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Abstract. Stereo matching is an important and popular field of computer vision. Numerous re-
searchers worldwide are devoted to enhancing the effectiveness of stereo matching applications.
In stereo matching, determining the costs of matching is a critical step. This step generates a cost
volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate
the final disparity map. The purpose of this study is to improve stereo matching performance
by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and
Hamming distance are one of the most frequently used cost functions in conventional approaches.
Besides, a matching cost volume generated using a deep learning technique called MC-CNN has
been shown to extract more reliable features from images than conventional approaches. Thus,
both of these cost computation strategies have a number of advantages and disadvantages. By
including deep learning as a cost-volume, the advantages of these two distinct cost-volumes com-
plement one another, resulting in a better cost-volume prior to applying the smoothing operation
(e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing cost-
volumes improves the stereo matching performance of nearly all of the benchmark stereo images
we tested in the Middlebury dataset.
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1 Introduction

Stereo matching is the process of determining the disparity value of a pixel that corre-
sponds to a matching pixel in two or more rectified images. The horizontal displacement
between matching points in two rectified images is defined as the disparity map. Stereo
matching can be used in a wide range of applications to estimate depth or height maps,
and it is preferred in a variety of applications such as aerial imaging (Liu et al., 2018;
Kukkonen et al., 2019), autonomous driving (Yang et al., 2019; Peng et al., 2020), and
robotic vision (Samadi et al., 2016; Ma et al., 2020).
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Stereo matching can be broadly grouped into two approaches: local and global
(Scharstein and Szeliski, 2002). Local approaches compute the disparity value by com-
paring the features of two pixels in the left and right images by constructing a patch
around the pixel. Each pixel is subjected to a disparity calculation. Local approaches
are computationally efficient and are therefore suitable for real-time applications. How-
ever, the resulting disparity maps are less accurate than those produced by global ap-
proaches. Global approaches formulate the disparity calculation as a problem of en-
ergy minimization. While this approach produces more accurate disparity maps, it is
significantly slower to compute than local approaches. As a result, global approaches
are unsuitable for real-time applications. Semi-global Matching (SGM) (Hirschmuller,
2007) is a technique proposed to address the challenges associated with local and global
approaches. SGM is indeed an integration of the two approaches, and while SGM is
slightly less accurate than global approaches, its execution time is significantly faster.
Because SGM is used in this study during the aggregation step, it will be discussed
in detail in the following section. An improved version of SGM called More-Global
Matching (MGM) (Facciolo et al., 2015) is also preferred as a smoothing operator in
this study. MGM will be discussed in detail in the following section as well.

A stereo matching algorithm consists of four parts. (i) matching costs computation,
(ii) cost aggregation, (iii) disparity computation, and (iv) disparity refinement. A match-
ing cost quantifies the similarity between pixels and is a function of (x, y and d). The
image pixel coordinates are denoted by x and y and the disparity value is symbolized
by d. Normalized Cross Correlation (NCC), Sum of Square Differences (SSD), Sum of
Absolute Differences (SAD) (Poggi et al., 2021), the Census transform and Hamming
Distance are amongst the widely used matching costs. The Census transform combined
with the hamming distance is a well-known superior matching algorithm compared to
other algorithms (Zabih and Woodfill, 1994). Because the census transform is inde-
pendent of intensity values; as a result, it is invariant under monotonic illumination
variations. It is also possible to use deep learning in the process of calculating matching
costs. (Zbontar and LeCun, 2016) proposed an MC-CNN strategy for fast deep learning
strategy. MC-CNN learns the similarity between image patches by training a convolu-
tional neural network (CNN). The Siamese network (Bromley et al., 1993) was used as
the base architecture. The cost volume generated by MC-CNN can be used as an input
to a smoothing operation as proposed in SGM. The MC-CNN is discussed in detail in
the following section.

