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Abstract. While text-to-speech synthesis with non-autoregressive Transformers has achieved
state-of-the-art quality for many languages, the methodology of Estonian text-to-speech synthe-
sis has not been revised for neural methods. This paper evaluates the quality of Estonian text-to-
speech with Transformer-based models using different language-specific data processing steps.
Additionally, we conduct a human evaluation to show how well these models can learn the pat-
terns of Estonian pronunciation, given different amounts of training data and varying degrees of
phonetic information. Our error analysis shows that using a simple multi-speaker approach can
significantly decrease the number of pronunciation errors, while some information can also be
helpful to a smaller extent.
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1 Introduction

In recent years, non-autoregressive Transformer-based models have achieved high qual-
ity in neural text-to-speech (TTS) synthesis while maintaining reasonable inference
speeds (Ren et al., 2019, 2021; Łańcucki, 2021). However, most neural TTS methods
have been developed with English datasets and rely heavily on language-specific tools
such as alignment models and grapheme-to-phoneme converters.

At the same time, existing Estonian TTS research has mainly focused on other meth-
ods, such as concatenative synthesis or statistical parametric synthesis (Mihkla et al.,
2008; Nurk, 2012). Although there are some Transformer-based Estonian models pub-
licly available, their quality has not been evaluated, and there is a general lack of insight
when it comes to best practices with neural methods.

While Estonian orthography is not entirely phonetic, it is highly phonetically mo-
tivated. Therefore, it is worth investigating whether neural networks need additional
information from grapheme-to-phoneme conversion tools to reduce the phonetic ambi-
guity in texts or if they can surpass the level of rule-based annotations with sufficient
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training data. Additionally, as non-autoregressive models are conditioned on character
duration, it should be evaluated whether we can reuse existing Estonian grapheme-to-
waveform alignment models in TTS. An alternative option is to extract the duration
information from an autoregressive teacher model (Ren et al., 2019), but this approach
significantly increases the time and cost of developing new models.

This paper will analyze the performance of state-of-the-art neural TTS methods
when applied to Estonian and evaluate the impact of integrating existing Estonian NLP
tools into TTS workflows. Our primary goal is to provide a guide to best practices for
Estonian neural TTS and highlight the weaknesses that should be tackled in the fu-
ture. We approach this task by training models on character durations extracted from a
teacher model and comparing the speech quality to models using the external aligner
by Alumäe et al. (2018). Additionally, we train single-speaker and multi-speaker mod-
els using three different text preprocessing pipelines that produce varying degrees of
phonetic information and analyze their susceptibility to pronunciation errors. The main
contributions of our work can be summarized as follows:

1. We conduct a human evaluation that shows that using externally produced duration
information can achieve comparable quality to a student-teacher pipeline.

2. We show that the quality of Estonian grapheme-to-phoneme conversion tools is too
low to benefit our use case.

3. Our error analysis shows significant improvements in robustness from using a sim-
ple multi-speaker approach. Information about word stress, phonetic quantity, and
compound word borders can also be helpful to a smaller extent.

2 Background

2.1 Transformers in TTS

The usage of Transformers (Vaswani et al., 2017) for text-to-speech synthesis was in-
troduced by Li et al. (2019), who used an encoder-decoder model for predicting the
frequency distribution of mel-spectrogram frames from English phonemes. Their eval-
uation of Transformer TTS demonstrated state-of-the-art results. However, the autore-
gressive nature of predicting each frame sequentially during inference proved too time-
consuming to be used in a production setting.

To parallelize inference-time generation, Ren et al. (2019) proposed FastSpeech – a
non-autoregressive version of Transformer TTS. The authors used the original autore-
gressive model as a teacher and extracted character durations from its attention. They
trained a student model with a convolutional duration predictor, scaled the encoder out-
puts to the predicted durations, and generated all output frames in parallel. The mean
opinion score (MOS) evaluation on a phonemized English dataset showed no signif-
icant decrease in quality when using the non-autoregressive model compared to the
much slower Transformer TTS architecture.

FastPitch (Łańcucki, 2021) complemented the duration predictor with a pitch pre-
diction module. The authors used grapheme inputs in their experiments and extracted
the duration information from a Tacotron 2 model (Shen et al., 2018). However, they
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claimed similar quality when using phonemes and durations from a Montreal Forced
Aligner (MFA) model (McAuliffe et al., 2017) – a Kaldi-based (Povey et al., 2011) tool
for aligning audio to text. The concurrently developed FastSpeech 2 (Ren et al., 2021)
replaced the teacher model with MFA and showed that speech quality improves when
conditioning the outputs on both pitch and energy information. Using externally gener-
ated durations simplified the training procedure and reduced model development costs.
However, this approach assumes that a high-quality alignment model for the language
already exists.

