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Abstract. Mobile laser scanning (MLS) is a favored information source for urban areas because of
its capacity to gather quick and denseeé&dimensional informationand tassification studies of
these lage point clouds are carried out by enriching the datadietcted This study discusses a
method for classifying an MLS point cloud by constructing a local neighborhood relationship with
cylindrical neighborhood information and augmenting the datasht geibmetric features in the
absence of RGB imagefwo benchmark datasefBUM-MLS1 and Toronte3D, wereemployed.

The Random Forest (RF) classifier, which has bpegferredin many researches for MLS
classification, was built and assessed edght classes ofbenchmark datasefor pointbased
supervised classification. As a result, we achieved 94.5% overall accuitityonly four
geometric featurefor both datasetdVhen comparing our findings for dataset of THMALS1 to

those of a previous studye found a 2.4% increase in overall accuracy

Keywords: Mobile Laser Scanning, Feature Extraction, Geometric Feature, Cylindrical
Neighborhood

1. Introduction

Point clouds have become increasingly important in the creation of land use maps,
digital elevationmodels, and thredimensional city and landscape models. They can be
acquired using RGB sensors, Synthetic Aperture Radar (SAR), imbaged
photogrammetry, or Light Detection and Ranging (LIDAR) (Glnen, 2022). LIiDAR
technology is one of the most widalged approaches in mapping and surveying due to
its progressive ability to generate dense and extremely precise 3D point clouds. Thus far,
advanced systems such as space laser scanning (SLS), airborne laser scanning (ALS),
terrestrial laser scanning (TLSand mobile laser scanning (MLS) havé been
successfully developed.

Mobile laser scanning (MLS) is a critical source of data for urban areas, as the road
environment enables the collection of higénsity, highaccuracy 3D georeferenced
point clouds. h general, an MLS system consists of multiple elements such as imaging,
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scanning, positioning, and storage systems that are mounted on a mobile platform such
as a vehicle (zZhu et al., 2020), a boat (Vaaja et al., 2013), a train (Lou et al., 2018), a
backp&zk (Kukko et al., 2012), or a robot (Gao et al., 2018). VeHiased platforms, in
particular, are more prevalent in urban areas, owing to their relative speed in regular
traffic. As a result, large datasets can be produced in a single day (Kukko2€x12).,

Due to the high density of 3D point clouds generated by MLS systems, it is necessary to
develop automated methods for rapid 3D mapping. Numerous approaches have been
developed for segmetiased and poirttased classification of MLS point clouds;
however, the problem remains unsolved.

Establishing locaheighborhoodrelationships is the fundamental basis for feature
extraction in poinbased classification of a point cloud, and various methods can be used
to collect localneighborhoodnformation from a point cloud (Wang et al., 2018). The
most frequently used in the literature are the sphenieglhborhoodBrodu and Lague,
2012) or cylindrical neighborhood(Filin and Pfeifer, 2005) defined by a radius
parameterand the knearestneighborhooddefined by the number of nearest points
(Weinmann et al., 2013). Geometric and shbpsed properties can be obtained by
establishing theneighborhoodrelationship between the points. As a result, geometric
properties such as the size, rougdsjeand density of a point (or segment) are defined.
Shape characteristics are determined by eigenvaluggh i=1,2,3 A 3x3 covariance
matrix is constructed for each point in theighborhoodand the eigenvalues derived
from the covariance matrix aretrieved (Guan et al., 2016). The eigenvalues correspond
to the principal axes of the threldmensional ellipsoid and serve as a shape indicator in
point cloud classification. The following are some of the shape properties: linearity,
planarity, sphericit, eigentropy, and the sum of the eigenvalues. For the classification
phase, various classification approaches including machine learning and deep learning
algorithms have been tested.

