehicle 

charging time is significantly longer than the refuelling of motor vehicles powered by 

internal combustion engines. Accrued statistics show that an electric vehicle used 

within the city area must be charged on average every three days. Because of high 

costs, the number of charging stations is sparse, and the total charging time can be 

quite long. Charging time is shorter at fast-charging stations. However, due to higher 

costs, fast-charging stations are rare. Finally, electricity consumption is significantly 

affected by driving and environmental barriers (e.g., speed, air temperature), which 

need to be considered when assessing the actual daily charging level of the vehicle 

(Brandstätter et al., 2016). 

This study offers an e-vehicle sharing model that considers the dynamics of relocat-

ing vehicles between different sectors in a city. The proposed model is designed to 

fully meet the requirements of real systems and differs from all known solutions.  

The paper is structured as follows: a theorethical background on vehicle sharing 

models (Section 2), an original vehicle sharing model proposed by the authors (Sec-

tion 3), a short discussion on the research findings (Section 4), and conclusions (Sec-

tion 5). 

2. Theoretical Background 
 

This chapter deals with the results of other studies. The ideas described in (Gambella 

et al., 2018) served as a landmark for the solution developed by the authors.  

2.1. Review of Sharing Models  
 

Although scientific literature on e-vehicle sharing is broad, the authors of other works 

as well as the authors of this study conclude that the scientific literature currently 
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available does not offer a model that, along with parameters such as the number, size 

and location of charging stations, the size of the car fleet, would also take into account 

the dynamics of vehicle relocations and system balancing when the reserving of e-

vehicles is used. The existing models (de Almeida Correia et al., 2012; Lin et al., 

2011) either overview station locations without considering vehicle relocations (Lin et 

al., 2011), or overview station locations, assuming only a limited subset of stations 

corresponding to the current demand should be serviced (de Almeida Correia et al., 

2012). If vehicle relocations are modeled (de Almeida Correia et al., 2012), vehicle 

movements and associated costs are only considered at the end of the operating period 

(usually daily) and, therefore, affect the size of the available fleet (Boyaci et al., 

2015). 

According to (Brandstätter et al., 2016) which studies an example of a city in 

Southern California, even 3-6 vehicles can be sufficient to provide 100 trips daily and 

achieve optimal customer waiting times. Meanwhile, about 18–24 vehicles would be 

enough to reduce the required number of vehicle relocations. The authors conclude 

that, in addition to the number of vehicles (per trip), the relocation algorithm and the 

charging approach used are key factors for the successful use of such a system. 

(Boyaci et al., 2015) highlights the importance of the service level, which, in his 

view, influences the access of potential users to vehicle stations, i.e. (1) the distance 

between the location of the vehicle and the destination resp., from the point of start 

and arrival of the car, and (2) the availability of vehicles at stations. On the other 

hand, the number and size of the stations and the size and availability of the vehicle 

park at “real time” at the “particular station” are affected by the costs of establishing 

and operating the car sharing system. 

According to the classification of (Illgen et al., 2019) the e-vehicle sharing system 

analyzed in this paper is:  

(1) commercial solution as the aim is to generate maximum income, 

(2) station-based - vehicles are deployed in any available parking place and we 

can assume that the city is divided into areas (so-called stations,  

(3) one-directional as the customer is allowed not return the vehicle to the start 

point of the trip, 

(4) with relocations as the service staff moves e-vehicles to potentially more fa-

vourable places in the city,  

(5) without pre-booked trips as an e-vehicle may be rented by the customer any-

where, at any time without prior e-vehicle reservation.  

Increased profits for commercial sharing transport systems can be achieved by in-

creasing the relocation efficiency as well as supplying vehicles to the places in a city 

where customers will need them with the highest probability. 

2.2. Approbation of Algorithms  
 

An optimization algorithm that was matching to the task of this study is given in 

(Gambella et al., 2018). This is the Mixed-Integer Programming (MIP) model, which 

maximises profits on the assumption that next day trips, the availability of fixed sta-

tions and availability of relocation staff are known.  
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(Gambella et al., 2018) indicates that the algorithm has been tested for a relatively 

small number of scheduled trips and vehicles: 14 stations, 20 e-vehicles, 2 relocators, 

120 trips booked on the previous day. The optimal timing, according to data provided 

by the algorithm's authors, has been calculated in approximately 20 minutes. 

The model described in (Gambella et al., 2018) has a deficiency that prevents it 

from being introduced for the purpose of this study: It is designed on the assumption 

that future trips are known, eg, customers order the vehicles indicating starting and 

ending stations and the duration of the trip. Originally, the authors examined the pos-

sibility of predicting customer trips based on the data history of many previous trips.  

