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Abstract. This report presents the results of an Estonian governmental project, which aimed
to create open-source machine translation systems for Estonian. The project’s goal included six
translation directions translating between Estonian and English, German and Russian, and five
text domains – general domain, spoken language, legal, military and crisis texts. The project
results include 1) openly distributed parallel and monolingual corpora for the relevant languages,
2) open-source neural machine translation systems trained on them, and 3) new public evaluation
benchmarks. The automatic evaluation shows that the resulting systems are highly competitive
and match or surpass the performance of other available online machine translation systems. We
present the recipe for training such systems and other details and discuss interesting findings made
in the process. A live translation demo of the resulting systems (also open-sourced) is available
online.
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1 Introduction

This report presents the results of MTEE, an Estonian governmental project, the aim of
which was to create open-source competitive-quality machine translation systems for
Estonian. The main goal was to address the country’s need to enable faster distribution
of information in times of crisis (like the COVID-19 pandemic) and make it easier,
quicker and cheaper to translate public announcements, guidelines and other texts into
the three most relevant foreign languages for Estonia: English, Russian and German.

The project was funded by the Estonian Ministry of Education and Research, or-
ganized as a public procurement via the Language Technology Competence Center at
the Institute of the Estonian Language and ran from April 2021 to January 2022. The
project’s goal included six translation directions between Estonian and English, German
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and Russian, and five text domains – general domain, spoken language, legal, military
and crisis texts.

The main outcomes of the MTEE project are the following:

– openly distributed parallel and monolingual corpora 3 for the involved languages
and text domains (Section 2).

– public benchmarks for all the translation directions and text domains, created by
translating monolingual texts anew (Section 4.1);

– open-source neural machine translation systems for the six translation directions,
including trained model files and necessary software (Section 3) as well as their
evaluation (Section 4.2);

– an online demo of the resulting translation systems,4 which is also open-source.

2 Data Collection

We collected all available public data for this project from open sources, including
OPUS (Tiedemann, 2009), ELRC-SHARE (Lösch et al., 2018), EU Open Data Portal
(Kirstein et al., 2019), Meta-Share (Piperidis, 2012), CLARIN (Eskevich et al., 2020),
and ELRA5. Furthermore, we scraped multilingual and monolingual internet websites
such as state news and other governmental sites, mainly in Estonian and English and
less frequently in Russian. Some data were donated by donors and industry partners for
this project.

2.1 Pre-processing

Neural MT systems are sensitive to noise training data (Bane and Zaretskaya, 2021).
Thus we pre-processed the monolingual and parallel corpora by applying various tests,
rules and criteria to filter the data and ensure that only high-quality data is retained.
To filter parallel corpus, we use a combination of pre-existing parallel data filtering
methods from OpusFilter (Aulamo et al., 2020). Some filtering methods feature hyper-
parameters, which we set empirically.

Our processing of monolingual data differs little from the processing of parallel cor-
pora because it is mostly used for back-translation. Thus after the text is back-translated
we use the same filters as for parallel data. Before back-translation, however, we filter
monolingual sentences by removing too long sentences or sentences containing words
that exceed a specific limit. For specifics on threshold values, see Section 2.1. We used
the following filters for data cleaning:

– Duplicate filter – ensures that there is only one target language translation for a
given source language sentence.

– Sentence length ratio filter – checks whether the longest sentence is no more than
three times longer than the shortest sentence measured in characters.

3 https://doi.org/10.15155/9-00-0000-0000-0000-00229L
4 https://mt.cs.ut.ee
5 http://catalog.elra.info/en-us

https://doi.org/10.15155/9-00-0000-0000-0000-00229L
https://mt.cs.ut.ee
http://catalog.elra.info/en-us
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Table 1. Parallel data split size in thousands (K) or millions (M) of sentences per domain.