The concept of combining multiple matching cost volumes to create a solid cost vol-
ume has been extensively studied in the past. In (Jiao et al., 2014), the authors proposed
a combined cost function with a modified color census transform and truncated color
and gradient absolute differences.Those cost functions were then multiplied by various
weight values. By adjusting those weights, the cost function’s contribution to the final
result was controlled. According to the authors, their proposed algorithm ranked sec-
ond in the Middlebury dataset evaluation at that time. Another study utilized a weighted
sum to combine different cost volumes was presented by (Miron et al., 2014). That study
combined a variant of the census transform called the cross-comparison census (Miron
et al., 2012) with the mean sum of relative intensity differences. Another study (Zhan
et al., 2015), proposed calculating the combined cost function using the weighted sum
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of the absolute difference in image colors, the absolute difference in image gradients
in both directions and the lightweight census transform of the intensity image. These
functions were added using a weighted sum. Additionally each of these functions was
truncated to ensure that none of them dominated the final result. In (Yang et al., 2014),
the weighted sum of the truncated version of the Birchfield and Tomasi measure (Birch-
field and Tomasi, 1998) and the truncated version of the gradient map’s absolute dif-
ference were proposed. Another study which proposed a combined matching cost was
presented in (Jeon et al., 2018). Four matching costs were primarily considered (Ab-
solute difference summation (SAD), normalized cross correlation with zero mean, the
Census transform, and Sum of Gradient Differences). In addition to the four matching
costs, combinations of these matching costs were tested. These costs were combined
with a single variable α. When the combined matching costs were added together, the
total number of matching costs was 31. A linear equation is constructed from differ-
ent cost volumes in (Shetty et al., 2020). That study adopted NCC, normalized mutual
information (NMI) and SAD, and a parameter was used to merge SAD and NMI. There-
after, the resulting matching cost from those two costs was combined with the NCC by
adding the two matching costs and dividing by two. In another study, SAD and the Cen-
sus transform were used to form a linear weighted matching cost with adaptive weights
(Chai and Cao, 2018). The weights used in the combination process reflected the im-
portance of the matching cost in the current support domain. Another study handled
an exponential function to combine different matching costs (Stentoumis et al., 2014).
The Census transform on image gradients was combined with the absolute difference
in color and image gradients. The combination process was based on a robust expo-
nential, and by utilizing the exponential combination, the study prevented the final cost
from being dominated by large outlying cost penalties. Another study that favored the
use of exponential function appeared in (Hamzah et al., 2017). Through the use of a
weighting parameter, the Absolute difference (AD) and gradient matching (GM) were
combined in a linear fashion. This output was then combined with the census transform
via the exponential function. Enhanced image gradient-based cost and improved census
transformation-based cost were also combined with the use of an exponential function
in (Liu et al., 2020). A combination of AD, absolute gradient difference (AGD), and
gradient-based census transform with the exponential function was presented in (Ma
et al., 2017). The authors have achieved the second highest score in the Middlebury set.
The research article (Hamid et al., 2021) was the most comparable one to our study.
The cost associated with the MC-CNN was combined with the difference in directional
intensity. A parameter (λ) was used to combine these two matching costs. According to
the authors of that study, when tested on the Middlebury dataset their proposed method
outperformed all other methods in terms of accuracy.

The census transform and the cost volume from MC-CNN are convolved in this
study to generate a more accurate matching cost; and thus, improve stereo matching
performance. Both of these cost volumes have their own set of advantages and disad-
vantages to consider. The Census transform does not depend on the actual intensity
values instead it uses the ordering of the intensity values. This feature makes the cen-
sus transform invariant with respect to monotonic variations of illumination. However,
since it depends on the window size of a filter, it may fail to extract features in some
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situations. MC-CNN can learn features better; however, it may fail on images outside
of the domain of training set. Our goal is to build a new cost volume that can take ad-
vantage of the benefits of these cost volumes while also reducing their uninvited effects.
In the previous studies on cost volume combination, the combination process is done
through summation. In this study, cost volumes are combined using a multiplication
process which adds nonlinearity to the solution. The rest of the paper is organized as
follows. In Chapter 2 both of the previously used and the newly formed matching costs
as well as two cost aggregation methods (SGM and MGM) will be discussed in detail.
The results from the experiments will be presented in Chapter 3. Chapter 4 will discuss
the results and Chapter 5 will conclude the study.

2 Proposed Fusing Method

In this section, two topics will be mentioned. Firstly SGM and MGM, cost aggregation
algorithms used in this study, will be explained in detail. Secondly, the census transform
and MC-CNN matching costs will be explained, then our proposed matching cost MC-
Census will be explained in detail.