Zheng et al. (2017) published a study in which they classified MLS ptwods by
incorporating geometric properties extracted from cylindmeaghborhoodsn addition
to point density values. Weinmann (2015) compared the classification performance of 21
geometric 3D and 2D features extracted using thedcesnheighborsof a given point as
neighborhoodlefinitions. Thomas et al. (2018) assessed covaribased features and
color characteristics (if any) across multiple datasets. Atik et al. (2021) evaluated the
classification performance of several machine learning rdsthoross a range of scales.

For each point, areas with different radii were created using spheeigilborhoodand

13 features derived from the covariance matrix were calculated, including height,
roughness, normal change rate, and volume densitytidddily, there are strategies in

the literature for identifying points in a point cloud usingighborhoodsize selection
criteria and feature extraction techniques. Demantké et al. (2012) calculated dimension
based features using cylindriaaighborhood varying the radius of theeighborhood

to determine the optimal radius. Thomas et al. (2018) focused on semantic classification
by extracting geometric features using a msttale sphericaheighborhoodstrategy.

The scale choice was critical becausafiects the computation time required to extract
geometric features. Wang et al. (2018) utilized supervised classification to evaluate
various neighborhoodypes, including the sphericakighborhoodwith a fixed radius,

the vertical cylindricalneighbohood the knearestneighborhoodand the optimal k
nearestneighborhood the latter of which used eigenentrelpgsed scale selection to
determine the k value. Giinen (2022) described and evaluated the omnivhdaade
adaptive feature selection methodheTresults were also compared to other methods for
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determiningneighborhoodsize, such as eigenentropgsedneighborhoodsize selection
and a fixed number of-kearesnheighbors

The purpose of this studg to implement poinbased classification of demgpoint
cloud datecollected bya mobile mapping system in urban areas using geometric feature
information extracted from cylindricaleighborhoodelations. The classification process
for MLS point cloudsis divided into three stage¢i) establishing loal neighborhood
relationships, (i) feature extraction, and (iii) classification. The methodoliegy
validated in this context using benchmark dats@UM-MLS1 and Toronte3D,
obtained viavehiclebased MLS systesnThese MLS datasets, which each contain eight
classes, are evaluated using the Random FéBestman, 2001)approach The MLS
point cloud classification workflow over the local cylindricaighborhoods depicted
in Fig.1.

Themaincontribution of this dicle is the presentation of a poipased classification
approach for urban outdoor MLS point clouds by extracting ehsily accessible
geometricfeatures via a local cylindrical neighborhood in the lack of further point
information. The rest of the papewas organized as follows: Section 2 dedfinbe
methodology, Section 3 describthe dataset and experimgnSection 4presentshe
experimental results, and Sectiombludesa summary obur findings.

Local
Neighborhood Feature Extraction Classifier
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PC Cylindrical Geometric Random
Neighborhood Features Forest
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Fig. 1. MLS point cloud classification workflow through local cylindricedighborhoodHn,
Nn, A H, 0 H, denoteeatures extracted fof" point (i.e. normalized height, number of
points, height difference, and the standard deviation

2. Methodology

Due to the lack of attributes in MLS poialouds;they can be augmented by deriving
features from neighborhood relationships between points in a local context or by
utilizing RGB images. When RGB images are not available, one of the critical stages of
classification is feature extraction for each point (Weinmann, 2015). Because the
features will be extracted based on the local neighborhood, it is hecessary to determine
the neighboring points. The cylindrical neighborhood is a technique for extracting local
neighborhood information from a point cloud. The cylindrical neighborhood type is
created primarily by specifying a radius. The method's initial stage is to project the point
cloud onto a twalimensional horizontal plan@ig. 2). Following that, each pot in the
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point cloud is used as the center, and the points remaining in the circle within the radius
determined are searched in two dimensions using-theée algorithm (Bentley, 1975).