General Crisis
Train Valid Test Train Valid Test

ET-DE 9.3M 1.5K 1.5K ET-DE 21 0.4K 0.5K
ET-EN 20.4M 1.5K 1.5K ET-EN 50K 0.7K 1.3K
ET-RU 5.6M 1.5K 1.5K ET-RU 50K 0.9K 1K

Legal Military
Train Valid Test Train Valid Test

ET-DE 3M 0.9K 1K ET-DE 0.11M 0.9K 0.9K
ET-EN 3.3M 1.1K 2K ET-EN 0.17M 0.9K 0.9K
ET-RU 50K 0.5K 1K ET-RU 50K 0.9K 0.9K

– Maximum sentence length filter – filters sentence pairs where at least one of the
sentences is longer than 1000 characters.

– Maximum word length filter – filters sentence pairs where at least one of the
tokens is longer than 50 characters and does not contain directory separator char-
acters.

– Maximum word count filter – filters sentence pairs where at least one of the sen-
tences is longer than 400 tokens.

– Foreign word filter – checks whether sentences contain only words written in the
respective alphabets of the source and target languages.

– Digit mismatch filter – checks whether all digits in the source sentence also appear
in the target sentence (and vice versa).

– Statistical word alignment filter – checks whether the content overlap according
to the statistical word alignment model is below a threshold.

– Test data overlap check – as part of the test data was held-out from the training
data set (section 2.2), we performed overlap checks between training and test and
validation data sets with punctuation and whitespace removed to avoid data leak-
age.

For more detailed information on parallel data filtering check our public repository.6

After filtering, we also normalized the punctuation and whitespace in the data. Nor-
malization is a technique that was already used in Moses Statistical MT7 and had recent
success in WMT20 Shared Task on News Translation, where the OPPO Research In-
stitute (Shi et al., 2020) achieved good results for many language pairs. Thus we use
the same Moses Statistical MT script for normalization and add some modifications to
the script for it to be suitable for our task. We removed some of the substitution rules

6 https://github.com/Project-MTee/data_filtering
7 http://www2.statmt.org/moses

https://github.com/Project-MTee/data_filtering
http://www2.statmt.org/moses
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Table 2. Monolingual data size in thousands (K) or millions (M) of sentences per domain.

General Military Legal Crisis

ET 50M 0.9M 0.5M 0.6M
EN 48.9M 1.5M 0.3M 10M
DE 49.3M 130K 0.6M 3.4M
RU 49.6M 8K 5.4M 142K

and added some rules that seemed appropriate based on the findings from our early
experiments. We publish the enhanced normalization script in our public repository.8

2.2 Resulting Data Sets

The number of train, validation and test set sizes per domain and language pair is shown
in Table 1. The table represents the amounts of data left after filtering. The monolingual
dataset sizes are shown in Table 2. As the quality of the datasets varied significantly,
especially for domain-specific data, we decided to take validation and test samples from
manually picked datasets that best represented the domains. We used labelstud.io 9

to filter out samples with bad translation quality further. We also allowed annotators to
edit translations to speed up the process of collecting the datasets.

3 Translation Systems

3.1 Modular Encoders and Decoders

We compared two architectures: a set of single directional models and a multilingual
model with language-specific encoders and decoders, also known as a modular or mod-
ularized model (see Figure 1). The latter was first introduced by Escolano et al. (2019),
who investigated incrementally extending a bilingual system. Escolano et al. (2021) fur-
ther improved on it by jointly training a multilingual modular model and found that it
outperforms the universal encoder-decoder models in terms of translation quality. Lyu
et al. (2020) investigate the model’s performance from a practical perspective. They
demonstrated that one of the advantages of the modular models over single directional
models is their ability to benefit from transfer learning across language pairs via pa-
rameter sharing. Additionally, they show that a modularized way of training the models
improves translation performance compared to single directional models in all cases.
Our initial experiments that compared the two methods also confirmed these findings.
In addition to improved translation quality, the multilingual modular model is smaller
and more convenient to deploy than a set of multiple single directional models.

