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Abstract. Mobile laser scanning (MLS) is a favored information source for urban areas because of 

its capacity to gather quick and dense three-dimensional information, and classification studies of 

these large point clouds are carried out by enriching the data set collected. This study discusses a 

method for classifying an MLS point cloud by constructing a local neighborhood relationship with 

cylindrical neighborhood information and augmenting the dataset with geometric features in the 

absence of RGB images. Two benchmark datasets, TUM-MLS1 and Toronto-3D, were employed. 

The Random Forest (RF) classifier, which has been preferred in many researches for MLS 

classification, was built and assessed on eight classes of benchmark datasets for point-based 

supervised classification. As a result, we achieved 94.5% overall accuracy with only four 

geometric features for both datasets. When comparing our findings for dataset of TUM-MLS1 to 

those of a previous study, we found a 2.4% increase in overall accuracy. 

Keywords: Mobile Laser Scanning, Feature Extraction, Geometric Feature, Cylindrical 

Neighborhood 

1. Introduction 

Point clouds have become increasingly important in the creation of land use maps, 

digital elevation models, and three-dimensional city and landscape models. They can be 

acquired using RGB-D sensors, Synthetic Aperture Radar (SAR), image-based 

photogrammetry, or Light Detection and Ranging (LiDAR) (Günen, 2022). LiDAR 

technology is one of the most widely used approaches in mapping and surveying due to 

its progressive ability to generate dense and extremely precise 3D point clouds. Thus far, 

advanced systems such as space laser scanning (SLS), airborne laser scanning (ALS), 

terrestrial laser scanning (TLS), and mobile laser scanning (MLS) have all been 

successfully developed. 

Mobile laser scanning (MLS) is a critical source of data for urban areas, as the road 

environment enables the collection of high-density, high-accuracy 3D georeferenced 

point clouds. In general, an MLS system consists of multiple elements such as imaging, 
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scanning, positioning, and storage systems that are mounted on a mobile platform such 

as a vehicle (Zhu et al., 2020), a boat (Vaaja et al., 2013), a train (Lou et al., 2018), a 

backpack (Kukko et al., 2012), or a robot (Gao et al., 2018). Vehicle-based platforms, in 

particular, are more prevalent in urban areas, owing to their relative speed in regular 

traffic. As a result, large datasets can be produced in a single day (Kukko et al., 2012). 

Due to the high density of 3D point clouds generated by MLS systems, it is necessary to 

develop automated methods for rapid 3D mapping. Numerous approaches have been 

developed for segment-based and point-based classification of MLS point clouds; 

however, the problem remains unsolved. 

Establishing local neighborhood relationships is the fundamental basis for feature 

extraction in point-based classification of a point cloud, and various methods can be used 

to collect local neighborhood information from a point cloud (Wang et al., 2018). The 

most frequently used in the literature are the spherical neighborhood (Brodu and Lague, 

2012) or cylindrical neighborhood (Filin and Pfeifer, 2005) defined by a radius 

parameter and the k-nearest neighborhood defined by the number of nearest points 

(Weinmann et al., 2013). Geometric and shape-based properties can be obtained by 

establishing the neighborhood relationship between the points. As a result, geometric 

properties such as the size, roughness, and density of a point (or segment) are defined. 

Shape characteristics are determined by eigenvalues λi with i=1,2,3. A 3x3 covariance 

matrix is constructed for each point in the neighborhood, and the eigenvalues derived 

from the covariance matrix are retrieved (Guan et al., 2016). The eigenvalues correspond 

to the principal axes of the three-dimensional ellipsoid and serve as a shape indicator in 

point cloud classification. The following are some of the shape properties: linearity, 

planarity, sphericity, eigentropy, and the sum of the eigenvalues. For the classification 

phase, various classification approaches including machine learning and deep learning 

algorithms have been tested. 