However, the experiments failed to obtain a sufficiently reliable forecast for future 

trips, so this idea was rejected. On the other hand, if the trips forecast is not sufficient-

ly precise, the model defined by (Gambella et al., 2018) does not provide a credible 

relocation plan, i.e., the vehicles will possibly be moved to places where customers 

will not need them. Although a reliable forecast of all daily trips was not obtained, it 

was found that up to 20% of trips could be predicted up to one hour and station accu-

racy. This benefit is further used in the author 's solution and is described more pre-

cisely in the next chapter. 

Consequently, the (Gambella et al., 2018) algorithm is not used directly in the 

study, but the authors have developed an original algorithm as a part of an optimiza-

tion model. 

3. Vehicle Deployment Model 
 

This chapter provides a brief description of the model that will be precisely defined 

for shared e-vehicles in the next chapter. 

3.1. Station-based Algorithm 
 

According to (Gambella et al., 2018), the continuous division of the transport sharing 

service area into the sectors (other studies referred to as stations) does not significant-

ly affect optimization. However, division of territory into sectors must be carried out 

under several conditions. First, the sectors need to be relatively small to place a ver-

hicle in the area for the client to reach within “reasonable” times (the accumulated 

real data set shows that customers are ready to spend up to five minutes for reaching a 

vehicle). Secondly, the driving time between two adjacent sectors must be compara-

ble. Thirdly, within one sector, customers' behaviour must be comparable, i.e., cus-

tomers make trips from the respective sector uniformly frequently.  

Riga city is characterized by the following parameters: 614,618 inhabitants in 

2021, an area of 307 km2, it is divided into two parts by the river Daugava with 4 

bridges for transport, which has an impact on transport flows. The division into sec-

tors was created by analyzing the historical data on the use of e-vehicle shared in the 

city of Riga. A cluster analysis was performed and areas with similar e-vehicle usage 

rates created sectors. As mentioned above, the experience of other cities shows that 

the division into sectors based on population, area, etc. indicators not successful. Alt-
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hough the division of a city into sectors may have a significant impact on revenue in a 

particular city, the aim of this study is to analyze the methodology of the e-vehicle 

service, leaving the analysis of the division of the city into sectors to another study.  

In analysing the history of trips and knowing the specific characteristics of the ar-

ea, Riga was divided into sectors as can be seen in Figure 1.  

 

 
Figure 1. Division of Riga, Latvia in sectors 

(using OpenStreetMap: www.openstreetmap.org/copyright) 

3.2. Forecasting User Trips 
 

While sharing car users in Riga do not make all requests a day in advance, certain 

user trips can be scheduled with high possability, using historical trip data. Using 

cluster analysis, you can find “routine arcs” — trips that consistently start and end the 

day from day to day in the same sectors, at the same times. The arcs found in this way 

can be added to the model as 𝐴c (see Chapter 3.4.1). 

3.2.1. Cluster Analysis 

The routine arc cluster anaylsis can be performed using the DBSCAN (Ester et al., 

1996) algorithm available from the Scikit-learn library (Pedregosa. et al., 2011). 

The cluster analysis was executed over seven dimensions with varying weights, 𝑤, 

associated with each dimension (i.e., the higher the weight, the more sensitive 

DBSCAN is to changes in value difference in that dimension): 

 latitude of the start location, 𝑤 = 0.4 km−1; 

 longitude of the start location, 𝑤 = 0.4 km−1; 
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 latitude of the end location, 𝑤 = 2.0 km−1; 

 longitude of the end location, 𝑤 = 2.0 km−1; 

 duration of the arc, 𝑤 = 30 min−1; 

 time of day when the e-vehicle was reserved, 𝑤 = 60 min−1; 

 customer ID, 𝑤 = ∞ (i.e., all arcs within a cluster must be created by the 

same customer). 

The values for weights were determined empirically with the target to categorize 

all similar arcs withing the same cluster, yet to avoid merging multiple clusters to-

gether. The difference in weights for the start and end locations can be justified as, 

although a customer cannot precisely choose the starting location (the closest e-

vehicle to the customer at the time of reservation can be located over range of possi-

ble locations), the end location is purely chosen by the customer. Therefore, the end 

location tends to be more consistant than the starting location. 

The “Manhattan” distance metric was used when performing the cluster analysis. 