8 https://github.com/Project-MTee/translation-worker/blob/main/nmt_

worker/normalization.py
9 https://labelstud.io/

https://github.com/Project-MTee/translation-worker/blob/main/nmt_worker/normalization.py
https://github.com/Project-MTee/translation-worker/blob/main/nmt_worker/normalization.py
https://labelstud.io/
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(a) A set of single directional models (b) Multilingual modular model

Fig. 1. Diagram showing (a) a set of single directional models where no parameter sharing across
language pairs is possible, and (b) multilingual modular model, where encoders and decoders are
shared across all language pairs.
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Fig. 2. English↔Estonian translation BLEU scores.

3.2 Technical Setup

3.2.1 Tokenization Models We use the SentencePiece (Kudo and Richardson, 2018)
implementation of byte-pair encoding (Sennrich et al., 2016) for training the tokeniza-
tion models. For the modular approach, each language has a separate model. The mod-
els are trained on 10 million randomly sampled sentences with a vocabulary size of
24,000 and character coverage of 0.9999. After training the tokenization models, we
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Fig. 3. German↔Estonian translation BLEU scores.

add the top-500 characters across the datasets and the alphabets of all languages to the
tokenization models.

3.2.2 Translation Models We use Fairseq (Ott et al., 2019) implementation of en-
coders and decoders that follow the Transformer architecture (Vaswani et al., 2017) base
model configuration with the hidden dimension of 512 and the feed-forward dimension
of 2048. Embedding layers are shared between the encoder and decoder for the same
language. Dropout, activation dropout and attention dropout of 0.1 are used. The train-
ing procedure of our multilingual modular models closely resembles the proportional
sampling training strategy described by Lyu et al. (2020). While we also proportionally
sample batches (no oversampling) and use gradient accumulation as described, we do
not reduce the batch size. The implementation with our modifications of the multilin-
gual modular model training using Fairseq is available in our public repository.10

We train our models in two phases, the first being the pre-training phase, where the
training dataset consisted of parallel sentences and synthetic data (described in Sec-
tion 3.4), including back-translated sentences with a prepended back-translation token
to separate the back-translated data from the rest of the data. In this phase, the model
was trained on 4 GPUs for 70 epochs with a batch size of 54,000 tokens and six gradi-
ent accumulations. We use the Adam optimizer and inverse-square-root scheduler with

10 https://github.com/TartuNLP/fairseq/tree/mtee

https://github.com/TartuNLP/fairseq/tree/mtee
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Fig. 4. Russian↔Estonian translation BLEU scores.

4000 warm-up updates until it achieves a learning rate of 0.001. We also use label
smoothing of 0.1.

The second phase is fine-tuning to obtain domain-specific models. Each domain-
specific model builds upon the initial general model and continues on domain-specific
data. Unlike in pre-training, we use only parallel sentences (unless there were fewer
than 50,000 sentences for a given domain, in which case we also used up to 50,000
back-translated sentences from the same domain). We used 1 GPU with a batch size of
24,000 and 24 gradient accumulations in this phase. During this phase, we continued to
use the learning rate scheduler from the pre-training, with the rest of the configuration
remaining the same as well. The fine-tuning was ended when the validation loss had not
improved for five epochs.

3.3 Domain Detection

The domain detection model is a fine-tuned version of XLM-Roberta (Conneau et al.,
2020). We fine-tuned the model for two epochs with batch size 16 and learning rate
5 · 10−6, which is the recommended value. We want our domain detection model to de-
fault to the general domain in case of uncertainty, increasing the model’s precision for
the crisis, legal and military domains with a trade-off of lower precision in the general
domain. This design choice was motivated by false positives in crisis and military do-
mains. We had around five times more training samples from the general domain than



Multilingual Neural Machine Translation 429

Table 3. Results of domain detection. Recall* considers prediction to be true positive if the pre-
dicted domain is either its true domain or general domain.