Zheng et al. (2017) published a study in which they classified MLS point clouds by 

incorporating geometric properties extracted from cylindrical neighborhoods in addition 

to point density values. Weinmann (2015) compared the classification performance of 21 

geometric 3D and 2D features extracted using the k-nearest neighbors of a given point as 

neighborhood definitions. Thomas et al. (2018) assessed covariance-based features and 

color characteristics (if any) across multiple datasets. Atik et al. (2021) evaluated the 

classification performance of several machine learning methods across a range of scales. 

For each point, areas with different radii were created using spherical neighborhood, and 

13 features derived from the covariance matrix were calculated, including height, 

roughness, normal change rate, and volume density. Additionally, there are strategies in 

the literature for identifying points in a point cloud using neighborhood size selection 

criteria and feature extraction techniques. Demantké et al. (2012) calculated dimension-

based features using cylindrical neighborhoods, varying the radius of the neighborhood 

to determine the optimal radius. Thomas et al. (2018) focused on semantic classification 

by extracting geometric features using a multi-scale spherical neighborhood strategy. 

The scale choice was critical because it affects the computation time required to extract 

geometric features. Wang et al. (2018) utilized supervised classification to evaluate 

various neighborhood types, including the spherical neighborhood with a fixed radius, 

the vertical cylindrical neighborhood, the k-nearest neighborhood, and the optimal k-

nearest neighborhood, the latter of which used eigenentropy-based scale selection to 

determine the k value. Günen (2022) described and evaluated the omnivariance-based 

adaptive feature selection method. The results were also compared to other methods for 
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determining neighborhood size, such as eigenentropy-based neighborhood size selection 

and a fixed number of k-nearest neighbors. 

The purpose of this study is to implement point-based classification of dense point 

cloud data collected by a mobile mapping system in urban areas using geometric feature 

information extracted from cylindrical neighborhood relations. The classification process 

for MLS point clouds is divided into three stages: (i) establishing local neighborhood 

relationships, (ii) feature extraction, and (iii) classification. The methodology is 

validated in this context using benchmark datasets, TUM-MLS1 and Toronto-3D, 

obtained via vehicle-based MLS systems. These MLS datasets, which each contain eight 

classes, are evaluated using the Random Forest (Breiman, 2001) approach. The MLS 

point cloud classification workflow over the local cylindrical neighborhood is depicted 

in Fig.1. 

The main contribution of this article is the presentation of a point-based classification 

approach for urban outdoor MLS point clouds by extracting the easily accessible 

geometric features via a local cylindrical neighborhood in the lack of further point 

information. The rest of the paper was organized as follows: Section 2 defines the 

methodology, Section 3 describes the dataset and experiments, Section 4 presents the 

experimental results, and Section 5 includes a summary of our findings. 

 

 

 

 

 

 
 

Fig. 1. MLS point cloud classification workflow through local cylindrical neighborhood (Hn, 

Nn,  ΔHn, σHn, denote features extracted for nth point (i.e. normalized height, number of 

points, height difference, and the standard deviation). 

2. Methodology 

Due to the lack of attributes in MLS point clouds; they can be augmented by deriving 

features from neighborhood relationships between points in a local context or by 

utilizing RGB images. When RGB images are not available, one of the critical stages of 

classification is feature extraction for each point (Weinmann, 2015). Because the 

features will be extracted based on the local neighborhood, it is necessary to determine 

the neighboring points. The cylindrical neighborhood is a technique for extracting local 

neighborhood information from a point cloud. The cylindrical neighborhood type is 

created primarily by specifying a radius. The method's initial stage is to project the point 

cloud onto a two-dimensional horizontal plane (Fig. 2). Following that, each point in the 
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point cloud is used as the center, and the points remaining in the circle within the radius 

determined are searched in two dimensions using the k-d tree algorithm (Bentley, 1975). 

 
Fig. 2. The vertical cylindrical neighborhood of radius r, and hence the radius r of the point 

cloud in the XY plane, is represented (Green: point under consideration, Red: highest 

point, Blue: lowest point). 

