
Baltic J. Modern Computing, Vol. 10 (2022), No. 3, 545-559
https://doi.org/10.22364/bjmc.2022.10.3.25

Using a Topic Based Model to Automate Indexing

and Routing of Incoming Enterprise Documents

Juris RĀTS, Inguna PEDE

RIX Technologies

Blaumaņa 5a-3, Rīga, LV-1011, Latvia

juris.rats@rixtech.lv, inguna.pede@rixtech.lv

Abstract. A machine learning based model aimed at automation of the indexing and routing of the

incoming documents of the enterprise is proposed in this article. An overall automation process as

well as support for trainset annotation and a model for handling of streams of incoming documents

is described. Experts are supported during the annotation process by grouping the stream of

documents into clusters of similar documents. It is expected that this may improve both the

process of topic selection and that of document annotation. A binary classification-based model for

topic prediction is proposed and analysed. Classification bots are trained for each of the largest

topics and executed on incoming documents afterward. A number of model parameters are

described and analysed.

Keywords: Machine Learning, Text Clustering, Document Classification, More Like This query.

1. Introduction

Machine Learning (ML) techniques are actively used lately in a wide variety of domains.

Computer vision, Cancer diagnosis, recommendation systems (e.g. used by Netflix),

sentiment analysis and news classification are just a few examples to mention. ML is

used in particular for classification of texts and documents. The research is mainly

focused though on comparing performance of machine learning methods on a number of

publicly available static datasets.

The objective of our research is to create a ML based model for handling of incoming

documents of an enterprise. The main idea is to classify documents by topics and use

further the document topic (in concert with other metadata like sender and addressee) to

properly index and route the document.

Several challenges have to be addressed here:

 we are not dealing here with a static document set – it expands constantly;

 the document set is highly unbalanced;

 the penalty for false positives is probably higher than that for false

negatives;

 supervised ML methods need appropriate annotated trainsets for topic

prediction; experts need to be supported both to create a topic set and to

annotate documents.

https://doi.org/10.22364/bjmc.2022.10.3.25
mailto:juris.rats@rixtech.lv

546 Rāts and Pede

We outline here the overall architecture of the proposed model. Doing this we focus

on two processes:

 supporting a user while annotating the samples for training of ML models;

 training the ML models and using the trained models for predicting the

topics for new incoming documents.

Chapter 2 discusses the related work, Chapter 3 outlines the overall model

architecture, Chapter 4 deals with the proposed solution for support of trainset

annotation. Chapter 5 gives the overall description of process for training binary bots and

using them for topic prediction. Chapter 6 describes in more detail the process of

training a particular bot. Chapter 7 gives the conclusions.

2. Related Work

Supervised Machine Learning (ML) methods are used widely for text classification.

Some domains of interest are sentiment analysis (Avinash and Sivasankar, 2019), news

classification and web page classification (Shawon et al., 2018).

Supervised ML methods generally deal with features and labels. A feature set is a

representation (numeric array or vector) of the object (e.g. a text or document) to be

classified while a label is what has to be predicted by a classification bot. ML method is

at first trained on a trainset of features and labels. The trained model is then used to

predict labels for new objects.

Classification solutions can be represented as two pipelines – one for model training

and another – for use of trained models to predict labels for new objects. Training

pipeline comprises data cleaning, feature embedding, feature reduction, model training

and validation. Prediction pipeline spans data cleaning, feature embedding, feature

reduction and label prediction. It is necessary to prepare in advance the trainset for all

this to work.

Data cleaning usually involves removing unnecessary for classification data – e.g.

numbers, e-mail addresses, stop words. The cleaned text is then processed by some of

the embedding methods that convert text to a numeric vector.

One of the basic embedding methods for text objects is the Bag of Words (BoW).

BoW has been successfully applied in a broad range of domains as the medical domain

with automating medical image annotation (Lauren et al., 2018), biomedical concept

extraction (Dinh and Tamine, 2012), and recommender systems for medical events

(Bayyapu and Dolog, 2010). Examples of methods based on BoW model are

CountingVectorizer and tfidf. Both methods create the vocabulary of all words of the

documents corpus and base the text representation on this vocabulary.

Several extensions of the BoW model are developed. This includes Bag of meta-

words (BoMW) (Fu et al., 2018) that uses meta-words instead of words as building

blocks. Another extension is the Bag of Embedded Words (BoEW) proposed in (Passalis

and Tefas, 2018) where the word semantics is learned in so called word embeddings –

vectors, created using the data on words neighbouring the current word in the text.

