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Abstract. A machine learning based model aimed at automation of the indexing and routing of the 

incoming documents of the enterprise is proposed in this article. An overall automation process as 

well as support for trainset annotation and a model for handling of streams of incoming documents 

is described. Experts are supported during the annotation process by grouping the stream of 

documents into clusters of similar documents. It is expected that this may improve both the 

process of topic selection and that of document annotation. A binary classification-based model for 

topic prediction is proposed and analysed. Classification bots are trained for each of the largest 

topics and executed on incoming documents afterward. A number of model parameters are 

described and analysed. 
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1. Introduction 

Machine Learning (ML) techniques are actively used lately in a wide variety of domains. 

Computer vision, Cancer diagnosis, recommendation systems (e.g. used by Netflix), 

sentiment analysis and news classification are just a few examples to mention. ML is 

used in particular for classification of texts and documents. The research is mainly 

focused though on comparing performance of machine learning methods on a number of 

publicly available static datasets. 

The objective of our research is to create a ML based model for handling of incoming 

documents of an enterprise. The main idea is to classify documents by topics and use 

further the document topic (in concert with other metadata like sender and addressee) to 

properly index and route the document. 

Several challenges have to be addressed here: 

 we are not dealing here with a static document set – it expands constantly; 

 the document set is highly unbalanced; 

 the penalty for false positives is probably higher than that for false 

negatives; 

 supervised ML methods need appropriate annotated trainsets for topic 

prediction; experts need to be supported both to create a topic set and to 

annotate documents. 
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We outline here the overall architecture of the proposed model. Doing this we focus 

on two processes: 

 supporting a user while annotating the samples for training of ML models; 

 training the ML models and using the trained models for predicting the 

topics for new incoming documents. 

Chapter 2 discusses the related work, Chapter 3 outlines the overall model 

architecture, Chapter 4 deals with the proposed solution for support of trainset 

annotation. Chapter 5 gives the overall description of process for training binary bots and 

using them for topic prediction. Chapter 6 describes in more detail the process of 

training a particular bot. Chapter 7 gives the conclusions. 

2. Related Work 

Supervised Machine Learning (ML) methods are used widely for text classification. 

Some domains of interest are sentiment analysis (Avinash and Sivasankar, 2019), news 

classification and web page classification (Shawon et al., 2018). 

Supervised ML methods generally deal with features and labels. A feature set is a 

representation (numeric array or vector) of the object (e.g. a text or document) to be 

classified while a label is what has to be predicted by a classification bot. ML method is 

at first trained on a trainset of features and labels. The trained model is then used to 

predict labels for new objects. 

Classification solutions can be represented as two pipelines – one for model training 

and another – for use of trained models to predict labels for new objects. Training 

pipeline comprises data cleaning, feature embedding, feature reduction, model training 

and validation. Prediction pipeline spans data cleaning, feature embedding, feature 

reduction and label prediction. It is necessary to prepare in advance the trainset for all 

this to work. 

Data cleaning usually involves removing unnecessary for classification data – e.g. 

numbers, e-mail addresses, stop words. The cleaned text is then processed by some of 

the embedding methods that convert text to a numeric vector. 

One of the basic embedding methods for text objects is the Bag of Words (BoW). 

BoW has been successfully applied in a broad range of domains as the medical domain 

with automating medical image annotation (Lauren et al., 2018), biomedical concept 

extraction (Dinh and Tamine, 2012), and recommender systems for medical events 

(Bayyapu and Dolog, 2010). Examples of methods based on BoW model are 

CountingVectorizer and tfidf. Both methods create the vocabulary of all words of the 

documents corpus and base the text representation on this vocabulary. 

Several extensions of the BoW model are developed. This includes Bag of meta-

words (BoMW) (Fu et al., 2018) that uses meta-words instead of words as building 

blocks. Another extension is the Bag of Embedded Words (BoEW) proposed in (Passalis 

and Tefas, 2018) where the word semantics is learned in so called word embeddings – 

vectors, created using the data on words neighbouring the current word in the text. 