 

To enhance the properties of points, the three-dimensional coordinates of the points 

within the local vertical cylindrical neighborhood are required during the geometric 

feature extraction process. Each point in the MLS point cloud is defined by its elevation 

above the reference surface (e.g. ellipsoid height). By using the Cloth Simulation 

Filtering (CSF) component of the Cloud Comparing software (Zhang et al., 2016), the 

elevation of each point was normalized (|Z|) according to the terrain height in this study. 

The first geometric property is a point's normalized height. The height difference (∆H), 

defined as the difference between the heights of the maximum and minimum points in 

the local neighborhood, and the standard deviation (σH) of the heights of the points in 

the local neighborhood, are calculated using the normalized heights obtained. The 

number of points within the neighborhood (N) is another geometric feature. The 

geometrical features described in the study are listed in Table 1. 
 

Table 1. Local geometric features calculated and assigned to each point based on the X, Y, and Z 

coordinates of the points in the point cloud. 

 

# Feature Symbol Formula 

1 normalized height of a point H |Z| 

2 number of points in the 

neighborhood 
N - 

3 height difference ∆H hmax − hmin 

4 standard deviation of height σH √
1

k
∑(Hj − μH)2
k

j=1

 

 

The enriched feature set is given as input to the classifier. Random Forest (RF) is one 

of the most frequently used methods for dense point cloud classification. The RF 

generates multiple decision trees and then combines them to produce a more accurate 

and stable estimation (Breiman, 2001). 
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3. Dataset and Experiment 

Two MLS datasets, TUM-MLS1 and Toronto-3D, over two urban areas were used to 

assess the relevance of the proposed approach.  

The TUM-MLS1 dataset (Zhu et al., 2020), created in 2016 with the MLS platform 

MODISSA at the TUM city campus in Munich, Germany, is used to test our 

methodology. Each point in the dataset has 3D (X, Y, and Z) coordinates and an 

intensity value. A part of the test area has been manually labeled as ground truth, which 

includes the following eight categories: artificial terrain, natural terrain, high 

vegetation, low vegetation, building, hardscape, artifact, and vehicle (see Fig. 3). The 

dataset contains slightly more than 3M manually labeled points.  

 

 
(a) 

 

 
(b) 

Fig. 3. TUM-MLS1 (a) real scene representation, and (b) point cloud with eight semantic 

labels (Zhu et al., 2020). 

 

Toronto-3D, one of the publicly available point cloud datasets, was collected in 2020 

from Avenue Road in Toronto, Canada (Tan et al., 2020). This dataset was separated 

into four sections, and consists of 78.3M points in total (see Fig. 4). Each point has 10 

attributes, including point location (X,Y,Z), color information (RGB), intensity, GPS 

time, scan angle track, and label. The dataset covers the following eight object classes: 

road, road marking as pavement markings, natural as trees, building, utility line as 

power lines, pole, car and fence as vertical barriers. The L004 part of the dataset, which 

contains over 6.7M points, was utilized for this study. The unclassified points of the 

dataset  were  removed,  and  the  road  and natural classes were randomly subsampled to  
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(a) 

 
(b) 

Fig. 4. Toronto-3D (a) real scene representation with four overlapped sections, and (b) point 

cloud with eight semantic labels (Tan et al., 2020). 
 

1.8M and 1M respectively, to mitigate the imbalanced point number structure within the 

point cloud. The reduced point cloud contains a total of 3.94M labeled points. 

In this study, both datasets are randomly divided into training (25%) and test (75%) 

sets using the holdout cross-validation technique, with the points reserved only for 

training are further divided into two groups randomly, training (80%) and validation 

(20%). The classification model is estimated with the training data, while the 

performance of the trained model is evaluated internally with the validation data. Finally, 

the test model is used to evaluate the classification results independently.  

To investigate the effect of radius on classification, the radius parameter is tested 

using different values (i.e. 0.25m, 0.50m, and 0.75m), and the generated geometric 

features are fed into the RF classifier (with a fixed number of trees of 35). To extract the 

geometric features such as the normalized height (H), height difference (𝛥H), the 

number of points (N) and the standard deviation of heights of points (σH) within the 

local neighborhood, the X, Y and Z coordinates of neighboring points are utilized. Also, 

how the point-based classification is affected by the features is tested on the 4 features 

described in Section 2. Besides, the relative importance of features is determined in 

MATLAB using the "Out of Bag Importance Estimates" of the RF algorithm used for 

classification. In addition, the correlation between features is one of the factors affecting 
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the result, so the strength of association between pairs of predictors can be inferred using 

predictor association estimation. 