The DBSCAN parameters, 𝜀 (neighbourhood size) and minPts (minium required 

number of points within a neighbourhood), were determined empirically to be: 

 𝜀 = 1.4, 

 minPts = 0.0833 ⋅ 𝑁, where 𝑁 is the number of days in the interval over 

which the sample of historic data was provided. 

An example cluster of routine arcs found using the parameters above and historic 

data spanning two months can be seen in Figure 2 below. This example shows that the 

end locations of the arcs tend to be more consistent than the start locations. 

 

 
 

Figure 2. An example cluster of routine arcs. Each line indicates one arc and connects 

its start (depicted by a circle) and end locations. 

 

When considering the generated clusters, a crucial parameter to take into consider-

ation is the day of week. For example, within some clusters, the arcs were observed to 
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occur every day of the week, whereas other clusters contained arcs that only took 

place within some particular set of days of the week. 

3.2.2. Effectivity of the Cluster Analysis 

For example, Figure 3 depicts the percentage of predictable routine arcs over the 

total number of expected arcs for each hour. This data suggests that within the time 

interval of 6am to 7am, close to 70% of the expected number of arcs for this time 

interval can be predicted using the cluster analysis. However, during midday (10am–

4pm) only around 10% arcs are routine (i.e., can be predicted using cluster analysis). 

 
Figure 3. Percentage of predictable routine arcs (with confidence interval of 0.50) 

over the total predicted number of arcs within an hour interval. This data is for Tuesday. 

 

This data suggests, that although routine arcs can be predicted reasonably well us-

ing cluster analysis, during most of the day routine arcs compose only percentage of 

the total number of arcs. Therefore, other metrics should be used in tandem with pre-

dicted routine arcs when planning relocation operations. 

3.3. Estimation of Sectors’ Income  
 

The purpose of relocation is to place cars in areas where they are in demand and prof-

its are expected accordingly. In sharing car systems with booking in advance, a full 

estimate of demand and expected profit is known prior to the planning of relocation 

operations. But in our case, requests are made in real time, without prior bookings of 

vehicles. Therefore, to take tactical decisions on relocation operations, it is necessary 

to be able to carry out an alternative assessment to which stations to move the vehi-

cles. 
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One potential solution that this study looks at is the modelling of expected income 

using historical data. The model of expected incomes describes the average expected 

benefits over a specific time period from a vehicle parked in a particular sector that 

can be rented by users. The expected income most probably will vary from station to 

station, as well as it will change over a day:  In “peak hours” the expected income will 

be higher, in “quiet hours” less. 

Modelling the expected incomes may not only provide tactical support in the plan-

ning of resettlement operations, but also give general impression on the behaviour of 

sharing car users. Comparing the expected income at different times, different week-

days and different stations, it will be possible to draw conclusions that can also help 

you to make strategic, long-term decisions, such as handling different sectors or de-

ploying charging stations. 

Expected income can be described by a function 𝑝(𝑡) which changes depending on 

the time of the clock 𝑡 (here and on, the clock time is measured in hours from 00:00). 

The expected income Y(t1, t2) for a vehicle that is located in a specific sector between 

time 𝑡1 and 𝑡2 can by calculated by an integral: 

                                                    𝑌(𝑡1, 𝑡2) = ∫ 𝑝(𝑡)
𝑡2

𝑡1

d𝑡                                                        (1)  

3.3.1. Estimation of Expected Income Using Historical Data  

From the history of car rentals in different sectors, you can do an assessment of ex-

pected income in each sector for the next day. 𝐻𝑡  denotes a set ℎ ∈ 𝐻𝑡 of all cars lo-

cated in a specific sector at the time 𝑡. 𝑣(ℎ, 𝑡, Δ𝑡) denotes the total income from rent-

ing a car ℎ in the time interval between 𝑡 and 𝑡 + Δ𝑡 (if the car ℎ has not been rented 

during this period, then the income is 𝑣(ℎ, 𝑡, Δ𝑡) = 0). This data is taken from histori-

cal information about car rentals. The 𝑝(𝑡) can be estimated as follows: 

                                                     𝑝(𝑡) =
∑ 𝑣(ℎ, 𝑡, d𝑡)𝐻𝑡

|𝐻𝑡| ⋅ d𝑡
                                                (2) 

Since historical information on the rental of sharing cars is final, it is expected that 

there will be significant noise in the function 𝑝(𝑡) when d𝑡 is small. In order to reduce 

noise and to increase the robustness of the estimated income 𝑝(𝑡), the function 𝑝(𝑡) is 

handled with Gauss Filter 𝑊[𝑝](𝑡) (WEB, a) - Weierstrass transform. Since Gauss 

Filter stores information on total income, it is therefore appropriate for that purpose:  