The main disadvantage of BoW models is they rely on unrealistic assumption that 

words occur in text independently one of other. A number of alternative models have 

been developed that use the context (surrounding words) of a word to create word 

embedding. This allows to create embeddings putting words with a similar meaning 
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close to one another in a representation space. The assumption here is that words that 

have similar context have to have similar meaning. Examples of such embedding 

methods are GloVe, word2vec, doc2vec, fasttext and others (Pennington et al., 2014). 

These are followed by so called contextual models BERT, ELMo, GPT, XLNet (Liu et 

al., 2020; Ular and Robnik-Šikorja, 2020), Sentence-BERT (Cygan, 20221) and others. 

Advanced embedding methods like BERT, GPT and XLNet have demonstrated good 

results for a number of tasks still there is no single winner for all cases. A convenient 

method must be selected for a domain and task to solve. 

Dimensionality reduction is a critical step of the text classification pipeline. The 

methods used include PCA (Principal Components Analysis) (Pennington et al., 2014), 

truncatedSVD (Hansen, 1987) and UMAP (Uniform Manifold Approximation and 

Projection) (Cygan, 2021). Those methods allow for more efficient use of machine 

learning algorithms because of the time and memory complexity reduction (Lauren et al., 

2018). This is of particular importance for the text classification of the enterprise 

documents (as the feature sets there tend to have large dimensionality). 

Deep learning networks are applied for text classification, e.g. Recurrent neural 

networks, Convolutional neural network, Hierarchical Attention networks (Jacovi et al., 

2018), as well as combined RCNN - Convolutional neural with Recurrent neural 

network (Lin et al, 2019). Basic methods as Naïve Bayes show good results with smaller 

data sets, while Convolutional neural network shows superior performance with larger 

data sets (Wei et al., 2018).  

Supervised learning is superior for text classification tasks. The better performance 

of supervised learning algorithms is based on knowledge accumulated in annotated 

trainsets. The disadvantage here is that those annotated trainsets need to be prepared that 

takes considerable resources. It is therefore of great interest to develop methods that 

could reduce the manpower necessary for trainset annotation. 

Various approaches to text classification based on clustering (i.e. unsupervised 

learning) methods have been researched (Baker, 1998; Fernández et al., 2016; 

Kyriakopoulou, 2008; Kyriakopoulou and Kalamboukis, 2007). Researchers propose to 

add clustering data to the text representation or classify text by clusters (Brendel, 2020; 

Kyriakopoulou and Kalamboukis, 2007). Unfortunately, the clustering methods do not 

perform well for high dimensionality data (Assent and Seidl, 2009; Parsons et al., 2004; 

Steinbach et al., 2004). Text clusterization features both high dimensionality and large 

numbers of clusters (Karpov and Goroslavskiy, 2012). Still clustering could be used to 

support annotation of the training data of the supervised method. 

The mainstream approach to text classification is the supervised machine learning. 

Still there are alternatives. One of them we came across is the contextual More Like This 

query (MLT) provided by Elasticsearch (Klinger, 2019). This approach has been applied 

for phrase classification (Yellai, 2016), recommendation engine and duplicate detection 

(Vola, 2017). We did not find any references to the research on application of MLT to 

the document classification. 

Document classification solutions are mainly built upon the static model – a 

classification bot is trained and validated on a given labelled document set and then 

applied to new documents. It must be assumed that important features of the documents 

do not change over time for this model to work. We acknowledge that the documents 

form a stream rather than a fixed set and that there might be changes over time both in 

document dispersion by topics and even the document features inside a topic may 
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gradually change. We propose to use iterative process to address this challenge. 

Trainsets of the topic identification bots are constantly updated with the new documents 

and the bots are retrained on the new data over and over again. 

3. Overall Process 

Our approach to the automation of handling of enterprise incoming documents is based 

on the following assumptions (supported by observations in several organizations): 

• documents belong to a large number of topics, still the document set is 

highly unbalanced in this regard – a handful of topics cover most of the 

document amount; 

• document topics and distribution of documents between topics may change 

over time; 

• documents may be lengthy and have various layouts with each part having 

a different role. 