The main disadvantage of BoW models is they rely on unrealistic assumption that

words occur in text independently one of other. A number of alternative models have

been developed that use the context (surrounding words) of a word to create word

embedding. This allows to create embeddings putting words with a similar meaning

 Using a Topic Based Model to Automate Indexing and Routing 547

close to one another in a representation space. The assumption here is that words that

have similar context have to have similar meaning. Examples of such embedding

methods are GloVe, word2vec, doc2vec, fasttext and others (Pennington et al., 2014).

These are followed by so called contextual models BERT, ELMo, GPT, XLNet (Liu et

al., 2020; Ular and Robnik-Šikorja, 2020), Sentence-BERT (Cygan, 20221) and others.

Advanced embedding methods like BERT, GPT and XLNet have demonstrated good

results for a number of tasks still there is no single winner for all cases. A convenient

method must be selected for a domain and task to solve.

Dimensionality reduction is a critical step of the text classification pipeline. The

methods used include PCA (Principal Components Analysis) (Pennington et al., 2014),

truncatedSVD (Hansen, 1987) and UMAP (Uniform Manifold Approximation and

Projection) (Cygan, 2021). Those methods allow for more efficient use of machine

learning algorithms because of the time and memory complexity reduction (Lauren et al.,

2018). This is of particular importance for the text classification of the enterprise

documents (as the feature sets there tend to have large dimensionality).

Deep learning networks are applied for text classification, e.g. Recurrent neural

networks, Convolutional neural network, Hierarchical Attention networks (Jacovi et al.,

2018), as well as combined RCNN - Convolutional neural with Recurrent neural

network (Lin et al, 2019). Basic methods as Naïve Bayes show good results with smaller

data sets, while Convolutional neural network shows superior performance with larger

data sets (Wei et al., 2018).

Supervised learning is superior for text classification tasks. The better performance

of supervised learning algorithms is based on knowledge accumulated in annotated

trainsets. The disadvantage here is that those annotated trainsets need to be prepared that

takes considerable resources. It is therefore of great interest to develop methods that

could reduce the manpower necessary for trainset annotation.

Various approaches to text classification based on clustering (i.e. unsupervised

learning) methods have been researched (Baker, 1998; Fernández et al., 2016;

Kyriakopoulou, 2008; Kyriakopoulou and Kalamboukis, 2007). Researchers propose to

add clustering data to the text representation or classify text by clusters (Brendel, 2020;

Kyriakopoulou and Kalamboukis, 2007). Unfortunately, the clustering methods do not

perform well for high dimensionality data (Assent and Seidl, 2009; Parsons et al., 2004;

Steinbach et al., 2004). Text clusterization features both high dimensionality and large

numbers of clusters (Karpov and Goroslavskiy, 2012). Still clustering could be used to

support annotation of the training data of the supervised method.

The mainstream approach to text classification is the supervised machine learning.

Still there are alternatives. One of them we came across is the contextual More Like This

query (MLT) provided by Elasticsearch (Klinger, 2019). This approach has been applied

for phrase classification (Yellai, 2016), recommendation engine and duplicate detection

(Vola, 2017). We did not find any references to the research on application of MLT to

the document classification.

Document classification solutions are mainly built upon the static model – a

classification bot is trained and validated on a given labelled document set and then

applied to new documents. It must be assumed that important features of the documents

do not change over time for this model to work. We acknowledge that the documents

form a stream rather than a fixed set and that there might be changes over time both in

document dispersion by topics and even the document features inside a topic may

548 Rāts and Pede

gradually change. We propose to use iterative process to address this challenge.

Trainsets of the topic identification bots are constantly updated with the new documents

and the bots are retrained on the new data over and over again.

3. Overall Process

Our approach to the automation of handling of enterprise incoming documents is based

on the following assumptions (supported by observations in several organizations):

• documents belong to a large number of topics, still the document set is

highly unbalanced in this regard – a handful of topics cover most of the

document amount;

• document topics and distribution of documents between topics may change

over time;

• documents may be lengthy and have various layouts with each part having

a different role.

Unbalanced nature of the document set means, in particular, that most of the topics

have a rather small number of documents belonging to them. This makes them

inconvenient for automation because of a lack of training data. We propose thus to focus

on automation of handling of the largest topics which should span a major part of all

documents.