Metric General Legal Crisis Military

Precision 0.61 0.77 0.88 0.85
Recall 0.84 0.80 0.57 0.49
Recall* 0.84 0.97 0.94 0.87

from crisis and military domains and around two times more samples from the legal
domain than from military and crisis.

The results are shown in Table 3. It includes a custom recall (recall*), which shows
how many samples from each domain will be translated either with a domain-specific
model or a general model. We use recall* as a metric because general domain models
have good performance for in-domain data since they have been trained on all in-domain
data. Thus using the general domain model to translate domain-specific data has less
negative impact than the wrongly used legal domain system to translate data from the
crisis domain.

3.4 Data Augmentation

3.4.1 Back-translation Synthetic parallel data was generated from monolingual cor-
pora using back-translation. A modular model trained on parallel data and beam search
with a beam width of 2 was used to translate the corpora, resulting in 50 million new
sentence pairs per translation direction used to train the final models.

3.4.2 Estonian Proper Nouns Our initial models translating into Estonian were un-
able to translate Estonian proper nouns, typically person names, containing characters
with Estonian diacritics (’õ’, ’ä’, ’ö’, ’ü’, ’š’, ’ž’). Thus we collected named entity data
and replaced person names with Estonian ones that contained these characters. For this
task, we used the Tatoeba parallel training dataset augmentation by replacing ”Tom”
and ”Mary” with Estonian first names that include special characters like ’õ’, ’ä’, ’ö’,
’ü’, ’š’, ’ž’. We release the data augmentation script on GitHub. 11. Example:

– Before: Sa ju tead, kes on Tom? - You know who Tom is, don’t you?
– After: Sa ju tead, kes on Tõnis? - You know who Tõnis is, don’t you?

3.5 Speech translation

Spoken language differs from written language as it includes self-corrections, different
syntax, and a speaking-specific style. Translating speech with the same approach as
written text might yield suboptimal results. We modelled our spoken language training

11 https://github.com/sideral/tatoeba-tom-mary/blob/master/tom-and-mary.

ipynb

https://github.com/sideral/tatoeba-tom-mary/blob/master/tom-and-mary.ipynb
https://github.com/sideral/tatoeba-tom-mary/blob/master/tom-and-mary.ipynb


430 Tättar et al.

Table 4. Average BLEU scores of speech translation models fine-tuned with data containing arti-
ficial errors. ft 95-5 means that 5% of the data is synthetic with artificial errors. MT - translation
validation set; ASR translation - translation of ASR data validation set.

Validation baseline ft 95-5 ft 90-10 ft 75-25 ft 50-50

MT 39.9 39.7 39.7 39.6 39.4
ASR translation 32.4 32.8 32.7 32.4 32.2

data after the spoken benchmark data to combat potentially faulty automatic speech
recognition input using sub-word level insertion, substitution, and deletion operations
with fixed probabilities derived from speech recognition output. Our results in table
4 showed that it is unnecessary to fine-tune the NMT model specifically for speech
input if the data is created synthetically. Spoken text translation was a small part of the
project’s scope and will need further research.

4 Evaluation

4.1 Benchmark Data

The MTEE project included translation directions that were not represented in any ex-
isting public benchmarks – e.g., Estonian-Russian and Estonian-German are not part of
benchmarks like the WMT news translation tasks or IWSLT translation tasks. Besides,
one of the issues hindering fair and reliable evaluation of MT systems is that public
benchmarks that have been openly available for some time become outdated as MT
systems tend to become fine-tuned to them to the point of overfitting.

Thus, we created a new set of public benchmarks for this project that would cover
the six translation directions and five text domains. Source texts were taken from the
current news and legal websites at the time. Legal, crisis and military text benchmarks
were translated Estonian texts into English, Russian and German. News source texts for
the general domain were scraped from the web in all four languages and then translated
by translators. Thus, the Estonian news articles were translated into the three remain-
ing languages, while English, German and Russian news articles were translated into
Estonian. Table 5 presents their sizes.