2D horizontal plane ‘

~ %o
‘ 3D vertical cylinder ‘

Fig. 2. The vertical cylindrical neighborhoasf radius r, and hence the radius r of the point
cloud in the XY plane, is represent@ireen: point under consideration, Red: highest
point, Blue: lowest point)

To enhance the properties of points, the titi@eensional coordinates of the points
within the local vertical cylindrical neighborhood are required during the geometric
feature extraction process. Each point in the MLS point cloud is defined by its elevation
above the reference surface.g( ellipsoid height). By using the Cloth Simulation
Filtering (CSF) component of the Cloud Comparing software (Zhang et al., 2016), the
elevation of each point was normalized (|Z|) according to the terrain heigl stuthy.

The first geometric property is a point's normalized height. The height differ¥age (
defined as the difference between the heights of the maximum and minimum points in
the local neighborhood, and the standard deviatign) f the heights of the points in

the local neighborhood, are calculated using the normalized beddptdined. Tk
number of points within the neighborhod®l) is another geometric feature. The
geometrical features described in the study are listed in Table 1.

Table 1.Local geometric features calculated and assigned to each point based on the X, Y, and Z
coordinate of the points in the point cloud.

# Feature Symbol Formula

1 | normalized height of a point ( ss

2 | number of points in the )
neighborhood

3 | height difference ( E E

4 | standard deviation of height A( % (  t(

The enriched feature sistgiven as input to the classifier. Random Forest (RF) is one
of the most frequently used methods for dense point cloud classification. The RF
generates multiple decision trees and then combines them to produce a more accurate
and stable estimatigiBreiman, 2001)
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3. Datasetand Experiment

Two MLS datasets, TUMALS1 and Toronte3D, over two urban areas were usé¢d
assess the relevance of the proposed approach

The TUM-MLS1 datasefZhu et al., 202Q)created in 2016 with the MLS platform
MODISSA at the TUM city campus in Munich, Germanyis used to testour
methodology. Each point in the dataset has 3D (X, Y, and Z) coordinates and an
intensity value. A part of the test area has been manually labeled as ground truth, which
includes the following eight categoriesartificial terrain, natural terrain high
vegetation low vegetationbuilding, hardscape artifact, andvehicle (see Fig. 3). The
dataset containgightly more tharBM manually labeled points.

Artificial Natural

Terrain Terrain

(b)
Fig. 3. TUM-MLSL1 (a) real scene representatj@nd (b)point cloud with eight semantic
labels (Zhu et al., 2020).

Toronto-3D, one of the publlg availablepoint cloud datasets, was collected in 2020
from Avenue Road in Toronto, Canad@an et al., 2020)This datasetwas separated
into four sectionsand consists of 78M pointsin total (see Fig. 3 Each point had0
attributes, including point location (X,Y,Z), color information (RGB), intensity, GPS
time, scan angle track, and lab&he datasetoversthe following eight object classes:
road, road markingas pavement markingsatural as treespuilding, utility line as
power linespole car andfenceas vertical barriersThe LO04 part of the dataset, which
contains over 6.7M points, was utilized fiinis study.The unclassified points of the
dataset were removed, and the road and natural classes were randosiypsampledo
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Fig. 4. Toronte-3D (a) real sceneepresentatiomwith four overlagedsections, and (kpoint
cloud witheight senantic labelsTan et al., 2020

1.8M and 1M respectivelyto mitigate the imbalanced point number structure within the
point cloud.Thereducedpoint cloud contains a total of 8IM labeled points.

In this studyboth dataset arerandomly divided into traing (25%) and test (75%)
sets using the holdout cresgalidation technique, with the points reserved only for
training are further divided into two groups randomly, training (80%) and validation
(20%). The classification models i estimated with the training data, while the
performance of the trained model is evaluated internally with the validation data. Finally,
the test model is used to evaluate the classification results independently.

To investigate the effect of radius olassification, the radius parameter is tested
using different values (i.e. 0.25m, OrB, and 0.75m), and the generated geometric
features are fed into the RF classifier (with a fixed number of trees of 35). To extract the
geometric features such as the malized height (H), height differencegf), the
number of points (N) and the standard deviation
local neighborhood, the X, Y and Z coordinates of neighboring points are utilized. Also,
how the pointbasedclassification is affected by the features is tested on the 4 features
described in Section Besides, lie relaive importance of features is determined in
MATLAB using the "Out of Bag Importance Estimates" of the RF algorithm used for
classification. In addition, theorrelation between features is one of the factors affecting
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the result, so the strength of association between pairs of predictors can be inferred using
predictor association estimation.