2.1 Cost Aggregation Methods

2.1.1 Semi-global Matching (SGM). In this study SGM is used in cost aggrega-
tion process. In order to achieve effective stereo matching performance SGM adds two
penalties, P1 and P2 to aggregate the cost volume (Hirschmuller, 2007). The following
is a mathematical expression of SGM:

E(D) =
∑
p

(C(p,Dp)+
∑
q∈Np

P1T [|Dp−Dq| = 1]+
∑
q∈Np

P2T [|Dp−Dq| > 1]) (1)

In Equation 1, the term C(p,Dp) represents the sum of all pixelwise matching costs
for the disparities of D. The second term represents the penalty P1 that adds a constant
penalty for all pixels q in neighborhood of Np of p if the difference between p and q is
1. The third term represents a larger constant penalty P2. This penalty is applied if the
difference between p and q is greater than 1. SGM doesn’t aggregate the cost along all
dimensions to reduce the execution time. SGM constructs a star shaped 8-path or 16-
path structure around the aggregated pixel and the final cost is aggregated along these
paths. For example, 8-path structure can be seen in Figure 1.

2.1.2 More Global Matching (MGM). More Global Matching (MGM) was also uti-
lized as a cost aggregation step in this research (Facciolo et al., 2015). The disadvantage
of the SGM approach is that while aggregating in any direction, just the value of the pre-
vious pixel is considered. If the information is ambiguous while aggregating horizon-
tally, the final result may be dominated by the information from the vertical aggregation.
As a result, the penalty terms may lose their effectiveness. MGM has been proposed to
address some of the shortcomings of the SGM approach. While SGM utilizes only the
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pixel

Fig. 1: Star shape structure of SGM

information from the previous pixel during the aggregation step, MGM utilizes infor-
mation from both the previous and upper pixels (Figure 2b). Figure 2 depicts the outline
of the MGM algorithm. MGM can be expressed in the following manner:

Lr(p, dp) = Cp(dp) +
∑

x∈r,r′

1/2min dq ∈ D(Lr(p− x, dq) + V (dp, dq)) (2)

In Equation 2, x represents the neighboring pixels, r represents the left neighbor,
r′ represents the upper neighbor. V (dp, dq) can be represented as in Equation 3. In
addition to left and upper neighboring pixels, upper-left neighboring pixel can also be
added to the summation.

V (dp, dq) =


0 ifdp = dq

P1 if |dp − dq| = 1

P2 if |dp − dq| > 1

(3)

Fig. 2: a) Star shaped structure of two neighboring pixels. b) Cost aggregation of MGM
along the paths r and r′ (Facciolo et al., 2015)
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2.2 Matching costs

2.2.1 The Census transform and Hamming Distance. There are various approaches
for computing the pixel-based matching costs. The Census transform and hamming dis-
tance is one of the most popular ones. The Census transform associates each pixel with
a binary string, encoding whether the pixel have smaller intensity values than each of its
neighbors, one for each bit. Thereafter, the distance between two transformed images
can be computed by hamming distance. The process of the census transformation and
hamming distance can be seen in Figure 3. The mathematical formulation of the census
transformation can be expressed as below:

f(p, p′) =

{
0 ifp > p′

1 ifp <= p′
(4)

In Equation 4, p represents the center pixel of a patch and p represents the neigh-
boring pixels. After the transform, a binary string is formed. Finally, hamming distance
is used to calculate the similarity between two binary strings.

127 74 32

124 64 18

157 116 84

1 1 0

1 x 0

1 1 1

11010111

Fig. 3: An example of the census transform and hamming distance on a 3x3 patch.

2.2.2 MC-CNN. Deep learning has become an increasingly important component of
the stereo matching process. A fast deep learning strategy was proposed by (Zbontar
and LeCun, 2016). MC-CNN uses Siamese network architecture. Siamese networks are
trained to learn the similarity between images and are mostly used in areas such as
fingerprint comparison, signature fraud detection, etc. MC-CNN utilizes small image
patches to train a convolutional neural network (CNN) on a similarity measure. The
subnetworks output a vector containing the features of the input patch. The output vec-
tors are then compared using the cosine similarity which gives the final output of the
network. A hinge loss is used to train the network. Pairs of examples are used in the
loss function. These examples are centered around the same image position where one
example belongs to the positive class and one to the negative class. Positive example is
generated using GT information. Negative information is generated by shifting the pos-
itive example to either the left or right by one pixel. The loss is zero when the similarity
of the positive example is greater than the similarity of the negative example by at least
a certain margin. The weights are shared between the networks. The CNN’s generated
cost volume is then forwarded to SGM for further processing. The MC-CNN algorithm
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generates a cost volume with values between [-1,+1]. The lower the value, the greater
the similarity between two pixel patches in the image. Figure 4 illustrates the MC-CNN
fast architecture for cost computation.