                                                 ∫ 𝑝(𝑡) d𝑡 = ∫ 𝑊[𝑝](t) d𝑡
24

0

24

0

                                    (3)  

The estimated expected income from historical sharing car rental data from No-

vember 2020 to June 2021 will be considered here and in the future. The standard 

deviation parameter for the Gauss filter used in the calculation of the expected income 

for the 𝜎 one-hour unit is 𝜎 = 1.38. The expected income in the late-night and early-

morning hours close to zero is due to the fact that the rental of shared cars is closed 

between 1 AM and 5 AM. 
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Estimated forecasted incomes, for example, on Monday for four Riga city sectors 

are summarised in Figure 4. Data shows that there are significant differences between 

revenues for different sectors, as well as expected income changes by day. Moreover, 

some of the sectors can be very profitable only in specific time intervals and unprofi-

table in all others. For example, in the morning it is more convenient to move a car to 

sector D than to sector C, but after 1 PM a car in Sector C will be more profitable than 

a car parked in Sector D. These findings empirically indicate that it is essential to 

analyze how the expected daily income changes. 

  

 
 

Figure 4. Expected income for the sectors on Monday 

3.3.2 Weekly variations 

There is a difference in estimated income for a particular sector between weekdays. 

From simple assumptions about the behaviour of sharing car users, it can be expected 

that demand for sharing cars, so expected income, could vary significantly between 

business days and holidays. 

Indeed, such a phenomenon can be observed in estimated expected income for the 

sector A, as shown in Figure 5. Although there is a variation in expected income be-

tween business days, there is a very significant difference in expected income on hol-

iday. 

In other sectors, however, there is a more significant difference in expected income 

between other days of the week. For example, in the sector E (see Figure 6) incomes 

on Mondays and Sundays are slightly lower than in the rest of the week. 
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Figure 5. Expected income in “Sector A” in different days of week 

 

 
 

Figure 6. Expected income in “Sector E” in different days of week 

 

 

As there is a significant but hard-to-predict difference between weekdays, it is nec-

essary to calculate the expected earnings for each day of the week separately in the 

optimization algorithm. 
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3.3.3. Variation in Historical Data 

A related subject matter related to the modelling of forecasted income from historical 

data is how old historical data is effectively used. Since the number of sharing cars is 

final, it may be considered necessary to use a maximum history that could reduce 

“noise” in the data obtained. However, as a counter argument for the use of historical 

data, it can be mentioned that user demand for shared cars is not static but is changing 

in result of seasonal or other long-term processes.  

The following Figure 6 shows the estimated expected income from different peri-

ods of historical data (listed in the chart legend) in the sector B. These data show an 

increase in expected income when more recent data are used. This variation points to 

the need to find a balance between the amount of data used and the relevance of the 

historical data when calculating the expected income. It is also concluded that, in 

order to keep the calculation of the intended income used up to date, the expected 

income should be re-calculated on a regular basis. 

At present, however, there is not enough historical data available to assess whether 

the change observed is due to fluctuations in seasonal demand or for any other reason. 

 

 
 

Figure 7. Expected income in “Sector B” on Monday 

3.3.4. Limitations of the Proposed Method 

While the method of estimating the expected income provides a valuable numerical 

estimate of the cost of parking sharing cars in specific sectors, effective use of the 

method described must be aware of its shortcomings and limitations. For example, the 

method described may provide inaccurate results if too many vehicles are placed in a 
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particular sector, or the area of the sector is too small. Similarly, it is necessary to 

have a reliable history of bookings to estimate the expected income, and it may not be 

available when starting a sharing car operation in a new region.  

The following chapters describe the three main shortcomings and limits for esti-

mating of expected income. 

3.3.5. Linearity Assumption 

In the definition and calculation process described above, there is an assumption that 

the estimated income for a particular car parked in a sector does not depend on the 

total number of parked vehicles in that sector. At an extremely large number of cars 

parked in the same sector, you can see that this assumption is flawed; if the number of 

cars parked in the sector significantly exceeds the demand for shared cars in this sec-

tor, the average per car income will be very low.  

Information collected from historical data (see Figure 8) allows you to analyse the 

veracity of the statement described. The graph shows the average number of rented 

cars in the sector A over two hours, depending on the number of parked cars in this 

sector. 