Sets of annotated training samples (samples with topics assigned) must be created in

advance to use supervised ML methods for the classification. Experts face a number of

challenges when creating the annotated trainset:

• a convenient set of topics must be created;

• a sufficient amount (to train classification method) of samples must be

provided with correct labels

We assume that it is possible to create a set of topics such that a topic (possibly in

combination with document sender and/or receiver data) unequivocally determines the

indexing and routing of the document. Document sender/receiver may be identified by

other means (out of scope of this research) therefore as long as the topic of the document

is identified, the handling of the incoming document is determined.

We propose to create a set of topics and annotate some historical documents

beforehand (setup process). This allows us to understand what are the main topics and to

create initial trainsets for them. When ready with the setup process we switch to the main

process where new incoming documents are handled by the model. Details of both

processes follow below.

3.1. The Setup Process

Setup process involves experts to annotate a set of historical documents of the

organization. The main goal here is to create topics that:

• unequivocally determine the handling of its documents;

• are separated well enough one from another.

The first depends fully on expert’s domain knowledge. We aim to support the second

by manipulating the order of documents presented to experts. Namely – we would like to

increase the likelihood that the next document in the stream of documents presented to

 Using a Topic Based Model to Automate Indexing and Routing 549

expert has the same topic as the current one. At the highest extreme this would mean that

when expert assigns a topic to a particular document he is presented with the next

document of the same topic and this continues as long as there are documents of the

topic available. The extreme currently is not achievable because we would need a

method of automatic text labelling to do this. Still increasing the likelihood that the next

document has the same topic we will be able to create longer sequences of the same

topic documents and this will help both to create a topic set and to annotate the

documents.

Two approaches for determining the next document (that would increase the

likelihood it will have the same topic) are explored and compared in this research:

• clustering the documents in advance and selecting the next document

from the same cluster as the current one;

• using MLT to find the next document.

 The setup process should result in creation of an initial set of the largest topics (we

call them major topics) and sets of annotated trainsets for them. The set of major topics

as well as the annotated trainsets are later maintained (expanded, updated) by the main

process.

3.2. The Main Process

The main process uses a set of rules that specifies actions for specific topics (or

combination of topics and/or senders and/or addressees). An action specifies suggestion

for the metadata to be assigned to the document (including the routing data). If the topic

is assigned to the document by a bot the suggested metadata values are attached and the

document is routed to the suggested assignee. The assignee then has a choice to approve

or reject the assignment. In the latest case the document is routed back to the clerk

responsible for the document indexing who provides the correct topic. In both cases the

document is added to the trainset to be used in next training sessions of related

classification bots.

The main process uses supervised machine learning methods to train a classification

bot for each of the major topics. This is an iterative process – the bots are re-trained

periodically (according to a configurable schedule) to include in the trainsets the newly

handled documents. At a given iteration:

• topics are selected that have assembled enough (a configurable amount)

documents; bots are trained and evaluated for each of selected topics;

balanced trainset is used for training of each of the bots;

• trained models are saved for bots with performance (precision) above the

configured threshold;

• each of the incoming documents is processed with all of the saved bots; a

topic is predicted (or not predicted) according to the process described in

Chapter 5;

• if a prediction is made the related rule is triggered which adds the indexing

and routing metadata to the document, document is routed to the assignee;

• if a prediction is not made, document is routed to a clerk responsible for

manual indexing.

550 Rāts and Pede

4. Document Annotation

We assume that the document annotation process can be improved by organizing the

stream of text samples in groups of similar texts. This would help both to create the

appropriate topic set and to reduce the manpower necessary for sample annotation.

We research and compare here two technologies in this respect:

• clustering methods;

• Elasticsearch MLT query.

The result in either case will be a method that improves the sequence of samples. In

the case of clustering the next sample will be fed to the expert from the same cluster (if

there are any). In the case of MLT – the next sample will be the most similar found by

the search. We analyse thus a number of clustering workflows as well as MLT

configurations. The solution is considered to be better if the overall probability of

feeding the sample of the same topic is higher.

Various clustering pipelines have been explored, using text embedding methods tfidf,

doc2vec and lvbert, feature reduction methods umap, pca and truncatedSVD, and

clustering methods kmeans, birch and hdbscan.