Unbalanced nature of the document set means, in particular, that most of the topics 

have a rather small number of documents belonging to them. This makes them 

inconvenient for automation because of a lack of training data. We propose thus to focus 

on automation of handling of the largest topics which should span a major part of all 

documents. 

Sets of annotated training samples (samples with topics assigned) must be created in 

advance to use supervised ML methods for the classification. Experts face a number of 

challenges when creating the annotated trainset: 

• a convenient set of topics must be created; 

• a sufficient amount (to train classification method) of samples must be 

provided with correct labels 

We assume that it is possible to create a set of topics such that a topic (possibly in 

combination with document sender and/or receiver data) unequivocally determines the 

indexing and routing of the document. Document sender/receiver may be identified by 

other means (out of scope of this research) therefore as long as the topic of the document 

is identified, the handling of the incoming document is determined. 

We propose to create a set of topics and annotate some historical documents 

beforehand (setup process). This allows us to understand what are the main topics and to 

create initial trainsets for them. When ready with the setup process we switch to the main 

process where new incoming documents are handled by the model. Details of both 

processes follow below. 

3.1. The Setup Process 

Setup process involves experts to annotate a set of historical documents of the 

organization. The main goal here is to create topics that: 

• unequivocally determine the handling of its documents; 

• are separated well enough one from another. 

The first depends fully on expert’s domain knowledge. We aim to support the second 

by manipulating the order of documents presented to experts. Namely – we would like to 

increase the likelihood that the next document in the stream of documents presented to 
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expert has the same topic as the current one. At the highest extreme this would mean that 

when expert assigns a topic to a particular document he is presented with the next 

document of the same topic and this continues as long as there are documents of the 

topic available. The extreme currently is not achievable because we would need a 

method of automatic text labelling to do this. Still increasing the likelihood that the next 

document has the same topic we will be able to create longer sequences of the same 

topic documents and this will help both to create a topic set and to annotate the 

documents. 

Two approaches for determining the next document (that would increase the 

likelihood it will have the same topic) are explored and compared in this research: 

• clustering the documents in advance and selecting the next document 

from the same cluster as the current one; 

• using MLT to find the next document.  

 The setup process should result in creation of an initial set of the largest topics (we 

call them major topics) and sets of annotated trainsets for them. The set of major topics 

as well as the annotated trainsets are later maintained (expanded, updated) by the main 

process. 

 

3.2. The Main Process 

The main process uses a set of rules that specifies actions for specific topics (or 

combination of topics and/or senders and/or addressees). An action specifies suggestion 

for the metadata to be assigned to the document (including the routing data). If the topic 

is assigned to the document by a bot the suggested metadata values are attached and the 

document is routed to the suggested assignee. The assignee then has a choice to approve 

or reject the assignment. In the latest case the document is routed back to the clerk 

responsible for the document indexing who provides the correct topic. In both cases the 

document is added to the trainset to be used in next training sessions of related 

classification bots.  

The main process uses supervised machine learning methods to train a classification 

bot for each of the major topics. This is an iterative process – the bots are re-trained 

periodically (according to a configurable schedule) to include in the trainsets the newly 

handled documents. At a given iteration: 

• topics are selected that have assembled enough (a configurable amount) 

documents; bots are trained and evaluated for each of selected topics; 

balanced trainset is used for training of each of the bots; 

• trained models are saved for bots with performance (precision) above the 

configured threshold; 

• each of the incoming documents is processed with all of the saved bots; a 

topic is predicted (or not predicted) according to the process described in 

Chapter 5; 

• if a prediction is made the related rule is triggered which adds the indexing 

and routing metadata to the document, document is routed to the assignee; 

• if a prediction is not made, document is routed to a clerk responsible for 

manual indexing. 
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4. Document Annotation 

We assume that the document annotation process can be improved by organizing the 

stream of text samples in groups of similar texts. This would help both to create the 

appropriate topic set and to reduce the manpower necessary for sample annotation. 

We research and compare here two technologies in this respect: 

• clustering methods; 

• Elasticsearch MLT query. 

