
Baltic J. Modern Computing, Vol. 10 (2022), No. 2, 241-250 
https://doi.org/10.22364/bjmc.2022.10.2.10 

Classification of Skin Lesion Images with Deep 

Learning Approaches 

Buket BAYRAM1, Bahadır KULAVUZ2, Berkay ERTUĞRUL2,  

Bulent BAYRAM2, Tolga BAKIRMAN2, Tuna ÇAKAR3,  

Metehan DOĞAN4 

1 Dermatology Clinic (M.D.), Istanbul, Turkey  

2 Yildiz Technical University, Faculty of Civil Engineering,  

Department of Geomatics Engineering, Istanbul, Turkey;  

3 Graduate School of Big Data Analytics, MEF University, Istanbul, Turkey 

4 Software Engineer in BeGeo Software Tech. Inc. Co. Sakarya, Turkey 

 drbuketbayram@gmail.com, bahadırkulavuz@gmail.com, 

berkayerturul80@gmail.com, bayram/bakirman@yildiz.edu.tr, 

tuna.cakar@tunasc.com, metehandogn@gmail.com  

ORCID 0000-0001-9961-2151, 0000-0002-7269-5708, 0000-0002-4248-116X,  

0000-0001-7828-9666, 0000-0001-8594-7399, 0000-0002-3711-8315  

Abstract. Skin cancer is one of the most dangerous cancer types in the world. Like any other 

cancer type, early detection is the key factor for the patient’s recovery. Integration of artificial 

intelligence with medical image processing can aid to decrease misdiagnosis. The purpose of the 

article is to show that deep learning-based image classification can aid doctors in the healthcare 

field for better diagnosis of skin lesions. VGG16 and ResNet50 architectures were chosen to 

examine the effect of CNN networks on the classification of skin cancer types. For the 

implementation of these networks, the ISIC 2019 Challenge has been chosen due to the richness of 

data. As a result of the experiments, confusion matrices were obtained and it was observed that 

ResNet50 architecture achieved 91.23% accuracy and VGG16 architecture 83.89% accuracy. The 

study shows that deep learning methods can be sufficiently exploited for skin lesion image 

classification. 
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1. Introduction 

Cancer is defined as a disease consisting of uncontrolled proliferation of foreign cells in 

organs (Cooper, 2019). Cancer is the highest cause of death in the world and skin cancer 

is one of the most common types of cancer in the world (WHO, 2022). Skin cancer is 

one of the three most dangerous types of cancer caused by damaged DNA that can cause 

death (Ali et al., 2021). Early detection of skin cancer can highly increase the curing rate 

(Codella et al., 2017). Since the time-consuming visual examination of the lesions is 
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dependent on the dermatologist’s prior experience, this can cause the disease to be 

misdiagnosed (Kazakevičiute-Januškevičiene et al., 2015). 

Computer-aided diagnostic systems help clinicians improve the accuracy of their 

diagnoses by providing a second perspective (Yanese and Triantaphyllou, 2019). In this 

context, utilization of image processing and deep learning algorithms can increase 

dermatologist performance and minimize the diagnostic time in the detection of skin 

cancer (Hosny et al. 2019). 

The diagnosis and detection process in medicine with convolutional neural networks 

has increased in use in recent years. Gessert et al. (2020) have used ensembles of multi-

resolution EfficientNet to classify ISIC 2019 datasets that have achieved results with 

74.2% sensitivity. Mahbod et al. (2020) have used EfficientNet architectures and ISIC 

2017 dataset to explain the impact of segmentation on classification. Three different 

segmentation models were used and the results of manual segmentation achieved the 

highest classification accuracy with an area under the receiver operating characteristic 

curve (AUC) score of 93%. Harangi et al. (2020) created a supported deep learning 

framework using the GoogleNeT Inception-v3 architecture and performed a seven-class 

classification with an accuracy score of approximately 90% for each class. Sekhar et al. 

(2021) have used raw dermoscopic images as an input to the CNN and features of 

segmented dermoscopic images as additional information. The proposed method gives a 

classification accuracy of 98.13% for the identification of Melanoma. Maron et al. 