A number of methods exist for comparing of the clustering results. This includes a-

priori metrics like Silhouette, Calinski-Harabasz and Davies-Bouldin (Petrovic 2006)

that can be used to evaluate overall structural features of the clustering. Another group of

metrics (like rand index) allow to assess how well the clusters match the grouping of

documents by topics. Neither of those metrics allows to compare the performance of

clustering methods against the MLT. We introduce therefore the Similarity Score metric.

Similarity score is the average probability that the next document in the stream has

the same topic as the current. We calculate the Similarity Score empirically by running

the process several times and averaging the results. In case of clustering we select

randomly the cluster and then select randomly samples inside the cluster. In case of

MLT we select randomly the first document and then use MLT search to find the most

similar document out of all documents not handled yet. If MLT search returns nothing

the next document is selected randomly.

While doing this we calculate for each topic the frequency

 𝐹𝑡 =
𝑆𝑡
𝑝𝑜𝑧

𝑆𝑡
 (1)

Here Ft is the Similarity Score; St
poz

 is a number of times when the document of topic t is

followed by the document of the same topic, St is a total number of documents of topic t.

Figure 1 shows similarity scores for the 4 largest topics (presented on x-axis with the

topic name and count of topic’s documents). The similarity score for MLT and clustering

is shown as well as share of the topic in the total document set.

 Using a Topic Based Model to Automate Indexing and Routing 551

Figure 1. Similarity Score for clustering and MLT search.

We can see here that both MLT and clustering improve the probability that the next

document comes from the same topic (as compared to probability for random selecting

that equals to the topic share). MLT provides better results though as the explored

clustering methods. The possible reason might be that clustering has no knowledge about

what terms are important to distinguish topics of interest. MLT search determines a

closest match for the current text on the fly and this gives a better chance to get the

document of the same topic in contrary to clustering documents in advance and then

selecting the next document from the same cluster.

 Another observation here is that the similarity score strongly depends on the topic.

The possible reason is that some topics are better separated. E.g. topic B is better

separated from other topics than topic D. Further research is necessary here to

understand if this information can be used to improve topics (i.e. merge, split or redefine

some topics).

552 Rāts and Pede

5. Topic Prediction

Figure 2 shows the document distribution by topics for one of the data sets (of 987

documents) explored in our research. We have observed a similar unbalanced

distribution in other data sets of incoming documents as well (a total of 5 other data sets

explored).

The four largest topics account for 58% of all documents and the 20 largest topics –

for 82%. The rest belongs to documents currently not attributed to any topic (i.e. these

are documents having no or very few similar documents to them).

Figure 2. Distribution of documents by topics.

The unbalanced nature of data sets is a challenge for ML models. Other important

challenges to address when handling the Enterprise incoming document are:

 the topic distribution and topic document content may gradually change

over time;

 the penalty of false positives (i.e. topic assigned for the document that does

not belong to the topic) should be bigger than that of false negatives (as

false positive means incorrect indexing/routing that must be fixed

 Using a Topic Based Model to Automate Indexing and Routing 553

afterwards while false negative means the document is not indexed/routed

automatically but handled by a clerk manually).

ML models need training data that should contain a balanced amount of positive and

negative samples. The unbalanced nature of the dataset means that the major parts of

topics would have small number of related documents – thus it would be not possible to

train performant classification models for them anyway. We propose a dynamic topic

model to address this. Main concepts of the model:

 topics are created on the fly as new documents appear; documents with

topics assigned are added to the document pool;

 if a document in question does not belong to any frequent topic it is

assigned a special no_topic label that signals that his document is not used

for classification bot training; these no_topic documents may be revisited

later at any time to assign topic if similar documents appear; no_topic

documents are added to the pool as well;

 the document pool is examined periodically to create trainsets; the model

attempts to create a balanced trainset for each of the topics; the trainset

consists of equal number of positive samples (documents of the particular

topic) and negative samples (documents of other topics);

 binary classification bots are created for each of the topics having enough

(configurable number min_samples) samples;

 in case there are a lot of training samples available only the newest

item_count samples selected (to adapt to possible changes in the topic’s

document content);

 binary classification bots are evaluated and bots with precision higher than a

configurable threshold min_precision are selected for later use;

 all created bots are used for topic prediction of an incoming document;

 if some of the bots predict a topic with a score at least min_proba and the

prediction score of the second-best prediction is at least margin less than the

best prediction score, the topic of the best prediction is selected as the final

prediction; otherwise no prediction is made.