The result in either case will be a method that improves the sequence of samples. In 

the case of clustering the next sample will be fed to the expert from the same cluster (if 

there are any). In the case of MLT – the next sample will be the most similar found by 

the search. We analyse thus a number of clustering workflows as well as MLT 

configurations. The solution is considered to be better if the overall probability of 

feeding the sample of the same topic is higher. 

Various clustering pipelines have been explored, using text embedding methods tfidf, 

doc2vec and lvbert, feature reduction methods umap, pca and  truncatedSVD, and 

clustering methods  kmeans, birch and hdbscan. 

A number of methods exist for comparing of the clustering results. This includes a-

priori metrics like Silhouette, Calinski-Harabasz and Davies-Bouldin (Petrovic 2006) 

that can be used to evaluate overall structural features of the clustering. Another group of 

metrics (like rand index) allow to assess how well the clusters match the grouping of 

documents by topics. Neither of those metrics allows to compare the performance of 

clustering methods against the MLT. We introduce therefore the Similarity Score metric. 

Similarity score is the average probability that the next document in the stream has 

the same topic as the current. We calculate the Similarity Score empirically by running 

the process several times and averaging the results. In case of clustering we select 

randomly the cluster and then select randomly samples inside the cluster. In case of 

MLT we select randomly the first document and then use MLT search to find the most 

similar document out of all documents not handled yet. If MLT search returns nothing 

the next document is selected randomly. 

While doing this we calculate for each topic the frequency 

 

                             𝐹𝑡 =
𝑆𝑡
𝑝𝑜𝑧

𝑆𝑡
                                                 (1) 

 

Here Ft is the Similarity Score; St
poz

 is a number of times when the document of topic t is 

followed by the document of the same topic, St is a total number of documents of topic t. 

 

Figure 1 shows similarity scores for the 4 largest topics (presented on x-axis with the 

topic name and count of topic’s documents). The similarity score for MLT and clustering 

is shown as well as share of the topic in the total document set. 
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Figure 1. Similarity Score for clustering and MLT search. 

We can see here that both MLT and clustering improve the probability that the next 

document comes from the same topic (as compared to probability for random selecting 

that equals to the topic share). MLT provides better results though as the explored 

clustering methods. The possible reason might be that clustering has no knowledge about 

what terms are important to distinguish topics of interest. MLT search determines a 

closest match for the current text on the fly and this gives a better chance to get the 

document of the same topic in contrary to clustering documents in advance and then 

selecting the next document from the same cluster. 

 Another observation here is that the similarity score strongly depends on the topic. 

The possible reason is that some topics are better separated. E.g. topic B is better 

separated from other topics than topic D. Further research is necessary here to 

understand if this information can be used to improve topics (i.e. merge, split or redefine 

some topics). 
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5. Topic Prediction 

 

Figure 2 shows the document distribution by topics for one of the data sets (of 987 

documents) explored in our research. We have observed a similar unbalanced 

distribution in other data sets of incoming documents as well (a total of 5 other data sets 

explored). 

The four largest topics account for 58% of all documents and the 20 largest topics – 

for 82%. The rest belongs to documents currently not attributed to any topic (i.e. these 

are documents having no or very few similar documents to them). 

 
 

Figure 2. Distribution of documents by topics. 

The unbalanced nature of data sets is a challenge for ML models. Other important 

challenges to address when handling the Enterprise incoming document are: 

 the topic distribution and topic document content may gradually change 

over time; 

 the penalty of false positives (i.e. topic assigned for the document that does 

not belong to the topic) should be bigger than that of false negatives (as 

false positive means incorrect indexing/routing that must be fixed 
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afterwards while false negative means the document is not indexed/routed 

automatically but handled by a clerk manually). 