4. Results and Discussion

Three radius parameters are assessed to understand how the size of the local cylindrical
neighborhood affects the classification outcorhre this respect, Table 2 shows the
differences between the classification performances of the testing set for with wel
accuracy,
accuracy and kappa index measuresdiM-MLS1. When the radius is set to 0.25m, the
classification accuracy computed with the geomdidsed features obtained from the
local cylindrical neighborhood is found to be the lowest. The best result, on the other
hand, is obtained when a radius of 0.75m is choBSgn.5 depicts the confusion matrix

for the classification belonging to the best result (i.e. for radius 0.75m).

known

user

S

producer

S

accuracy,

Table 2.Overall accuracy (O.A.) ahkappa index (in %) of the TUNILS1 test data for all three
different radius values testeddpd 0.25m , N.sa 0.50m and Mzs 0.75m).

No.25 No.s0 No.75
Class User | Producer | loU | User | Producer | loU | User | Producer | loU
artificial
terrain 88.7 93.8 83.8| 89.5 94.5 85.1| 90.9 95.1 86.8
natural
terrain 775 79.5 64.6 | 80.1 81.6 67.8| 82.3 84.3 71.4
high
vegetation 92.5 97.1 90.0| 95.0 97.7 92.9| 96.6 98.2 94.9
low
vegetation 73.9 45.9 39.5| 83.0 61.2 54.4| 88.0 70.5 64.3
building | 945 89.9 |854| 959 932 |89.6| 96.8 953 | 924
hardscape| 70.1 477 39.6| 78.6 55.2 48.0| 82.8 59.0 52.6
artifact | go.7 59.7 53.1| 87.6 71.8 65.2| 89.6 77.6 71.2
vehicle | g1.4 83.0 |69.8| 86.5 842 | 744 89.2 858 | 77.7
0.A.(%) 91.0 93.0 945
Kappd%) 87.1 90.0 92.1

The classeshigh vegetationand building yield a successful performance, with
accuracies over 95%, despite the confusion in these two classes. Because these classes
dominate the dataset, they have an increasing influence on the final acdimacyost
common causes of classification errors are classes with similar properties, such as
artificial terrain and natural terrain overlapping objects (e.ghigh vegetationvs.
artifact), adjacent objectshb(iilding vs. high vegetatiohy and relatively small sampled
classes (e.dow vegetationhardscapeand artifact). Despite this, the overall accuracy
and kappa are determined to be 94.5% and 92.1%, respectively. Considering the
processing times, it was approximately 8 minutes, l4utegnand 24 minutes for the
case where the radii were 0.25m, 0.50m and 0.7g1.6 andFig. 7 show whole test
result andsample casesf the pointbased classification with the RF classifier using the

vertical cylindrical neighborhood with radius 0.75m.
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Classified Data
artlflc!al naturlal i . Y . building | hardscape| artifact vehicle | Row Total
terrain terrain Vegetatlﬂn Vegetatlon
artificial | 71506 | 10672 2 29 1533 522 95 1070 | 284931
terrain
natwral | o 05 | 133975 80 141 2691 1166 497 1119 | 158964
terrain
i 1 334 871512 200 14429 9% 826 98 887496

% Vegetatlon

a low 5,7 741 447 7865 798 147 457 358 11160

9 |vegetatio

g | buiding | 3000 6647 26240 86 760026 | 362 987 949 807297

[

@ |hardscapd 2332 5985 72 o1 1420 16049 435 818 27202
artifact | 312 1642 3396 346 2705 431 35637 | 1472 | 45941
vehicle | 1905 2816 83 182 1602 600 819 48497 | 56504
Column

Do | 208200 | 162812 | 901832 | 8940 | 794204 | 19373 | 39753 | 54381 | 2279495

Fig. 5. Confusion matrix of the TUMMLS1 test data for radius 0.75m.