This is a dynamic model because the topic set may be changed as the distribution of

documents by topics changes. It should be noted as well that the overall model

performance depends on how well the topics are separated one from another. In the best-

case scenario precision (and recall) for all topic classification would be high and thus

most of the incoming documents would be indexed and routed correctly. Even in this

case though some false positives may happen. This should not be a show stopper

because invalid indexing and routing may happen with manual handling as well. The

precision may be improved in some degree controlling the min_proba parameter. Higher

values of min_proba mean higher precision and lower recall. This means that there will

be less false positives at the cost of less topics handled automatically.

We use OvR (One-vs-Rest) approach to get the final prediction from the bot

predictions. This means we have to train a bot for each of the topics. An alternative

approach would be to use the ensemble classification technique ECOC (Error-Correcting

Output Code) (Kumar, 2021) that represents the multi-class label as a binary code.

Depending of the dimensionality of the code ECOC may be used to train more bots than

there are topics. This may improve the robustness of the prediction model.

554 Rāts and Pede

Figure 3 shows how min_proba influences the prediction and recall. The best value for

the data in question is about 90%.

Figure 3. Precision and recall by min_proba.

In case of badly defined topic and/or noisy topic samples precision of the respective

classification bot might be lower than min_proba and the handling of the topic would be

switched to manual. Experts must be provided with tools to analyse samples and to

remove bad samples or redefine topics (e.g. merge similar topics). MLT query or

clustering could be used here to find the clusters of similar samples inside the topic. The

analysis of these clusters might give an idea how to split the initial topic to get better

classification performance. Another option would be to analyse topic samples with low

prediction probability and to remove them from the topic.

 Using a Topic Based Model to Automate Indexing and Routing 555

6. Training the classification bots

The training of the classification bots is implemented as a pipeline of the following steps

(Table 1). To use a bot for prediction the saved embedder, reducer and classifier models

are loaded, the data is stripped and cleaned, then embedder, reducer and classifier

executed to get the topic prediction score.

Table 1. The pipeline for bot training.

Step Description

Select data Balanced set of positive (documents of the given topic) and

negative (documents of other topics) samples are selected from

the pool.

Strip data The document is split into blocks, leading and trailing blocks as

well as short blocks are stripped.

Clean data E-mail addresses, numbers, stop words removed

Split data into
train and test sets

Train sets are used for the training of embedder, reducer and
classifier. Test sets are used for validation. Kfold or stratkfold
method used to create several splits for train and test data
(kfold/stratkfold splits data in k folds, uses k-1 folds for training
and one-fold for testing; this produces k different splits into
train/test data).

Train feature

embedder

Embedding model is trained on the train set. Tfidf, doc2vec and

Latvian language trained bert model lvbert used.

Train feature

reducer

Feature reduction methods umap and birch used to reduce

embedding dimensionality.

Train classifier Multi-layer perceptron model (mlp) used for classification.

Several network layer configurations compared.

Validate models Trained embedder, reducer and classifier executed on test data

set and precision calculated

Save bot models If the average precision for all tests is above min_precision

threshold, train embedder, reducer and classifier on full data and

save the trained models.

Embedding, feature reduction and classification methods can be switched in the model

and hyperparameters tuned via editing the appropriate parameters in the configuration

file. Adding new methods is relatively easy albeit this demands a little bit of python

coding.

We used the model to measure performance for several combinations of methods and

hyperparameters.

Figure 4 gives the comparison of topic prediction accuracy for embedding methods

tfidf, doc2vec and bert (lvbert model) for largest 6 topics. Identic data cleaning, feature

reduction and classification methods used in all three cases. As we can see tfidf shows

the best results for our data and a task in hand (topic prediction). It should be noted that

we used lvbert model as is – pretrained on general text corpus.

556 Rāts and Pede

Figure 4. Comparing embedding methods.

7. Conclusions and future work

A model for automated handling of incoming enterprise documents is introduced in this

article. The model comprises two processes – setup and main process. The goal of the

setup process is a creation of annotated trainsets for classification bots of the main

process. Applying clustering methods and Elasticsearch MLT query to support the

annotation process is explored. We assume that grouping stream of documents presented

to experts in clusters of similar documents should improve both the process of topic

selection and that of document annotation. We assume as well that the configuration of

the solution (both clustering and MLT) is better if higher the likelihood the next

document in the stream is of the same topic as the current one.