ML models need training data that should contain a balanced amount of positive and 

negative samples. The unbalanced nature of the dataset means that the major parts of 

topics would have small number of related documents – thus it would be not possible to 

train performant classification models for them anyway. We propose a dynamic topic 

model to address this. Main concepts of the model: 

 topics are created on the fly as new documents appear; documents with 

topics assigned are added to the document pool; 

 if a document in question does not belong to any frequent topic it is 

assigned a special no_topic label that signals that his document is not used 

for classification bot training; these no_topic documents may be revisited 

later at any time to assign topic if similar documents appear; no_topic 

documents are added to the pool as well; 

 the document pool is examined periodically to create trainsets; the model 

attempts to create a balanced trainset for each of the topics; the trainset 

consists of equal number of positive samples (documents of the particular 

topic) and negative samples (documents of other topics); 

 binary classification bots are created for each of the topics having enough 

(configurable number min_samples) samples; 

 in case there are a lot of training samples available only the newest 

item_count samples selected (to adapt to possible changes in the topic’s 

document content); 

 binary classification bots are evaluated and bots with precision higher than a 

configurable threshold min_precision are selected for later use; 

 all created bots are used for topic prediction of an incoming document; 

 if some of the bots predict a topic with a score at least min_proba and the 

prediction score of the second-best prediction is at least margin less than the 

best prediction score, the topic of the best prediction is selected as the final 

prediction; otherwise no prediction is made. 

This is a dynamic model because the topic set may be changed as the distribution of 

documents by topics changes. It should be noted as well that the overall model 

performance depends on how well the topics are separated one from another. In the best-

case scenario precision (and recall) for all topic classification would be high and thus 

most of the incoming documents would be indexed and routed correctly. Even in this 

case though some false positives may happen. This should not be a show stopper 

because invalid indexing and routing may happen with manual handling as well. The 

precision may be improved in some degree controlling the min_proba parameter. Higher 

values of min_proba mean higher precision and lower recall. This means that there will 

be less false positives at the cost of less topics handled automatically. 

We use OvR (One-vs-Rest) approach to get the final prediction from the bot 

predictions. This means we have to train a bot for each of the topics. An alternative 

approach would be to use the ensemble classification technique ECOC (Error-Correcting 

Output Code) (Kumar, 2021) that represents the multi-class label as a binary code. 

Depending of the dimensionality of the code ECOC may be used to train more bots than 

there are topics. This may improve the robustness of the prediction model. 



554                                                                  Rāts and Pede 

 

 

Figure 3 shows how min_proba influences the prediction and recall. The best value for 

the data in question is about 90%. 

 

 
 

Figure 3. Precision and recall by min_proba. 

In case of badly defined topic and/or noisy topic samples precision of the respective 

classification bot might be lower than min_proba and the handling of the topic would be 

switched to manual. Experts must be provided with tools to analyse samples and to 

remove bad samples or redefine topics (e.g. merge similar topics). MLT query or 

clustering could be used here to find the clusters of similar samples inside the topic. The 

analysis of these clusters might give an idea how to split the initial topic to get better 

classification performance. Another option would be to analyse topic samples with low 

prediction probability and to remove them from the topic. 
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6. Training the classification bots 

The training of the classification bots is implemented as a pipeline of the following steps 

(Table 1). To use a bot for prediction the saved embedder, reducer and classifier models 

are loaded, the data is stripped and cleaned, then embedder, reducer and classifier 

executed to get the topic prediction score. 

 
Table 1. The pipeline for bot training. 

Step Description 

Select data Balanced set of positive (documents of the given topic) and 

negative (documents of other topics) samples are selected from 

the pool. 

Strip data The document is split into blocks, leading and trailing blocks as 

well as short blocks are stripped. 

Clean data E-mail addresses, numbers, stop words removed 

Split data into 
train and test sets 

Train sets are used for the training of embedder, reducer and 
classifier. Test sets are used for validation. Kfold or stratkfold 
method used to create several splits for train and test data 
(kfold/stratkfold splits data in k folds, uses k-1 folds for training 
and one-fold for testing; this produces k different splits into 
train/test data). 

Train feature 

embedder 

Embedding model is trained on the train set. Tfidf, doc2vec and 

Latvian language trained bert model lvbert used. 

Train feature 

reducer 

Feature reduction methods umap and birch used to reduce 

embedding dimensionality. 

Train classifier Multi-layer perceptron model (mlp) used for classification. 

Several network layer configurations compared. 