2.2 Estonian TTS

While there is existing research on Estonian text-to-speech synthesis, there are limited
contributions that use neural methods. There are, however, numerous mentions of using
the Vabamorf morphological analyzer (Kaalep and Vaino, 2001) to produce additional
phonetic features with other TTS methods (Mihkla et al., 2001; Mihkla, 2007).

A few recent works have included neural text-to-speech to some extent. For exam-
ple, an analysis by Mihkla (2020) shows that an RNN-based TTS model can generate
pronunciations with the correct quantity degree with only 77.8% accuracy. Similarly,
convolutional text-to-speech models using grapheme inputs have been shown to pro-
duce pronunciation mistakes in up to 17% of all sentences (Rätsep et al., 2020).

At the time of writing, no published works have evaluated the quality of Estonian
Transformer-based models or considered using phonemes or other phonetic features
with any neural text-to-speech methods. Furthermore, the usability of existing Estonian
alignment models, such as the Kaldi-based force alignment model by Alumäe et al.
(2018), in non-autoregressive synthesis has not been evaluated.

3 Experimental Setup

3.1 Data

Our experiments used Estonian speech data from 6 male and 4 female speakers. We
included the Speech Corpus of Estonian News Sentences (Fishel et al., 2020), which
consists of recordings of news articles read by four university students. The remaining
speakers are professional actors from the audiobook corpora collected by the Estonian
Language Institute (Piits, 2022a,b). Although all actors have also recorded a smaller
TTS-specific corpus, initial experiments showed that using these in conjunction with
the audiobooks resulted in lower synthesis quality due to differences in speaking styles
and recording conditions.

We excluded a subset of 100 sentences per speaker from the training data for evalu-
ation purposes. The rest of the dataset was filtered to remove very long samples (longer
than 17.5 seconds). As the news dataset transcriptions are not normalized, and we did
not want the potential deficiencies of existing Estonian normalization pipelines to af-
fect model quality, we also removed all sentences requiring normalization. We detected
such sentences automatically by comparing the original transcriptions to a normaliza-
tion script output1. The dataset sizes before and after filtering can be seen in Table 1.

1 https://github.com/TartuNLP/tts_preprocess_et
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Speaker Domain
Before filtering After filtering

Samples Duration (h) Samples Duration (h)

Albert (m) news 12003 22.3 7455 11.6
Indrek (m) audiobooks 6425 8.6 6108 7.5
Kalev (m) news 8750 17.6 5273 8.7
Külli (f) audiobooks 6182 7.5 6017 7.1
Liivika (f) audiobooks 6564 8.5 6166 7.5
Mari (f) news 12630 24.1 7641 11.7
Meelis (m) audiobooks 10140 15.1 9830 14.3
Peeter (m) audiobooks 5315 7.5 5026 6.4
Tambet (m) audiobooks 12865 16.9 12410 15.5
Vesta (f) news 2990 5.7 1910 3.2

Total 83864 133.8 67836 93.6

Table 1: Training dataset sizes for each speaker before and after filtering.

We used three text preprocessing pipelines to create dataset versions with various
degrees of phonetic information. As a baseline, we use grapheme inputs. The sec-
ond pipeline follows the example of existing Estonian TTS research and is based on
Vabamorf (Kaalep and Vaino, 2001) to detect word stress, palatalization, phonetic quan-
tity, and compound word borders. The third option uses the Phonemizer library for
Python (Bernard and Titeux, 2021) for grapheme-to-phoneme conversion. All dataset
versions use lowercased inputs and minimal punctuation normalization rules to reduce
the number of symbols in the model vocabulary.

We used the alignment tool by Alumäe et al. (2018) on each training sample to gen-
erate alignments between the text and the waveform. This alignment information was
used to trim the pauses in the audio files and extract the duration of each grapheme. For
Phonemizer and Vabamorf outputs, we created an additional post-processing pipeline
to align the input characters with graphemes.

All audio files were resampled at 22050 Hz and converted into mel-scale spectro-
grams using a raised cosine window (Hann window) with a frame size of 1024 and a
hop size of 256 samples.

3.2 Model Configuration

We trained all models using an open-source text-to-speech implementation2 of the au-
toregressive Transformer TTS model (Li et al., 2019) and a non-autoregressive model
similar to FastPitch (Łańcucki, 2021) that includes explicit character duration and pitch
prediction components. For our baseline, we trained grapheme-based Transformer TTS
models for each speaker and extracted the duration information from its attention to
train the non-autoregressive model. For comparison, we created single-speaker and

2 https://github.com/TartuNLP/TransformerTTS
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multi-speaker models with all three text variants using the duration information from
the external aligner.