As results of the experiments show both clustering MLT may be used to improve the

annotation process of our model. It appears as well that MLT performs better than

clustering here. This means that Elasticsearch MLT is a viable option for the support of

trainset annotation for text classification of enterprise documents.

 Using a Topic Based Model to Automate Indexing and Routing 557

A parametric model for training of binary classification bots and for assembling the

final prediction is proposed and analysed. The module has a number of configurable

parameters:

 bots are involved in prediction if enough samples are available for training

and if precision of the bot is better than a configurable threshold;

 prediction probability is used to decide if the sample belongs to the topic; by

tuning the probability threshold above which the sample is considered to

belong to the topic it is possible to increase the precision (at a cost of

lowering the recall); the experiments show that it may be possible to

increase precision by 5% at a cost of 3% loss in recall.

Currently the proof of concept is developed for the model and the first evaluations

are performed on a couple of document sets. More analysis and evaluation are expected

when the model will be implemented in a document management product and deployed

to customers.

Further research is necessary to provide experts with tools for analysis of the created

topics. It should be explored if it is possible to use data of the topic’s documents (e.g.

clustering data) to suggest topic improvements (e.g. merging, splitting or reorganizing

topics).

List of abbreviations

BERT Bidirectional Encoder Representations from Transformers (BERT) is

a transformer-based machine learning technique for natural language

processing.

BoW The Bag of Words model represents text as the bag (multiset) of its

words, disregarding grammar and even word order but keeping

multiplicity.

doc2vec An extension of word2vec to construct embeddings from entire

documents (rather than the individual words).

ELMo Embeddings from Language Model is a word embedding method for

representing a sequence of words as a corresponding sequence of vectors.

fasttext The library for learning of word embeddings and text classification

created by Facebook's AI Research laboratory.

GloVe The Global Vectors is a model for distributed word representation.

GPT Generative Pre-Training – an unsupervised transformer language

model.

MLT More Like This query. The tfidf based means for searching similar

documents provided by Elasticsearch software.

PCA Principal Components Analysis – a method for feature reduction.

tfidf Term Frequency – Inverse Document Frequency. The method for text

embedding

ML Machine Learning.

RCNN Region-based Convolutional Neural Network.

UMAP Uniform Manifold Approximation and Projection is a feature

reduction method.

word2vec The word2vec algorithm uses a neural network model to learn word

558 Rāts and Pede

associations from a large corpus of text.

XLNet XLNet is an auto-regressive language model which outputs the joint

probability of a sequence of tokens based on the transformer architecture

with recurrence

Acknowledgements

The research has received funding from the project "Competence Centre of

Information and Communication Technologies" of EU Structural funds (contract

No. 1.2.1.1/18/A/003, research No. 1.17).

References

Avinash, M., Sivasankar, E. (2019). A Study of Feature Extraction techniques for Sentiment

Analysis, Advances in Intelligent Systems and Computing, pp. 475-486.

Assent, I., Seidl, T. (2009). Evaluating Clustering in Subspace Projections of High Dimensional

Data, available at http://dme.rwth-aachen.de/OpenSubspace/evaluation.

Baker, D.L. (1998). Distributional Clustering of Words for Text Classification, available at

www.cs.cmu.edu/~ldbappwww.cs.cmu.edu/~mccallum.

Bayyapu, K., Dolog, P. (2010). Tag and Neighbour Based Recommender System for Medical

Events, Proceedings of the First International Workshop on Web Science and Information

Exchange in the Medical Web, MedEx 2010, pp. 14-24.

Brendel, C. (2020). Cluster-Then-Predict for Classification Tasks | by Cole Brendel | Towards

Data Science, available at https://towardsdatascience.com/cluster-then-predict-for-

classification-tasks-142fdfdc87d6.

Cygan, N. (2021). Sentence-BERT for Interpretable Topic Modelling in Web Browsing Data

Stanford CS224N Custom Project, available at

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/reports/final_reports/report017

.pdf

Dinh, D., Tamine, L. (2012). Towards a context sensitive approach to searching information based

on domain specific knowledge sources, Journal of Web Semantics 12-13, pp. 41-52.

Fernández, J., Antón-Vargas, J.A., Villuendas-Rey, Y., Cabrera-Venegas, J.F., Chávez, Y.,

Argüelles-Cruz, A.J. (2016). Clustering Techniques for Document Classification. Research

in Computing Science 118(1): 115–25.