Validate models Trained embedder, reducer and classifier executed on test data 

set and precision calculated 

Save bot models If the average precision for all tests is above min_precision 

threshold, train embedder, reducer and classifier on full data and 

save the trained models. 

 

Embedding, feature reduction and classification methods can be switched in the model 

and hyperparameters tuned via editing the appropriate parameters in the configuration 

file. Adding new methods is relatively easy albeit this demands a little bit of python 

coding. 

We used the model to measure performance for several combinations of methods and 

hyperparameters.  

Figure 4 gives the comparison of topic prediction accuracy for embedding methods 

tfidf, doc2vec and bert (lvbert model) for largest 6 topics. Identic data cleaning, feature 

reduction and classification methods used in all three cases. As we can see tfidf shows 

the best results for our data and a task in hand (topic prediction). It should be noted that 

we used lvbert model as is – pretrained on general text corpus. 
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Figure 4. Comparing embedding methods. 

7. Conclusions and future work 

A model for automated handling of incoming enterprise documents is introduced in this 

article. The model comprises two processes – setup and main process. The goal of the 

setup process is a creation of annotated trainsets for classification bots of the main 

process. Applying clustering methods and Elasticsearch MLT query to support the 

annotation process is explored. We assume that grouping stream of documents presented 

to experts in clusters of similar documents should improve both the process of topic 

selection and that of document annotation. We assume as well that the configuration of 

the solution (both clustering and MLT) is better if higher the likelihood the next 

document in the stream is of the same topic as the current one. 

As results of the experiments show both clustering MLT may be used to improve the 

annotation process of our model. It appears as well that MLT performs better than 

clustering here. This means that Elasticsearch MLT is a viable option for the support of 

trainset annotation for text classification of enterprise documents. 
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A parametric model for training of binary classification bots and for assembling the 

final prediction is proposed and analysed. The module has a number of configurable 

parameters: 

 bots are involved in prediction if enough samples are available for training 

and if precision of the bot is better than a configurable threshold; 

 prediction probability is used to decide if the sample belongs to the topic; by 

tuning the probability threshold above which the sample is considered to 

belong to the topic it is possible to increase the precision (at a cost of 

lowering the recall); the experiments show that it may be possible to 

increase precision by 5% at a cost of 3% loss in recall. 

Currently the proof of concept is developed for the model and the first evaluations 

are performed on a couple of document sets. More analysis and evaluation are expected 

when the model will be implemented in a document management product and deployed 

to customers. 

Further research is necessary to provide experts with tools for analysis of the created 

topics. It should be explored if it is possible to use data of the topic’s documents (e.g. 

clustering data) to suggest topic improvements (e.g. merging, splitting or reorganizing 

topics). 

List of abbreviations 

 

BERT Bidirectional Encoder Representations from Transformers (BERT) is 

a transformer-based machine learning technique for natural language 

processing. 

BoW The Bag of Words model represents text as the bag (multiset) of its 

words, disregarding grammar and even word order but keeping 

multiplicity. 

doc2vec An extension of word2vec to construct embeddings from entire 

documents (rather than the individual words). 

ELMo Embeddings from Language Model is a word embedding method for 

representing a sequence of words as a corresponding sequence of vectors. 

fasttext The library for learning of word embeddings and text classification 

created by Facebook's AI Research laboratory. 

GloVe The Global Vectors is a model for distributed word representation. 

GPT Generative Pre-Training – an unsupervised transformer language 

model. 

MLT More Like This query. The tfidf based means for searching similar 

documents provided by Elasticsearch software.  

PCA Principal Components Analysis – a method for feature reduction. 

tfidf Term Frequency – Inverse Document Frequency. The method for text 

embedding 

ML Machine Learning. 

RCNN Region-based Convolutional Neural Network. 

UMAP Uniform Manifold Approximation and Projection is a feature 

reduction method. 

word2vec The word2vec algorithm uses a neural network model to learn word 
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associations from a large corpus of text. 

XLNet XLNet is an auto-regressive language model which outputs the joint 

probability of a sequence of tokens based on the transformer architecture 

with recurrence 
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