(2021) have implemented VGG16_BN, ResNet50, DenseNet121 and AlexNet 

architectures to test the robustness of convolutional neural networks in skin cancer using 

3 different datasets (Skin Archive Munich (SAM), SAM-corrupted (SAM-C) and SAM-

perturbed (SAM-P)). Calderon et al. (2021) performed classification on the HAM10000 

dataset to compare the state-of-the-art architectures with the bilinear approach created in 

the VGG16 and ResNet50 architectures. It was seen that the new approach achieved 

higher accuracy than other methods, with an F1 score of 0.9321. Hasan et al. (2022) 

have used a hybrid convolutional neural network (DermoExpert) to classify ISIC 2016, 

ISIC 2017 and ISIC 2018 datasets that have achieved the area under the receiver 

operating characteristic curve (AUC) of 0.96, 0.95, and 0.97, respectively. Indraswari et 

al. (2022) have used MobileNetV2 network to classify melanoma datasets and achieved 

an accuracy of over 85%.  

With these algorithms, results as successful as an expert can be obtained and human 

error can be eliminated (Kassam, 2016). Therefore, we performed classification using 

images from the largest published dermoscopic open datasets - the International 

Collaboration on Skin Imaging (ISIC Archive, 2019) dataset. Due to their success in the 

literature, we have chosen VGG16 and ResNet50 architectures for dermoscopic image 

classification since the depth of models is quite different.  

In terms of deep learning-based dermoscopic image classification, this study mainly 

aims to answer the following questions: 

 Can architectures with different depths achieve similar accuracy results on 

the same dataset? 

 How does the balance of the dataset affect accuracy? 

 Does the accuracy of the architectures increase as the dataset grows? 
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2. Materials and Methods 

2.1. ISIC 2019 

The dataset used in the research was obtained from the ISIC 2019 (ISIC Archive, 2019) 

challenge. There are 9 classes in the dataset and a total of 25331 image data. Classes in 

the dataset are specified as Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), 

Benign Keratosis (BKL), Dermatofibroma (DF), Melanoma (MEL), Nevus (NV), 

Squamous Cell Carcinoma (SCC), Vascular Lesion (VASC) and None of The Others 

(UNK). A part of the ISIC dataset was obtained by cropping the lesion areas of the 

images in the HAM10000 dataset at 600x450 sizes, and histogram corrections were 

applied to some images (Tschand et al., 2018). There are also different datasets 

consisting of skin lesion images. BCN_20000 and MSK datasets are a few of them. The 

images in the BCN_20000 are referred to as difficult dataset since the datasets consist of 

lesions that occur in rare regions, and the size of the images is 1024x1024 (Combalia et 

al., 2019). The images in the MSK dataset do not have a fixed size. On the other hand, it 

contains additional information such as the patient's age group, gender, and the region of 

the lesion. However, since these data are missing in some images, the dataset cannot be 

used in its full form (Gessert et al., 2020). 

While determining the classes to be used in the research, homogeneity was taken into 

consideration in the data distribution. Among these classes, BCC, MEL and NV classes 

with the highest number of images were selected for this project. In the dataset, BCC 

class has the minimum number of images, which is 3323. For this reason, in the first 

stage of the research, the number of images for 3 classes was equalized to 3323 for a 

balanced dataset. The dataset created with these images was used in the processes 

conducted with Dataset 1. For the second part of the study, the number of images was 

increased using augmentation to 10911 which is the highest number of images for a class 

(NV). The second dataset created was used in the Dataset 2 phase. The Dataset 2 were 

generated using augmentation techniques such as horizontal flip, vertical flip and 

random brightness contrast augmentation. 

The number of original images, Dataset 1 images and Dataset 2 images belonging to 

the classes in the dataset are shown in Table 1. Examples from the classes in the dataset 

are shown in Figure 1. 

 
Table 1. Number of images 

 

Class Original Image Count Dataset 1 Dataset 2 

BCC 3323 3323 10911 

NV 10911 3323 10911 

MEL 3970 3323 10911 

Total 18204 9969 32733 
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Figure 1. Original Examples from ISIC 2019 Dataset (ISIC Archive, 2019) 

 

 
Figure 2. Random Brightness Contrast, Horizontal and Vertical Augmentation Examples 

2.2. Architectures 

In this study, ResNet and VGG architectures were used to classify skin lesion images. 