The spoken language benchmark is based on the test set for Estonian automatic
speech recognition12. The multilingual benchmark was created by professional trans-
lators translating the reference transcript of Estonian audio and video material into the
other three languages.

All the created benchmarks are open-source with CC0 1.0 Universal license and are
free to use. 13

12 http://bark.phon.ioc.ee/lw/korpused/aktuaalne2021-devtest/
13 https://github.com/Project-MTee/MTee_translation_benchmarks

http://bark.phon.ioc.ee/lw/korpused/aktuaalne2021-devtest/
https://github.com/Project-MTee/MTee_translation_benchmarks
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Table 5. Benchmark dataset sizes, half of the General data is from Estonian sources and the other
half from other language sources. The ”-doc” extension means that these sentences were from an
entire document, enabling document translation.

Domain ET-EN ET-DE ET-RU

General 1152 1166 1126
Legal 500 500 500
Crisis 500 500 500
Crisis-doc 177 177 177
Military 500 500 500
Military-doc 194 194 194
Spoken 1602 1602 1602

4.2 Results & Discussion

Here we present the evaluation results of the created machine translation systems. We
use automatic evaluation BLEU for overall comparison, including several variants of the
MTEE translation systems and two widely used online systems: Google Translate14 and
DeepL15. Additionally, we included M2M (Fan et al., 2020), the 1.2B parameter ver-
sion, because we want to compare our system to a universal multilingual model, which
besides others, also includes all languages and translation directions as our model.

Figures 2,3,4present the BLEU score evaluations. The compared systems are DeepL,
Google, M2M-1.2B, the MTEE general-domain system (base) and domains-specific
fine-tuned systems (ft).

The results show that our model for English-Estonian news translation is worse than
Google and DeepL. Our domain fine-tuned models show around the same performance
but are better than other MT systems for the Legal domain. We hypothesise that the
differences are due to institutions having different amounts and types of data for the
EN-ET language pair.

Estonian-German results in Figure 3 show that our approach achieves the best re-
sults on all benchmarks except for the Legal domain, for which the performance is
worse. These results are intriguing because the same multilingual fine-tuning dataset is
used for Estonian-German as is for the Estonian-English experiment (JRC+DGT).

Our best results are achieved on the Estonian-Russian dataset, where we achieve
the best results on all benchmarks, which we explain by our data collection and filtering
efforts.

In Table 6 we present the results of our models with and without a domain detection
model for the crisis domain. The domain detection dd model is applied before inference
to choose the correct model for translation – this is necessary because we have a multi-
domain system, and the domains are not always known because the user can select a
domain manually or the domain can be auto-detected. As expected, the fine-tuned model
(39.0) performs better than the general model (37.7) for the crisis domain; however, the

14 https://translate.google.com
15 https://www.deepl.com/translator

https://translate.google.com
https://www.deepl.com/translator
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Table 6. Crisis translation benchmark BLEU scores. base - the base model trained with parallel
and back-translated data; ft - base fine-tuned with domain data; ft+gen - base fine-tuned with
domain data and parallel general domain data; dd - choosing the fine-tuned model with domain
detection.

BLEU

base ft ft+gen dd+ft dd+ft+gen

ET-EN 34.3 36.1 35.9 35.6 35.9
ET-DE 29.8 31.3 29.8 30.7 29.7
ET-RU 34.7 35.7 33.7 35.4 33.7
EN-ET 41.9 42.5 35.5 41.8 36.5
DE-ET 46.6 49.1 43.8 40.2 39.7
RU-ET 39.0 39.2 33.7 38.1 33.6

avg 37.7 39.0 35.4 37.0 34.9

results with domain detection (37.0) are worse than the general domain models. We tried
to alleviate this problem by adding the general domain parallel data with in-domain data
to the fine-tuning training process, which led to performance degradation.

5 Conclusion

We have presented the results of a large-scale project that aimed at creating competitive
open-source translation systems for Estonian. The goal is largely achieved, with open
parallel and monolingual data released, open-source translation systems created and an
online demo running.
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