 
 

Figure 8. Proportion of rented cars in “Sector F” 

 

The graph shows that the percentage of cars rented in this sector is almost constant 

at a small number of cars (55% of the cars located in the sector will be rented within 

two hours). Hence, the possibility of renting a particular car does not depend on the 

total number of cars in the sector at low number of available cars. And therefore, the 

expected per car income does not depend on the total number of parked cars in the 

sector.  
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However, the schedule shows that the possibility of renting a particular car over the 

next two hours is falling at a large number of cars. Accordingly, the estimated income 

for a large number of vehicles will not be up to date as average income per parked car 

will be lower.  

The breakpoint in the sector A, when the described revenue model is ineffective, is 

around 14 cars. However, such a number of cars is higher than the typical number of 

cars in the sector A, so the described model for calculating the expected income is 

acceptable approximation. Similar data analysis and finding a breakpoint can be used 

to find the flexible demand limit for each sector. 

3.3.6. Usage of Historical Data  

The described method for calculating of expected income is based on the existence 

of historical data. Unlike demographic-based models, the described model cannot be 

used when starting a sharing car rental system in a new city, or by expanding opera-

tions into new sectors. 

Reliance on historical data prevents a model from repid responding to changes in 

demand for shared cars, or to price policies. The described expected income estima-

tion algorithm will work most accurately if variations in the shared car system are 

minimal. 

3.3.7. Inaccuracies in Small Sectors 

Small sectors may lack data to adequately calculate expected income due to data 

noise. This phenomenon limits the lower size of sectors, thereby affecting the con-

structing of sectors. 

3.4. Car-sharing Income Optimization by E-vehicle Relocation  
 

This chapter, unlike the description of the informally described substantive model in 

the previous chapter, will provide an exact e-vehicle sharing model, expressed in a set 

of appropriate parameters. This allows you to optimize service income when relocat-

ing e-vehicles. 

This work is primarily inspired by the Mixed-Integer Programming (MIP) model 

proposed by (Gambella et al., 2018) for optimizing relocation operations in electric 

car-sharing. However, there are two major issues when utilizing this model in our 

case study—carsharing platforms in Riga, Latvia: 

• Such model is built for a reservation-based system, where all the customer re-

quests are made in advance and the exact demand for vehicles is known prior 

to the relocation operations. Therefore, this model does not work for system 

where the reservations are requested real-time. 

• Solving the described model is rather time-consuming, and for sufficiently 

large operations (with a great number of service vehicles, discrete sectors, and 

relocators) the model is not solvable in any attainable time.  
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We propose a way to adapt the model, so that these two limiting factors are miti-

gated. The lack of prior reservations is solved by considering two other metrics in-

stead: routine arcs (see Section 3.2) and predicted profits (see Section 3.3). The sig-

nificant solution times for the model are addressed by not considering the path of each 

vehicle sepperately, but rather the collective paths of the swarm of similar e-vehicles 

instead. 

3.4.1. Model Parameters  

Let S be the set of all operating sectors, where each sector i ∈ S is characterized by 

the maximum number of electric vehicles (EVs) that can be stationed there - capacity 

Ci. Let H be the set of e-vehicles. Let B be the number of seats in each EV. Let Hx be 

a subset of H where all e-vehicles have initial battery charge above some pre-

determined level (e.g. 25 %), and let Hz be a subset of H where all EVs have initial 

battery charge under that level. Then Hx ∪ Hz = H. Let Hxi denote the subset of Hx 

where all EVs in Hxi are initially stationed at station i. Let Q be the set of relocators, 

and Qi be a subset of Q where all relocators in Qi are initially stationed at station i. 

Let T be the set of discretized time instants over which the model operates: T = {0, 1, 

. . . , Tmax}. Let A be the set of arcs over which vehicles and relocators can move in 

the time-space network S × T. Each arc is characterized by multiple parameters: 

 

                              𝑎 = {𝑖𝑎, 𝑖𝑎
′ , 𝑡𝑎, 𝑡𝑎

′ , 𝑝𝑎 , 𝑐𝑎, 𝑑𝑎}                                                                     (4) 
 
where: 

• starting station and ending station for arc a is denoted by ia and i’a respectively,  

• starting time and ending time for arc a is denoted by ta and t’a respectively,  

• monetary profit for arc a is denoted by pa, can be obtained from historical data,  

• battery charge increase is denoted by ca.  

• customer demand for arc a is denoted by da.  