ResNet (He et al., 2016) architecture made its name by winning the ImageNet 

Classification challenge held in 2015. ResNet50 architecture consists of 48 convolutions, 
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1 maximum pooling and 1 average pooling layer. The input image size of the 

architecture is 224x224 and the first layer is 7x7. It is the convolution layer with kernel 

size, and then there is the max-pooling layer with a 3x3 kernel size. The most important 

feature of the ResNet architecture is that it uses the residual learning method in the 

learning process for which it exploits Residual blocks (Figure 2). Residual blocks consist 

of 3 convolution layers and these layers have kernel sizes of 1x1, 3x3 and 1x1, 

respectively. Finally, after the residual blocks, there is an average pooling and a fully 

connected layer with 1000 neurons (Calderon et al., 2021). 

 
 

 
 

Figure 3.  ResNet50 Architecture 

The VGG architecture was first introduced by Simonyan and Zisserman (2015) in the 

ImageNet Classification Challenge. The VGG16 architecture consists of 16 layers, 

including 13 convolutional layers and 3 fully connected layers. The convolution layers 

form 5 convolution blocks and the input size is 224x224 pixels (Figure 3). There are 

convolution and maximum pooling layers within the convolution blocks. The 

convolution layer kernel size is 3x3, the maximum pooling kernel size is 2x2, and the 

fully connected layer kernel size is 1x1. After the convolution blocks, there are 3 fully 

connected layers with 4096, 4096 and 1000 neurons. (Göçeri, 2019). SoftMax activation 

is located on the final layer as can be seen in Figure 3. 

 

 
 

Figure 4. VGG16 Architecture (Simonyan and Zisserman, 2015) 

 

It is aimed to perform the mentioned deep learning approaches for lesion 

classification from dermoscopic images which can be captured in various angles and 

lightening conditions.  

Information about the equipment on which the trainings are carried out is shown in 

Table 2. The hyperparameter information of the architectures is shown in Table 3 which 

are determined empirically considering hardware limitations.  
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Table 2. Hardware specifications 

 

Hardware specifications 

Operating System Ubuntu 20.04.3 LTS 

Processor Intel® Xeon(R) Silver 4214 CPU @ 2.20GHz × 48 

RAM 126 GB 

Graphics Card NVIDIA GeForce RTX 2080 Ti 

 

 

Table 3. Information of hyperparameters 

 

Hyperparameter ResNet50 VGG16 

Library PyTorch PyTorch 

Batch Size 8 16 

Activation Function Softmax ReLU 

Optimizer Adam Adam 

Learning Rate 5e-04 1e-04 

Number of Epoch 100 100 
 

3. Result and Discussion 
 

The datasets have been split as 70%, 20% and 10% for train, validation and test sets, 

respectively. In Dataset-1, the number of images is 6978, 1993 and 997 for train, 

validation and test sets, respectively. In Dataset-2, the number of images is 22913, 6547 

and 3273 for train, validation and test sets, respectively. 

Overall accuracy test results of VGG-16 and ResNet-50 architecture are shown in 

Table 4. The test datasets of Dataset 1 and Dataset 2 were also cross-compared with the 

trainings conducted with both datasets. For example, both networks are trained with 

Dataset-1 and Dataset-2, and tested with the test set of Dataset-1 and Dataset 2. The 

results show that increasing the number of images in Dataset 2 does not affect the 

performance of VGG16 as the overall accuracy increased around only 1% for the test set 

of Dataset-2. On the contrary, ResNet50 performed significantly better when it is trained 

with Dataset-2 since the overall accuracy is increased by almost 10% for the test set of 

Dataset-2. For both networks, increasing number of images in the training (Dataset-2) 

does not seem to perform well on the small test set of images (Dataset-1), since the 

overall accuracy of both networks is decreased by approximately 14% and 13% for 

VGG16 and ResNet50, respectively. 

The confusion matrix (Table 5) shows the relationships between the test classes as a 

result of the prediction of the data whose real classes are known. Additionally, Table 6 

shows precision, recall and F1 values for each class in all experiments. The observations 

on both tables show that the class that was confused the most and reduced the accuracy 

as a result of tests was the MEL class as it has the lowest F1 value.  It was observed that 

the BEL and NV classes were better distinguished. In terms of F1 values, ResNet50 has 

outperformed VGG16 for all classes in all experiments. In line with the overall accuracy, 
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the best results seem to be obtained with ResNet50 trained with Dataset-2. Some TP 

examples are shown in Figure 4.  

 
Table 4. VGG16 and ResNet50 architecture overall accuracy test results.  