Similarity Score

Dot Product

Normalization

Convolution

Conv,RELU

Conv,RELU

Normalization

Convolution

Conv,RELU

Conv,RELU

Left Input Patch Right Input Patch

Fig. 4: The architecture of the MC-CNN model (Facciolo et al., 2015)

2.2.3 The Subset Selection. In order to select which matching cost combination to
use, we carried out some experiments on a set of different matching costs. Seven match-
ing cost functions are selected to form a set. Birchfield and Tomasi dissimilarity, the
census transform and hamming distance, gradient direction, gradient magnitude, inten-
sity features difference, MC-CNN, and the norm matching cost. These cost functions
are selected based on the usage of each of them in the literature. On this set, we applied
subset selection to form subsets containing different combinations of these matching
costs. Since there are seven matching costs the total of number of 127 combinations
are formed. These combinations can be calculated as 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2 - 1. In
each of these combined cost volumes, the costs are combined using the technique pro-
posed in this study. 127 combined cost volumes applied on all of the test images. The
results are then given to SGM. On all of the test images, 4 specific combinations of the
cost functions outperformed the other combinations. These combinations are, the cen-
sus (alone), the census and MC-CNN, the census and Birchfield and Tomasi, the census
and MC-CNN and Birchfield and Tomasi. Among these four combinations, the cen-
sus combined with MC-CNN outperformed the other combinations, as a good trade-off
between accuracy and computational complexity.

2.2.4 Proposed Method Both of the previously mentioned cost volumes have ad-
vantages and disadvantages. The census transform is advantageous for mitigating the
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effects of monotonic illumination variations. Image features can be extracted in a more
efficient manner by using MC-CNN, and this may lead to a higher degree of similarity
score. The Census transform cost volume values range between zero and the maximum
length of the binary string. Zero denotes the closest distance (identical), while the max-
imum length denotes the greatest distance (dissimilar), and MC-CNN outputs a cost
volume with values between [-1, +1]. The goal of this study is to convolve cost vol-
umes into a single volume that can be used in cost aggregation. Equation 5 describes
the fusion process.

G = F ◦H (5)

where G is obtained cost volume, F is MC-CNN cost volume, H is the Census cost vol-
ume, and ◦ is element-wise product operation, Hadamard Product, between cost volume
F and cost volume H . Before the fusion, MC-CNN cost volume is min-max normal-
ized between 0 and 1 so that the obtained cost volumes have the positive values. The
negative values in obtained cost volume may cause errors in penalty application process
in SGM. The disparity signals for the three cost volumes from three different images
can be seen in Figure 6. It’s easier to grasp the goal of our method after looking at
Figure 6. In Figure 6, Adirondack column the Census matching cost has two minimum
points. Compared to that MC-CNN have only one. In this scenario, the census trans-
form may output the incorrect disparity value because of multiple minimum points. The
same scenario may apply to MC-CNN as well. These two matching costs may produce
correct matching scores in different regions. Our proposed matching cost combines the
advantages of the census transform and MC-CNN matching costs. The advantage of
our proposed method can be explained better with disparity plots in Figure 5. If one
of the cost volumes has a minimum point, then the point will remain in the fused cost
volume. If both of the cost volumes have the correct minimum point, then the fused
minimum point will be even smaller. Multiple minimum points may exist in one of the
cost volumes, if either one of them has a minimum point, the fused cost volume will
have reduced number of minimum points. If two different cost volumes have different
minimum points, then fused cost volume will have a minimum point closer to GT. The
fused cost volume will have a smoother and smaller cost volume.