4. Results and Discussion 

Three radius parameters are assessed to understand how the size of the local cylindrical 

neighborhood affects the classification outcome. In this respect, Table 2 shows the 

differences between the classification performances of the testing set for with well-

known user’s accuracy, producer’s accuracy, intersection over union (IoU), overall 

accuracy and kappa index measures of TUM-MLS1. When the radius is set to 0.25m, the 

classification accuracy computed with the geometric-based features obtained from the 

local cylindrical neighborhood is found to be the lowest. The best result, on the other 

hand, is obtained when a radius of 0.75m is chosen. Fig. 5 depicts the confusion matrix 

for the classification belonging to the best result (i.e. for radius 0.75m). 
 

Table 2. Overall accuracy (O.A.) and kappa index (in %) of the TUM-MLS1 test data for all three 

different radius values tested (N0.25: 0.25m , N0.50: 0.50m and N0.75: 0.75m).  

 

 N0.25 N0.50 N0.75 

Class User Producer IoU User Producer IoU User Producer IoU 

artificial 

terrain 
88.7 93.8 83.8 89.5 94.5 85.1 90.9 95.1 86.8 

natural 

terrain 
77.5 79.5 64.6 80.1 81.6 67.8 82.3 84.3 71.4 

high 

vegetation 
92.5 97.1 90.0 95.0 97.7 92.9 96.6 98.2 94.9 

low 

vegetation 
73.9 45.9 39.5 83.0 61.2 54.4 88.0 70.5 64.3 

building 94.5 89.9 85.4 95.9 93.2 89.6 96.8 95.3 92.4 

hardscape 70.1 47.7 39.6 78.6 55.2 48.0 82.8 59.0 52.6 

artifact 82.7 59.7 53.1 87.6 71.8 65.2 89.6 77.6 71.2 

vehicle 81.4 83.0 69.8 86.5 84.2 74.4 89.2 85.8 77.7 

O.A.(%) 91.0 93.0 94.5 

Kappa(%) 87.1 90.0 92.1 

 

The classes high vegetation and building yield a successful performance, with 

accuracies over 95%, despite the confusion in these two classes. Because these classes 

dominate the dataset, they have an increasing influence on the final accuracy. The most 

common causes of classification errors are classes with similar properties, such as 

artificial terrain and natural terrain, overlapping objects (e.g., high vegetation vs. 

artifact), adjacent objects (building vs. high vegetation), and relatively small sampled 

classes (e.g. low vegetation, hardscape and artifact). Despite this, the overall accuracy 

and kappa are determined to be 94.5% and 92.1%, respectively. Considering the 

processing times, it was approximately 8 minutes, 14 minutes and 24 minutes for the 

case where the radii were 0.25m, 0.50m and 0.75m. Fig. 6 and Fig. 7 show whole test 

result and sample cases of the point-based classification with the RF classifier using the 

vertical cylindrical neighborhood with radius 0.75m. 
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Fig. 5. Confusion matrix of the TUM-MLS1 test data for radius 0.75m. 

 

 

 
 

 

 
 

Fig. 6. Classified test set of TUM-MLS1 with radius 0.75m. 

 

 

TUM-MLS1 dataset was classified by Sun et al. (2018) using 13 feature sets, 

including seven feature-based features (linear, spherical, full variance, anisotropy, 

feature entropy, and local curvature), two height features (mean height and height 

difference), three spatial features (normal vector), and one radiometric feature 

(intensity). In a way analogous to our study, the RF classifier was used and the number 

of trees was set to 200. Additionally, in contrast to our test set, 50% of the total dataset 

was used for training. When our findings are compared to the results provided by Sun et 

al. (2018), we observe a 2.4% improvement in overall accuracy and major improvements 

in the classes of low vegetation and artifact (see Table 3). 