The set of arcs A is divided into four subsets Aw ∪ At ∪ At ∪ Ac = A, 

where: 

• Aw - set of “waiting arcs” over which relocators and EVs travel forwards 

through time and stay at the same station. An arc a ∈ Aw is characterized by ia 

= i’a, t’a = ta + 1, da = 0, pa ≥ 0, ca ≥ 0. A separate waiting arc a ∈ Aw is gener-

ated for each combination of starting stations ia ∈ S and starting time instants 

ta ∈ T.  

• Ar - set of “relocation arcs” over which relocators and EVs travel together 

from one station to another. An arc a ∈ Ar is characterized by ia = i’a , t’a > ta, 

da = 0, pa = 0, ca = 0. A separate relocation arc a ∈ Ar is generated for each 

combination of starting stations ia ∈ S, end stations i’a ∈ S, and starting time 

instants ta ∈ T.  
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• At - set of “transfer arcs” over which relocators are transferred from one sta-

tion to another without the use of an EV. An arc a ∈ At is characterized by i’a= 

i’a, t’a > ta, da = 0, pa = 0, ca = 0. A separate transfer arc a ∈ At is generated for 

each combination of starting stations ia ∈ S, end stations I’a ∈ S, and starting 

time instants ta ∈ T. 

• Ac - set of “customer arcs” over which customers have requested to move (or 

have been predicted to move) with EVs. An arc a ∈ Ac is characterized by t’a 

> ta, da > 0, pa > 0, ca = 0.  

For shorthand in later sections, several other subsets of A are defined. Let Ax be 

the subset of A over which EVs h ∈ Hx with significant battery charge can move: Ax 

= Ac∪Aw∪Ar. Let Az be the subset of A over which EVs h ∈ Hz with low battery 

charge can move: Az = Aw ∪ Ar. Let Ay be the subset of A over which relocators q ∈ 

Q can move: Ay = At ∪ Aw ∪ Ar.   

3.4.2. Variables  

The following variables are influenced by the MIP model to try to maximize the ob-

jective. Let xa be the number of vehicles h ∈ Hx travelling over an arc a ∈ Ax.  

Let za be the number of vehicles h ∈ Hz travelling over an arc a ∈ Az. Let ya be the 

number of relocators q ∈ Q travelling over an arc a ∈ Ay. 

3.4.3. Objective  

The objective for the model should be to:  

• distribute EVs with significant battery charge h ∈ Hx to the most profitable 

sectors or sectors from which customer requests originate;   

• move EVs with low battery charge h ∈ Hz to the charging stations.  

Let α be the monetary value of a fully charged battery on an e-vehicle (this could 

be, for example, the expected profit from a fully charged e-vehicle over the course of 

its full discharge). Then the model objective is defined as follows:  

                            M = max [ ∑ 𝑥𝑎𝑝𝑎

𝑎∈𝐴𝑥

+ 𝛼 ⋅ ∑ 𝑧𝑎𝑐𝑎

𝑎∈𝐴𝑧

]                                                    (5)  

 

3.4.4. Constraints  

The MIP model is defined to maximize the objective (5), so that the following con-

straints (conditions) are met:  

Constraint (6) ensures that the customer demand associated with each arc is not ex-

ceeded. 
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                                 𝑥𝑎 ≤ 𝑑𝑎 , kur 𝑎 ∈ 𝐴c                                                                                (6) 

Constraint (7) imposes that the maximum number of vehicles that can be stationed 

at each sector is not exceeded.  

                         𝑥𝑎 + 𝑧𝑎 ≤ 𝐶𝑖𝑎
, kur 𝑎 ∈ 𝐴w                                                                            (7) 

Constraint (8) guarantees that the number of fully charged vehicles at the initial 

time moment at each station is respected. Constraints (9) and (10) imposes the same 

restriction for vehicles with almost depleted battery and relocators respectively.  

                      ∑ 𝑥𝑎 = 𝐻x𝑖 , kur 𝐴′ = {𝑎 ∈ 𝐴x | 𝑡𝑎 = 0, 𝑖𝑎 = 𝑖}, 𝑖 ∈ 𝑆

𝑎∈𝐴′

                          (8)  

                       ∑ 𝑧𝑎 = 𝐻z𝑖 , kur 𝐴′ = {𝑎 ∈ 𝐴z | 𝑡𝑎 = 0, 𝑖𝑎 = 𝑖}, 𝑖 ∈ 𝑆

𝑎∈𝐴′

                           (9) 

                       ∑ 𝑦𝑎 = 𝐻y𝑖 , kur 𝐴′ = {𝑎 ∈ 𝐴y | 𝑡𝑎 = 0, 𝑖𝑎 = 𝑖}, 𝑖 ∈ 𝑆

𝑎∈𝐴′

                         (10) 

 

Constraint (11) imposes vehicle flow conservation at timespace network nodes, 

whereas constraints (12) and (13) impose flow conservation for vehicles with low 

battery and relocators respectively.  