              The underlined values indicated the best results for each architecture and dataset 

 

T
ra

in
 

 
Test 

VGG16 (Accuracy %) Dataset-1 Dataset-2 

Dataset-1 83.89 76.37 

Dataset-2 69.66 77.38 

ResNet50 (Accuracy %) Dataset-1 Dataset-2 

Dataset-1 83.35 81.45 

Dataset-2 70.52 91.23 

 
 

Table 5. Confusion Matrix for all four cases for each architecture 

 

Train/Test: Dataset-1/Dataset-1 

VGG16 BCC MEL NV ResNet50 BCC MEL NV 

BCC 592 56 17 BCC 570 80 15 

MEL 127 474 64 MEL 92 521 47 

NV 24 42 599 NV 20 57 588 

Train/Test: Dataset-2/Dataset-1 

VGG16 BCC MEL NV ResNet50 BCC MEL NV 

BCC 571 37 57 BCC 649 2 14 

MEL 101 316 248 MEL 66 312 287 

NV 18 23 624 NV 1 1 663 

Train/Test: Dataset-1/Dataset-2 

VGG16 BCC MEL NV ResNet50 BCC MEL NV 

BCC 1864 273 46 BCC 1867 243 73 

MEL 463 1544 176 MEL 386 1601 196 

NV 342 659 1182 NV 312 717 1154 

Train/Test: Dataset-2/Dataset-2 

VGG16 BCC MEL NV ResNet50 BCC MEL NV 

BCC 1967 121 95 BCC 2107 63 13 

MEL 484 1231 468 MEL 140 1772 271 

NV 174 142 1862 NV 62 26 2095 

 

 

Considering the confusion matrices (Table 5) and incorrectly predicted images 

(Figure 5), MEL class should be more investigated. Even though we have created a 

balanced dataset with an equal number of images for each class, it does not look 

sufficient for MEL classification.  
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Table 6. Precision, Recall and F1 values of each experiment for each class.  

               The best F1 values for each class are underlined.  

 

Train/Test: Dataset-1/Dataset-1 

VGG16 Precision Recall F1 ResNet50 Precision Recall F1 

BCC 0.8902 0.7968 0.8409 BCC 0.8571 0.8358 0.8463 

MEL 0.7128 0.8287 0.7664 MEL 0.7894 0.7918 0.7906 

NV 0.9008 0.8809 0.8907 NV 0.8842 0.9046 0.8943 

Train/Test: Dataset-2/Dataset-1 

VGG16 Precision Recall F1 ResNet50 Precision Recall F1 

BCC 0.8587 0.8275 0.8428 BCC 0.9759 0.9064 0.9399 

MEL 0.4752 0.8404 0.6071 MEL 0.4692 0.9905 0.6367 

NV 0.9383 0.6717 0.7829 NV 0.9970 0.6877 0.8140 

Train/Test: Dataset-1/Dataset-2 

VGG16 Precision Recall F1 ResNet50 Precision Recall F1 

BCC 0.8539 0.6984 0.7683 BCC 0.8551 0.7279 0.7864 

MEL 0.7072 0.6236 0.6628 MEL 0.7334 0.6251 0.6750 

NV 0.5415 0.8419 0.6591 NV 0.5286 0.8110 0.6400 

Train/Test: Dataset-2/Dataset-2 

VGG16 Precision Recall F1 ResNet50 Precision Recall F1 

BCC 0.9010 0.7493 0.8182 BCC 0.9652 0.9125 0.9381 

MEL 0.5639 0.8240 0.6696 MEL 0.8117 0.9522 0.8764 

NV 0.8549 0.7678 0.8090 NV 0.9597 0.8806 0.9185 

 

 

 

 

 
 

Figure 5. Examples of the correct prediction images 
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Figure 6. Examples of incorrectly predicted images of VGG architecture 

 

4. Conclusion 

As a result of the study, it was observed that the accuracy of the ResNet50 architecture 

increased in parallel with the number of image data. However, when the accuracies 

obtained with the VGG-16 architecture were examined, it was observed that the 

accuracy is decreased as a result of the training with more data. For this reason, it has 

been determined that VGG-16 does not provide the desired performance in our data set. 

The performance of ResNet50 can be improved even further in terms of MEL 

classification by increasing the number of images. For future studies, we aim to perform 

recently popular visual information transformers and semantic segmentation of skin 

lesions to extract morphology and boundary. Thus, a semantic segmentation-based 

computer-aided diagnosis approach will be developed to give physicians a second 

opinion for improvement of their diagnosis.  
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