Adrtificial
Terrain

Fig. 6. Classified test set aflUM-MLS1 with radius 0.75m.

Vehicle

TUM-MLS1 datasetwas classified by Sun et al. (2018) using 13 feature sets,
including seven featurbased features (linear, spherical, full variance, anisotropy,
feature entropy, and local curvature), two height features (mean height and height
difference), three spatialeétures (normal vector), and one radiometric feature
(intensity). In a way analogous to our study, the RF classifier was used and the number
of trees was set to 200. Additionally, in contrast to our test set, 50% of the total dataset
was used for trainingVhen our findings are compared to the results provided by Sun et
al. (2018), we observe a 2.4% improvement in overall accuracy and major improvements
in the classes dbw vegetatiorandartifact (see Table 3).
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Classes Classified Reference

low
vegetation

hardscape

artifact

vehicle

Fig. 7. Classes oTUM-MLS1's test dataset acquired with low accuracy (ragios75m).

Table 3. Comparison to a statf-the-art approach ofTUM-MLS1. O.A. indicates the overall

accuracy.
Sun et al. (2018) Our Approach

Class User Producer User Producer
artificial terrain 0.952 0.943 0.909 0.951
natural terrain 0.839 0.911 0.823 0.843
high vegetation 0.931 0.972 0.966 0.982
low vegetation 0.787 0.496 0.880 0.705
building 0.933 0.931 0.968 0.953
hardscape 0.844 0.495 0.828 0.590
artifact 0.747 0.345 0.896 0.776
vehicle 0.827 0.848 0.892 0.858

O.A. 0.921 0.945

Table 4presentghe classificatiorperformance®f the Toronte3D test data for the
different radius sizes teste@lhe best result in overall accuracy was obtained when the
radius was0.75m as 94.5% and the worst result was when the radius @25m as
92.2% As a result, we can conclude that the classification teslitained for Toronto
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3D andTUM-MLS1 areconsistentFor Toronte3D, the processing time increased to 65
minutes when the radius was OnT5whereas in all other cases it was completed in
roughly the same amount of time as TWMALSL1. Fig. 8 depicts the confusion matrix for
the classification beloriigg to the best result (i.e. for radius 0.75m).

Classified Data
road - -
road X natural building | utility line pole car fence | Row Total
marking
road 1316004| 26441 2386 560 0 76 4471 63 1350001
road | eoeg0 | 142817 19 5 0 0 282 0 205653
marking
natural 3983 7 729133 13334 1070 193 2168 112 750000
]
8 building 1771 8 26607 375283 182 70 345 39 404305
[
% utility line 0 0 3783 459 23234 425 0 0 27901
% pole 147 3 1502 187 190 51644 33 0 53706
4
car 4615 146 2952 257 0 63 153083 103 161219
fence 110 0 489 64 0 0 159 2604 3426
Column
Total 1389160| 169422 766871 390149 24676 52471 160541 2921 2956211

Fig. 8. Confusion matrix of the Toront8D test data for radius 0.75m

Table 4.Overall accuracy (O.A.) and kappa index (in %) of the Tor@Raest data for all three
different radius valuetested. Bold ones indicate the best results.2§ND.25m , N.sa
0.50m and N7s 0.75m)