All models were trained for at least 500k steps using a batch size of 12800 frames
and identical hyperparameters. The single-speaker and multi-speaker models contained
the same number of model parameters, and we did not use additional sampling tech-
niques to mitigate the data imbalance between speakers. The speaker identity in multi-
speaker models was controlled by a 2-digit speaker ID prepended to the input text
(Wang et al., 2018).

We paired the TTS models with existing HiFiGAN vocoder models3 (Kong et al.,
2020). For speakers Mari, Külli, and Liivika, we used a model trained on the LJ Speech
dataset (Ito and Johnson, 2017) and finetuned on ground truth aligned spectrograms
produced by Tacotron 2 (Shen et al., 2018). We used a model trained on the VCTK
dataset (Yamagishi et al., 2019) for all other speakers.

The appropriate vocoder for each speaker was selected by evaluating TTS samples
with both vocoder models. While the LJ Speech vocoder produced excellent speech,
it was only suitable for speakers with similar characteristics to the LJ Speech dataset
speaker (higher-pitched female speakers). VCTK, however, is a multi-speaker dataset,
and the model can be used for a wider variety of speakers. Although a model fine-
tuned on our datasets may be optimal in the future, we believe that the use of different
vocoders does not have a significant impact on our results as the vocoder selection is
consistent between methods, and our objective is not to compare speakers directly to
each other.

4 Results

4.1 Speech Quality Evaluation

To evaluate the quality of our models, we conducted a two-part mean opinion score
(MOS) evaluation4 (Chu and Peng, 2001). The first part of our evaluation measured the
overall synthesis quality and the effect of using externally produced duration informa-
tion compared to the student-teacher baseline.

We used a subset of 200 random sentences (20 per speaker) from the held-out
dataset to generate evaluation samples for different grapheme-based models. Addi-
tionally, the evaluation included original ground truth samples (GT) and versions re-
constructed with the HiFiGAN vocoder (GT mel + voc). We used the same subset of
sentences to evaluate each approach to ensure comparability between scores, and each
sample was evaluated by at least four native Estonian speakers. The evaluation results
can be seen in Table 2.

The evaluation results show marginally lower scores for the models using externally
produced alignments. Considering the time and infrastructure costs of training teacher
models, we argue that the difference in model quality is insignificant and does not justify
the student-teacher approach. These results also confirm that the quality of the existing
Estonian alignment model is suitable for our use case.

3 Model files: https://github.com/jik876/hifi-gan
4 Evaluation samples: https://tartunlp.github.io/TransformerTTS/bhlt2022
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Method MOS

GT 4.41± 0.07
GT mel + voc 4.17± 0.07

Baseline 3.47± 0.08
Ext. aligner 3.42± 0.08
Ext. alginer, multi-speaker 3.44± 0.07

Table 2: Mean opinion scores with 95% confidence intervals on the held-out dataset.

We can also see comparable results with the multi-speaker model. While multi-
speaker models perform similarly to single-speaker models, they have a significant ad-
vantage in production environments where they can synthesize the voice of several dif-
ferent speakers while using the same amount of computational resources.

4.2 Robustness Evaluation

The second part of the evaluation measured the level of robustness when using dif-
ferent degrees of phonetic information. Additionally, we wanted to test whether using
multi-speaker models with more training data would decrease the usefulness of this
information.

The evaluation included three speakers who represent different data scenarios. Mari
and Vesta are examples of high- and low-resource news domain datasets. The third
speaker Meelis has plenty of training data, but it contains only one audiobook describ-
ing life in 19th century rural Estonia. Therefore, the dataset contains very few examples
of words with foreign pronunciation patterns, such as not having the word stress on the
first syllable. As a result, we have observed that models trained on this dataset alone are
prone to more robustness issues when synthesizing modern texts. Although the evalua-
tion focused on three speakers, it should be noted that datasets from all speakers were
used to train the multi-speaker models.

We sampled the evaluation sentences from news and web texts in the Estonian Na-
tional Corpus (Koppel and Kallas, 2019). We used the same set of 50 evaluation sen-
tences across all speakers and methods and collected at least two evaluations per sample.
The results of this evaluation can be seen in Table 3.

The MOS evaluation results show that the evaluators preferred the models that used
Vabamorf’s features for all three speakers. Additionally, we achieve the best results for
high-resource datasets with multi-speaker models. The most significant improvement
was for Meelis (+0.68 points), for whom the evaluation sentences are arguably furthest
from its training distribution. This supports our hypothesis that the additional training
data from other speakers can help reduce robustness issues when synthesizing out-of-
domain texts.