∑ 𝑥𝑎 =

𝑎∈𝐴+

∑ 𝑥𝑎

𝑎∈𝐴−

, kur 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇, 0 < 𝑡 < 𝑇max,
𝐴+ = {𝑎 ∈ 𝐴x | 𝑖𝑎

′ = 𝑖, 𝑡𝑎
′ = 𝑡}

𝐴− = {𝑎 ∈ 𝐴x | 𝑖𝑎 = 𝑖, 𝑡𝑎 = 𝑡}
 (11) 

∑ 𝑧𝑎 =

𝑎∈𝐴+

∑ 𝑧𝑎

𝑎∈𝐴−

, kur 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇, 0 < 𝑡 < 𝑇max,
𝐴+ = {𝑎 ∈ 𝐴z | 𝑖𝑎

′ = 𝑖, 𝑡𝑎
′ = 𝑡}

𝐴− = {𝑎 ∈ 𝐴z | 𝑖𝑎 = 𝑖, 𝑡𝑎 = 𝑡}
  (12) 

∑ 𝑦𝑎 =

𝑎∈𝐴+

∑ 𝑦𝑎

𝑎∈𝐴−

, kur 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇, 0 < 𝑡 < 𝑇max,
𝐴+ = {𝑎 ∈ 𝐴y | 𝑖𝑎

′ = 𝑖, 𝑡𝑎
′ = 𝑡}

𝐴− = {𝑎 ∈ 𝐴y | 𝑖𝑎 = 𝑖, 𝑡𝑎 = 𝑡}
  (13) 

 

Constraint (14) imposes that the total number of vehicles travelling along an arc 

does not exceed the number of relocators travelling along the same arc. Constraint 

(15) guarantees that at most B relocators can travel in a vehicle (either as passengers 

or a driver).  

 

                                  𝑥𝑎 + 𝑧𝑎 ≤ 𝑦𝑎 , kur 𝑎 ∈ 𝐴r                                                                    (14) 

                                  𝑦𝑎 ≤ 𝐵 ⋅ (𝑥𝑎 + 𝑧𝑎), kur 𝑎 ∈ 𝐴r                                                          (15) 

 

Constraints (16), (17), and (18) define the vehicle and relocator variables used by 

the model.  

                                  𝑥𝑎 ∈ {0, 1, … , |𝐻𝑥|}, kur 𝑎 ∈ 𝐴x                                                         (16) 
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                                  𝑧𝑎 ∈ {0, 1, … , |𝐻𝑧|}, kur 𝑎 ∈ 𝐴z                                                          (17) 

                                   𝑦𝑎 ∈ {0, 1, … , |𝐻𝑦|}, kur 𝑎 ∈ 𝐴y                                                       (18) 

3.3.5. Rationale  

The model proposed in (Illgen at al., 2019) operates on binary variables for each arc 

and vehicle pair, therefore its variable complexity is in the order of 2 
|H|·|A|

. As our 

proposed model does not have to keep track of precise battery charges for each vehi-

cle at every given time moment, we can treat all vehicles as homogenous (apart from 

dividing them into two subsets Hx and Hx). As a result, our proposed model has the 

variable complexity in the order of |𝐻||𝐴|, which is smaller than 2
|H|·|A|

 , and, therefore, 

hopefully it would be solver faster:  

|𝐻||𝐴| < 2|𝐻|⋅|𝐴|    ⇒     log2|𝐻| < |𝐻| 

 

As most arcs that customers would like to take are not requested or are not predict-

able prior to solving the model, we propose another way to measure the favorability 

of vehicle positions. Each waiting arc a ∈ Aw is assigned a positive arc profit pa which 

equates the expected profit for a vehicle located at the sector ia at the time ta. More on 

calculating the expected profit for each waiting arc see in next section.  

3.5. Model evaluation  
 

The model proposed in (Illgen at al., 2019) and our model were evaluated on a set of 

sample input system parameters. In this comparison, the input data was constructed 

so, that the battery charges for the e-vehicles would be ignored in both models (the 

solution time for model proposed in (Illgen at al., 2019) without ignoring battery 

charges is few orders of magnitude greater than when ignoring the battery charges). 