3 Results and Discussion

In this section, the numerical and visual results using three cost volumes, the census
transform, MC-CNN and our proposed method MC-Census are given and discussed in
detail. BAD 2.0 metric is preferred when comparing the numerical results because it is
one of the conventional metrics used in Middlebury data set evaluation. BAD 2.0 metric
compares the generated disparity map with the ground truth (GT) in areas specified by
a mask. If the difference between disparity values in GT and generated disparity map is
greater than 2 pixels, then the pixel is marked for error. Experiments were carried out
on the images from the Middlebury set (Scharstein and Szeliski, 2003; Hirschmuller
and Scharstein, 2007; Scharstein et al., 2014). Visual results comparing the three cost
volumes with the left image from the image pair and the ground truth image can be seen
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Fig. 5: Disparity signals for the three cost volumes for Teddy image.
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Fig. 6: Disparity signals for the three cost volumes for three different images. Pixel
coordinates (x,y) are (371,219) for Adirondack, (196,385) for Motorcycle, (372,361)
for Pipes.
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Table 1: RESULTS FROM MGM AND SGM ACCORDING TO BAD METRIC. FOR
EACH IMAGE, BEST VALUES ARE GIVEN IN BOLD.

SGM MGM
Image Name Census MC MC-Census Census MC MC-Census
Adirondack 0.0624 0.0431 0.0395 0.0590 0.0455 0.0388

ArtL 0.1172 0.1190 0.1188 0.1147 0.1187 0.1172
Jadeplant 0.2317 0.1817 0.1731 0.2441 0.1879 0.1806

Motorcycle 0.0649 0.0510 0.0479 0.0634 0.0523 0.0467
Piano 0.1304 0.1061 0.1026 0.1264 0.1103 0.1004
Pipes 0.1038 0.0956 0.0880 0.1007 0.0946 0.0872

Playroom 0.1528 0.1246 0.1066 0.1368 0.1342 0.1066
Playtable 0.2160 0.1081 0.0995 0.1977 0.1122 0.0999
Recycle 0.0848 0.0696 0.0632 0.0821 0.0753 0.0645
Shelves 0.2849 0.2155 0.2234 0.2729 0.2158 0.2092
Teddy 0.0553 0.0657 0.0570 0.0543 0.0684 0.0578

Vintage 0.2602 0.1982 0.2081 0.2509 0.1953 0.1943

in Figure 7. In Figure 8 the generated error maps can be seen. Also, numerical results
generated by SGM and MGM using the three cost volumes can be seen in Table 1.

We collect images from different Middlebury sets to conduct our experiments. Our
collected set has 12 image pairs. Our method has been tested on all of these image pairs.
Visual results are given in Figure 7. When the visual results are examined, it can be seen
that our proposed method generates more accurate disparity maps. The error maps gen-
erated from the experiments are also given in Figure 8. The error maps are in binary
scale. White areas represent the falsely classified pixels. Black areas represent the cor-
rectly classified pixels. The comparison of different matching costs can be evaluated
better on error maps. The first row of Figure 8 is an image called ”Adirondack”. When
the error map of the census transform is examined, it can be seen that the errors are
concentrated around the chairs arm and coffee mug. The census cost seems to perform
poorly in these regions. However, MC-CNN seems to have better accuracy around the
coffee mug. Nevertheless, MC-CNN seems to perform poorly on the edges of the book
and the upper part of the chair. Most of the errors are grouped in those areas. However,
the Census transform performs better than MC-CNN around the edges of the book and
the upper part of the chair. Another example can be seen in the 9th row of the Figure
8. This image is called ”Recycle”. When the error map from the census transform is
examined, on the one hand, the census transform performs poorly on the textureless
regions on the recycling bin but achieves good accuracy on the edges of curtains. On
the other hand, MC-CNN performs better on the textureless regions on the recycling bin
but achieves lower accuracy than the census transform on the edges of the curtains. As a
result, after proposed fusing strategy, the advantages of these two cost volumes are com-
bined. Around the aforementioned regions, the proposed method outperforms both the
results achieved by the census transform and MC-CNN. In addition to visual results,
the numerical results from our experiments are presented in Table 1. The numerical
results corroborate our visual observations. We observed that proposed cost volume,
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Fig. 7: Disparity maps generated with MGM using cost volumes Census, MC-CNN,
MC-Census starting from second column and ends in fourth column left to right. Fifth
column is the GT values.
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Fig. 8: Error maps generated with MGM using cost volumes Census, MC-CNN, MC-
Census starting from second column and ends in fourth column left to right (White
pixels represent falsely classified pixels, black pixels represent correctly classified pix-
els).
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MC-Census, performs better than both the census transform and MC-CNN. When the
numerical results are examined, it can be seen that MC-Census achieved better accu-
racy than the other two matching costs on most of the subsets. While using MGM as a
smoothing process, only on ArtL and Teddy images that the census transform achieved
better accuracy but only by a small margin. However, when other image subsets are ex-
amined, it can be seen that MC-Census achieved better scores than the other two. On the
small portion of the subset (Jadeplant, Vintage), the accuracy gain is small, but on the
large portion of the subsets accuracy gain is quite high. We can also deduce from Table
1 that aggregation method is also important in stereo matching. It can be seen that MGM
improves the overall stereo matching performance. As a result, our proposed matching
cost MC-Census performs better while using MGM as a smoothing operator.