The low-resource Vesta dataset is the only speaker that achieves higher results with
a single-speaker model. Its MOS is the highest of all three single-speaker models, which
suggests that 3.2 hours of training data may be sufficient to achieve comparable quality
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Method Mari Vesta Meelis Average

Grapheme 3.68± 0.2 3.83± 0.17 3.51± 0.24 3.67± 0.12
Vabamorf 3.99± 0.2 4.11± 0.17 3.52± 0.23 3.87± 0.12
Phoneme 2.66± 0.19 2.92± 0.22 2.54± 0.23 2.71± 0.12

Grapheme, multi-speaker 3.96± 0.18 3.84± 0.16 3.98± 0.18 3.93± 0.1
Vabamorf, multi-speaker 4.04± 0.2 3.98± 0.16 4.2± 0.18 4.07± 0.11
Phoneme, multi-speaker 2.9± 0.21 2.93± 0.22 2.63± 0.23 2.82± 0.13

Table 3: Mean opinion scores with 95% confidence intervals on out-of-domain data.

to models with over 10 hours of data. However, it should be noted that the scores are not
directly comparable between different speakers as they are also affected by the vocoder
and evaluators’ personal preferences. Although Vesta’s MOS in multi-speaker models
is not significantly lower, the results indicate that the multi-speaker setup should be
revised to ensure that the models do not underfit to speakers with less data.

Compared to other models, phoneme-based synthesis achieves significantly lower
scores for all speakers. These results suggest that the Estonian grapheme-to-phoneme
conversion pipeline quality is insufficient for our use case, and Transformers can learn
Estonian pronunciation patterns from graphemes with better results.

In addition to numeric ratings, the evaluators specified the types of pronunciation
mistakes that they noticed. These types included word stress errors, incorrect phoneme
length, and the use of an incorrect phone. The latter also covered cases of skipping
or adding sounds. Additionally, we asked the evaluators to specify whether this error
included palatalization mistakes. The error analysis results are provided in Table 4.

Method Stress Length Phone Palatalization

Grapheme 37.33% 28.67% 9% 1%
Vabamorf 30% 14.33% 13% 2%
Phoneme 58.33% 83.67% 23% 2.67%

Grapheme, multi-speaker 22.67% 14% 4.33% 0.67%
Vabamorf, multi-speaker 13% 7.67% 5.33% 1.67%
Phoneme, multi-speaker 59.67% 81.33% 17% 1%

Table 4: Sentence-level pronunciation error rates.

The error analysis demonstrates that the most significant pronunciation improve-
ments always come from using a multi-speaker model. As our multi-speaker setup was
quite simple, we believe there is potential for even further improvements if it were re-
vised.
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The results also confirm the findings of the MOS evaluation and support the use of
Vabamorf’s phonetic features. The word stress and phoneme length error rates are low-
est with the multi-speaker Vabamorf model. Although improvements over the single-
speaker grapheme models are significant, we consider the 13% error rate in word stress
placement to be high, and we believe it could have a considerable negative impact on
the general perception of Estonian TTS quality.

In terms of palatalization, grapheme inputs achieved marginally better results over
Vabamorf, but both approaches yield relatively similar low error rates. Based on this,
we believe that the models do not need palatalization information. However, additional
analysis with more samples is needed to confirm this. Errors in phone usage follow a
similar pattern. This was expected as palatalization is Vabamorf’s only annotation type
that could have contributed to this category.

Models with phonemized inputs and potentially more information about phone se-
lection perform similarly in the palatalization category. However, the error rates are con-
siderably higher for phone selection, confirming our suspicions about low grapheme-
to-phoneme conversion quality.

5 Conclusion

In this work, we evaluated the quality of Estonian text-to-speech synthesis with non-
autoregressive Transformer-based models and analyzed whether it can be improved by
integrating different language-specific tools. Our experiments showed that Estonian has
an existing high-quality alignment model that can be reused for character duration ex-
traction reducing the costs of Estonian TTS development in the future. Additionally, our
analysis suggests that while Estonian phoneme-to-grapheme conversion quality is low,
synthesis still benefits from using annotations that mark word stress, quantity degrees,
and compound word borders.

Our main takeaway, however, is the importance of using more data by training multi-
speaker models. Multi-speaker models are not only more versatile in production envi-
ronments but we also found them to be more robust and less susceptible to pronunci-
ation errors. Therefore, we believe that future Estonian TTS research should focus on
multi-speaker models and look into more options for leveraging additional speech data
that would also be applicable to other languages with no existing phonetic annotation
tools.
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