No.2s5 No.so No.7s
Class User | Producer | loU | User | Producer | loU | User | Producer | loU
road 94.3 97.7 92.2| 94.4 97.8 92.4| 94.7 975 925

road 87.0 68.9 62.5| 86.3 67.7 61.1| 84.3 69.4 61.5
marking

natural | g9 4 946 | 85.1| 93.4 96.5 | 90.3| 95.1 972 | 926
building | 923 834 | 78.0] 95.2 90.1 |86.1] 96.2 92.8 | 895
utility line | 90.5 776 | 71.7| 93.6 821 | 77.7| 94.2 833 | 79.2
pole 97.6 89.0 |87.1| 983 942 | 92.7| 984 96.2 | 947
car 91.5 90.7 | 83.6]| 94.7 935 |88.9]| 954 950 | 90.8
fence | g1.7 46.0 |41.7] 89.2 69.7 | 64.3| 89.1 76.0 | 69.6
0.A.(%) 92.2 93.8 94.5
Kappd%o) 88.7 91.1 92.1
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The high accuracy and prevalence of the classad natural, andbuilding in the
data had a significant impact on the classification re€ute can observe a relatively
strong confusiorbetweenthe road and road marking classes.Although the overall
classification accuracy is increased with increasinghe radius parameter inup
experimentsthe best result for themad markingclassis achievedvhena small radiuss
set It's possible that the color information in the dataset can help us distinguish between
thesetwo classes As in TUM-MLS1, some confusion has also bedrserved between
classes that are very close and overlapped, sucatasal, building, andutility line. Due
to the greater number of samples compared tar'thel-MLS1 datasetthe classar in
Toronto-3D dataset isdentified with an accuracy of over Qercent.The classified
outpus of Toronto3D datasefor radius 0.75nareillustratedin Fig. 9 and Fig.10

Road
Marking

Natural Building, Utilityline: Halg

Fig. 9. Classification results oforonte-3D with radius 0.75m.

The results of the feature importance test indicate that normalized height is the most
significant predictor of the four predictors fotUM-MLS1. Therefore, precise terrain
elevation estimation at each point is essential. The magsifisant parameter for
Toronto3D is the number of neighborhood points. Scale determination is crucial
because this parameter is highly dependent on the point density in the point cloud and
the size of the neighborhoodccording to the results of the tests, there is almost no
correlation between the features utilized (see in Fij.
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Clas®s Classified Reference
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marking
natural
building
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car

Fig. 10. Classes oforonte-3 D 'test datasewith radius 0.75m.
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Fig. 11 Importance of features estimated via Out of Bag Importance Estimates of the RF
algorithm and Predictor Association Estiméafies(a) TUM-MLS1, and (b) Toronte3D.

5. Conclusion

The original features of dense point cloud data acquired using mobile laser scanners are
weak in the absence of color informatioitherefore, in this studya neighborhood
relationship between the points in the point cloud was formed using the cylindrical
neighborhoodype. Thereafter features are extracted based on their proximity to each
other in order to improve classification performance.

Overall accuracies of over 90% can be obtained by utilizing four geometric features
via the cylindrical neighborhood relationshiplassification errors are most frequently
caused by classes with similar properties, sudr@#ficial andnatural terrainof TUM-

MLS1 datasetandroad androad markingof Toronte3D dataset overlapping objects
(e.g., high vegetatiorvs. artifact of TUM-MLS1, and natural vs. car of Toronta3D),
adjacent objectdbilding vs. high vegetatioly and classes with a small sample size (e.g.
low vegetation hardscapeand artifact). Indeed, the results for specific classmwv(
vegetation hardscape andartifact) are computed to be relatively low and, in general,
cannot reach a satisfactory levéleverthelessthe cylindrical neighborhood's major
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drawback appears to be its processing time, which is significantly longer than that of its
counterparts, such as thenkarest neighbor or spherical neighborhood. Given that the
processing load increases ithw increasing data density, various approaches
(segmentation, voxel, etc.) can be used to improve the processing of large datasets and
reduce the processing load. It is worth noting that the sample size of the classes may
have an effect on the classifimat result. Fixed radius selection may not be appropriate

for classes with a small sample size, depending on the cloud point density.

Our future research will also examine classification strategies for MLS, including
deep learning.The introducedstrategywill be tested onother benchmark dataset
publicly available Moreover, he feature set will be augmented with other featuapd
feature importance will be emphasizbyg the classifierindependenfeature selection
methods.
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