The studies described in the introduction section use several types of aggregating
methods and conduct a variety of post-processing processes. Some of the research is
also done on the earlier version of the Middlebury collection. Because the goal of our
research is to generate a new cost volume, alternative strategies can be employed as an
aggregation algorithm. This may boost or decrease the algorithm’s accuracy. As a result,
a direct accuracy comparison between those studies seems to be impractical. However,
when the overall accuracy results from our trials are compared to the findings from
the research described in the introduction section, it is clear that our method obtains
comparable accuracy results to the mentioned methods.

4 Conclusion

In this study, a better cost volume is formed by fusing the census transform and MC-
CNN cost volumes. The results show that, our cost volume performs better on almost all
of the images. On some images, MC-Census appears to reduce the error slightly, while
on others, the error appears to be significantly reduced. On image sets like Adirondack,
Motorcycle, Pipes, Playroom, Playtable, and Recycle, it can be seen that the error is
reduced by 0.1 or 0.2. Post-processing techniques can be used to improve the overall
accuracy of all matching costs. However, no post-processing technique is used in this
study in order to maintain the clarity of the final results. Due to the fact that the pro-
posed strategy has to calculate two matching cost volumes instead of one, the execution
time eventually increases. Nevertheless, fusing the two cost volumes does not require
significant additional time.

The number of combined matching costs can be increased in order to get a better
combination in future studies. This may lead to an increase in accuracy since increasing
the cost volumes will increase the chance of achieving a better cost volume. However,
increasing the number of matching costs will also increase the execution time of the
algorithm since the number of combinations between cost volumes will increase, so
the trade off between accuracy gain and execution time must be handled well. Fusion
techniques other than multiplication can be employed to examine the impact of different
methods on the final result.
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(2014). High-resolution stereo datasets with subpixel-accurate ground truth, German confer-
ence on pattern recognition, Springer, pp. 31–42.

Scharstein, D., Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo corre-
spondence algorithms, International journal of computer vision 47(1), 7–42.

Scharstein, D., Szeliski, R. (2003). High-accuracy stereo depth maps using structured light, 2003
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Pro-
ceedings., Vol. 1, IEEE, pp. I–I.

Shetty, A. A., George, V., Nayak, C. G., Shetty, R. (2020). Multiple data cost-based stereo match-
ing method to generate dense disparity maps from images under radiometric variations, In-
ternational Journal of Intelligent Systems Technologies and Applications 19(4), 393–404.

Stentoumis, C., Grammatikopoulos, L., Kalisperakis, I., Karras, G. (2014). On accurate dense
stereo-matching using a local adaptive multi-cost approach, ISPRS Journal of Photogram-
metry and Remote Sensing 91, 29–49.

Yang, G., Song, X., Huang, C., Deng, Z., Shi, J., Zhou, B. (2019). Drivingstereo: A large-scale
dataset for stereo matching in autonomous driving scenarios, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 899–908.

Yang, Q., Ji, P., Li, D., Yao, S., Zhang, M. (2014). Fast stereo matching using adaptive guided
filtering, Image and Vision Computing 32(3), 202–211.

Zabih, R., Woodfill, J. (1994). Non-parametric local transforms for computing visual correspon-
dence, European conference on computer vision, Springer, pp. 151–158.

Zbontar, J., LeCun, Y. (2016). Stereo matching by training a convolutional neural network to
compare image patches, Journal of Machine Learning Research 17, 1–32.

Zhan, Y., Gu, Y., Huang, K., Zhang, C., Hu, K. (2015). Accurate image-guided stereo matching
with efficient matching cost and disparity refinement, IEEE Transactions on Circuits and
Systems for Video Technology 26(9), 1632–1645.

Received May 27, 2022 , accepted June 17, 2022