 

 

 

artificial 

terrain

natural 

terrain

high 

vegetation

low 

vegetation
building hardscape artifact vehicle Row Total

artificial 

terrain
271008 10672 2 29 1533 522 95 1070 284931

natural 

terrain
19295 133975 80 141 2691 1166 497 1119 158964

high 

vegetation
1 334 871512 200 14429 96 826 98 887496

low 

vegetation
347 741 447 7865 798 147 457 358 11160

artifact 312 1642 3396 346 2705 431 35637 1472 45941

vehicle 1905 2816 83 182 1602 600 819 48497 56504

Column 

Total
298200 162812 901832 8940 794204 19373 39753 54381 2279495

R
e
fe

r
e
n

c
e
 D

a
ta

Classified Data

435 818

807297

27202

362 987 949

hardscape 2332 5985 72 91 1420 16049

building 3000 6647 26240 86 769026
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Fig. 7. Classes of TUM-MLS1's test dataset acquired with low accuracy (radius is 0.75m). 

 

 
 

Table 3. Comparison to a state-of-the-art approach of TUM-MLS1. O.A. indicates the overall 

accuracy. 

 

 Sun et al. (2018) Our Approach  

Class User Producer User Producer 

artificial terrain 0.952 0.943 0.909 0.951 

natural terrain 0.839 0.911 0.823 0.843 

high vegetation 0.931 0.972 0.966 0.982 

low vegetation 0.787 0.496 0.880 0.705 

building 0.933 0.931 0.968 0.953 

hardscape 0.844 0.495 0.828 0.590 

artifact 0.747 0.345 0.896 0.776 

vehicle 0.827 0.848 0.892 0.858 

O.A. 0.921 0.945 

 

Table 4 presents the classification performances of the Toronto-3D test data for the 

different radius sizes tested. The best result in overall accuracy was obtained when the 

radius was 0.75m as 94.5%, and the worst result was when the radius was 0.25m as 

92.2%.  As  a result, we can conclude that the classification results obtained for Toronto- 
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3D and TUM-MLS1 are consistent. For Toronto-3D, the processing time increased to 65 

minutes when the radius was 0.75m, whereas in all other cases it was completed in 

roughly the same amount of time as TUM-MLS1. Fig. 8 depicts the confusion matrix for 

the classification belonging to the best result (i.e. for radius 0.75m).  

 

 

 

 
 

Fig. 8. Confusion matrix of the Toronto-3D test data for radius 0.75m 

 

 

 

Table 4. Overall accuracy (O.A.) and kappa index (in %) of the Toronto-3D test data for all three 

different radius values tested. Bold ones indicate the best results. (N0.25: 0.25m , N0.50: 

0.50m and N0.75: 0.75m)  

 

 N0.25 N0.50 N0.75 

Class User Producer IoU User Producer IoU User Producer IoU 

road 94.3 97.7 92.2 94.4 97.8 92.4 94.7 97.5 92.5 

road 

marking 
87.0 68.9 62.5 86.3 67.7 61.1 84.3 69.4 61.5 

natural 89.4 94.6 85.1 93.4 96.5 90.3 95.1 97.2 92.6 

building 92.3 83.4 78.0 95.2 90.1 86.1 96.2 92.8 89.5 

utility line 90.5 77.6 71.7 93.6 82.1 77.7 94.2 83.3 79.2 

pole 97.6 89.0 87.1 98.3 94.2 92.7 98.4 96.2 94.7 

car 91.5 90.7 83.6 94.7 93.5 88.9 95.4 95.0 90.8 

fence 81.7 46.0 41.7 89.2 69.7 64.3 89.1 76.0 69.6 

O.A.(%) 92.2 93.8 94.5 

Kappa(%) 88.7 91.1 92.1 

 

 

 