Also, in input data At = ∅. Models were solved for a maximum of 0,5 minutes on a 

1.4 GHz, 8 GB machine using SCIP solver wrapper provided by Google OR-Tools 

(Vasconselos et al., 2017). The time τ for finding the best solution 3 in the given time 

moment was recorded together with the optimizer value. The results are summarized 

in the Table I. If the best-found solution was deemed as feasible, but not optimal, then 

a dagger (†) is displayed next to the solution time.  

 

 

 

 

 

 

 

 

 

 



202   Optimization of Relocation Processes for Shared E-vehicles  

 

Table 1. (Gambella et al., 2018) algorithms comparison  

 

SYSTEM’S PARAMETERS THE NEW MODEL THE ORIGINAL MODEL 

|𝑆| |𝐻| |𝑄| |𝑇| |𝐴C| 𝜏, S 𝑣, EUR 𝜏, S 𝑣, EUR 

5 10 2 8 10 0.0 8.76 0.1 8.76 

10 10 3 12 30 0.1 26.28 2.2 26.28 

10 10 3 24 30 †85.5 23.65 NO SOLUTION  

15 10 3 12 30 †54.8 26.93 †2.0 –27.73 

10 20 3 12 80 †43.1 60.49 NO SOLUTION 

12 4 1 15 40 6.4 11.7 0.7 11.7 

15 5 1 16 50 12.9 20.14 1.5 20.14 

10 12 2 20 50 41.3 44.81 NO SOLUTION  

10 15 2 30 60 †75.9 42.63 NO SOLUTION  

18 20 3 10 80 †79.2 96.97 NO SOLUTION  

30 50 4 10 100 †3.2 171.51 NO SOLUTION  

30 60 5 12 120 †3.3 231.81 NO SOLUTION  

 

Both models were tested on the last two system parameters in Table I again, but 

with the time limit of 0.5 hours. Neither model found the optimal solution, and only 

our model found feasible solutions. After introducing battery constraints and “ex-

pected profit” from waiting arcs in our model, for realistically sized system parame-

ters (see last row in Table I) a feasible solution could be found in under 10 minutes. 

4. Research Findings 
 

The proposed solution uses e-vehicle sharing historical data — the intensity of trips 

across different sectors of the city, depending on season, day of week and clock time. 

This data can be obtained by recording the sharing events that the service provider 

information system can manage. The division of the city into the sectors is also car-

ried out using historical data, which in turn affects the permissible set of relocations 

and their costs. The model described is therefore applicable after the introduction of a 

sharing transport service and the accumulation of historical data. 

 It should be acknowledged that e-vehicle rental services can be organised in many 

ways. The company offering services in Riga, Latvia provides a dynamic optimization 

of e-vehicle relocation approach, which many cities do not offer. A more sophisticat-

ed service that would offer the use of one e-vehicle to many customers, such as joint 

trips, is not present in any city. Obviously, the service capabilities determine the com-

plexity of the model and its effectiveness. The rapid development of IoT capabilities 

will offer ever-new service capabilities that will require ever-new solutions. This calls 

into question the possibility of a single, universal solution. 
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5. Conclusions 
 

The study offers a model for the use of sharing vehicles, described as a commercial 

system with one-way trips and the dynamic relocations of e-vehicles between city 

sectors, without pre-booked trips. The model consists of the following set of parame-

ters: breakdown of the city in sectors, maximal number of available cars, number of 

cars per sector, set of possible relocations, parameters characterising e-vehicle reloca-

tions, number of available relocators. 

The parameters used in the model allow you to describe the operation of a real sys-

tem: 

 The strategic level determines the number of e-vehicle available for sharing 

and the maximum number of e-vehicle to be placed in each urban sector.  

 At a tactical level, historical vehicle sharing data allows you to assess the prof-

itability of e-vehicle depending on the season, day of the week, usage time and 

city sector in which e-vehicle is placed.  

 At operational level, the total daily income is estimated at the sum of the aver-

age expected income over a specific period of time from all e-vehicle placed in 

a specific sector that can be rented by users.  

The study provides an algorithm that optimizes expected income based on the set 

of selected reloctions using the values of the above parameters. When implementing 

an algorithm, special attention should be paid to its performance as optimization must 

be performed dynamically, within few hour interval. 

The vehicle sharing model proposed in the study should be considered as only one 

step in reaching an optimal solution. The model only partly describes real-life pro-

cesses, such as e-vehicle can vary between battery capacity and technical parameters 

and prices. These parameters have not been taken into account in the given model, 

and their research may be the content of further studies. In future studies, the actual 

assessment of income generated by the relocation of e-vehicles is also relevant.  
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