Fu, M., Qu, H., Huang, L., Lu, L. (2018). Bag of meta-words: A novel method to represent

document for the sentiment classification, Expert Systems with Applications 113, pp.33-43.

Hansen, P. C. (1987). The TruncatedSVD as a Method for Regularization. BIT Numerical

Mathematics 1987 27:4 27(4): 534–53.

Jacovi, A., Sar Shalom, O., Goldberg, Y. (2018). Understanding Convolutional Neural Networks

for Text Classification, Proceedings of the 2018 EMNLP Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP, pp. 56-65.

Karpov, I., Goroslavskiy, A. (2012). Application of BIRCH to Text Clustering, available at

https://www.researchgate.net/publication/286672732_Application_of_BIRCH_to_text_clust

ering.

Klinger, J. (2019). Big, Fast Human-in-the-Loop NLP with Elasticsearch, Towards Data Science,

available at https://towardsdatascience.com/big-fast-nlp-with-elasticsearch-72ffd7ef8f2e.

Kumar, S. (2021). Stop Using One-vs-One or One-vs-Rest for Multi-Class Classification Tasks,

Towards Data Science, available at https://towardsdatascience.com/stop-using-one-vs-one-

or-one-vs-rest-for-multi-class-classification-tasks-31b3fd92cb5e.

 Using a Topic Based Model to Automate Indexing and Routing 559

Kyriakopoulou, A. (2008). Text Classification Aided by Clustering: A Literature Review. In Tools

in Artificial Intelligence, InTech., available at www.intechopen.com.

Kyriakopoulou, A., Kalamboukis, T. (2007). Using Clustering to Enhance Text Classification,

available at http://www.cs.cmu.edu/afs/cs.cmu.edu/.

Lauren, P., Guangzhi, Z.F., Lendasse, A. (2018). Discriminant Document Embeddings with an

Extreme Learning Machine for Classifying Clinical Narratives, Neurocomputing 277, pp.

129-138.

Lin, R., Fu, C., Mao, C., Wei, J., Li, J. (2019). Academic news text classification model based on

attention mechanism and RCNN, Communications in Computer and Information Science,

pp. 507-516.

Liu, Q., Kusner, M.J., Blunsom, P. (2020). A Survey on Contextual Embeddings. ArXivID:

2003.07278v2, 13 Ap3. 2020.

Parsons, L., Haque, E., Liu, H. (2004). Subspace Clustering for High Dimensional Data: A

Review. Sigkdd Explorations 6(1): 90–105.

Passalis, N., Tefas, A. (2018). Learning bag-of-embedded-words representations for textual

information retrieval, Pattern Recognition 81, pp. 254-267.

Pennington, J., Socher, R., Manning, C. (2014). Glove: Global Vectors for Word Representation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), Stroudsburg, PA, USA: Association for Computational Linguistics,

1532–43.

Petrovic, S. (2006). A Comparison Between the Silhouette Index and the Davies-Bouldin Index in

Labelling IDS Clusters, available at

 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.4114&rep=rep1&type=pdf.

Shawon, A., Zuhori, S.T., Mahmud, F., Rahman J. (2018), 21st International Conference of

Computer and Information Technology (ICCIT), pp. 1-6.

Steinbach, M., Ertöz, L, Kumar, V. (2004). The Challenges of Clustering High Dimensional Data,

New Directions in Statistical Physics, pp. 273-309.

Ular, M., Robnik-Šikonja, M. (2020). High Quality ELMo Embeddings for Seven Less-Resourced

Languages. In LREC 2020 - 12th International Conference on Language Resources and

Evaluation, Conference Proceedings, pp. 4731–4738.

Vola, S. (2017). How to Use ElasticSearch for Natural Language Processing and Text Mining —

Part 2 – Dataconomy, available in https://dataconomy.com/2017/05/use-elasticsearch-nlp-

text-mining-part-2/.

Wei, F., Qin, H., Ye, S., Zhao, H. (2018). Empirical Study of Deep Learning for Text

Classification in Legal Document Review, 2018 IEEE International Conference on Big Data

(Big Data), pp. 3317-3320.

Yellai, M. (2016). GitHub - Pandastrike/Bayzee: Text Classification Using Naive Bayes and

Elasticsearch, available at https://github.com/pandastrike/bayzee.

Received April 21, 2022, revised June 28, 2022, accepted August 18, 2022

https://github.com/pandastrike/bayzee