 

road
road 

marking
natural building utility line pole car fence Row Total

road 1316004 26441 2386 560 0 76 4471 63 1350001

road 

marking
62530 142817 19 5 0 0 282 0 205653

natural 3983 7 729133 13334 1070 193 2168 112 750000

building 1771 8 26607 375283 182 70 345 39 404305

utility line 0 0 3783 459 23234 425 0 0 27901

pole 147 3 1502 187 190 51644 33 0 53706

car 4615 146 2952 257 0 63 153083 103 161219

fence 110 0 489 64 0 0 159 2604 3426

Column 

Total
1389160 169422 766871 390149 24676 52471 160541 2921 2956211

Classified Data

R
e
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r
e
n
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e
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The high accuracy and prevalence of the classes road, natural, and building in the 

data had a significant impact on the classification result. One can observe a relatively 

strong confusion between the road and road marking classes. Although the overall 

classification accuracy is increased with increasing the radius parameter in our 

experiments, the best result for the road marking class is achieved when a small radius is 

set. It's possible that the color information in the dataset can help us distinguish between 

these  two  classes.  As  in TUM-MLS1, some confusion has also been observed between  

classes that are very close and overlapped, such as natural, building, and utility line. Due 

to the greater number of samples compared to the TUM-MLS1 dataset, the class car in 

Toronto-3D dataset is identified with an accuracy of over 90 percent. The classified 

outputs of Toronto-3D dataset for radius 0.75m are illustrated in Fig. 9 and Fig.10. 

 

 

 

 
 

Fig. 9. Classification results of Toronto-3D with radius 0.75m. 

 

 

The results of the feature importance test indicate that normalized height is the most 

significant predictor of the four predictors for TUM-MLS1. Therefore, precise terrain 

elevation estimation at each point is essential. The most significant parameter for 

Toronto-3D is the number of neighborhood points. Scale determination is crucial 

because this parameter is highly dependent on the point density in the point cloud and 

the size of the neighborhood. According to the results of the tests, there is almost no 

correlation between the features utilized (see in Fig. 11). 
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Fig. 10. Classes of Toronto-3D’s test dataset with radius 0.75m. 
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TUM-MLS1 

 
(a) 
 

Toronto-3D 

 
(b) 

Fig. 11. Importance of features estimated via Out of Bag Importance Estimates of the RF 

algorithm and Predictor Association Estimates for (a) TUM-MLS1, and (b) Toronto-3D. 

5. Conclusion 

The original features of dense point cloud data acquired using mobile laser scanners are 

weak in the absence of color information. Therefore, in this study, a neighborhood 

relationship between the points in the point cloud was formed using the cylindrical 

neighborhood type. Thereafter, features are extracted based on their proximity to each 

other in order to improve classification performance. 

Overall accuracies of over 90% can be obtained by utilizing four geometric features 

via the cylindrical neighborhood relationship. Classification errors are most frequently 

caused by classes with similar properties, such as artificial and natural terrain of TUM-

MLS1 dataset, and road and road marking of Toronto-3D dataset, overlapping objects 

(e.g., high vegetation vs. artifact of TUM-MLS1, and natural vs. car of Toronto-3D), 

adjacent objects (building vs. high vegetation), and classes with a small sample size (e.g. 

low vegetation, hardscape and artifact). Indeed, the results for specific classes (low 

vegetation, hardscape, and artifact) are computed to be relatively low and, in general, 

cannot reach a satisfactory level. Nevertheless, the cylindrical neighborhood's major 
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drawback appears to be its processing time, which is significantly longer than that of its 

counterparts, such as the k-nearest neighbor or spherical neighborhood. Given that the 

processing load increases with increasing data density, various approaches 

(segmentation, voxel, etc.) can be used to improve the processing of large datasets and 

reduce the processing load. It is worth noting that the sample size of the classes may 

have an effect on the classification result. Fixed radius selection may not be appropriate 

for classes with a small sample size, depending on the cloud point density.  

Our future research will also examine classification strategies for MLS, including 

deep learning. The introduced strategy will be tested on other benchmark datasets 

publicly available. Moreover, the feature set will be augmented with other features, and 

feature importance will be emphasized by the classifier-independent feature selection 

methods. 
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