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Abstract. We present two fundamental results about the computational power of affine finite
automata (AfAs). First, we show that changing the cutpoints does not change the class of lan-
guages defined by AfAs. Second, we show that AfAs define more languages than probabilistic
and quantum finite automata with exclusive cutpoints.
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1 Introduction

Finite automata are seen as the most basic computational model, and they have widely
been investigated as language recognizer (e.g., Sipser (2013)). A deterministic finite
state automaton (DFA) divides the strings generated on a specified alphabet into two
sets: the accepted strings and the rejected strings. The accepted strings form a language,
and it is called the language recognized by this DFA. The set of all languages recognized
by DFAs is called regular languages.

The probabilistic generalization of DFA is probabilistic finite automaton (PFA) (Ra-
bin (1963)). On contrary to a DFA, instead of deciding whether any given input is in the
language or not, a PFA assigns to each string an accepting probability in [0, 1]. In other
words, a string is accepted by a PFA with some probabilities in [0, 1]. For a DFA, this
accepting probability is either 0 (rejected) or 1 (accepted).

To define a language by a PFA, we use some thresholds called cutpoints in [0, 1).
Thus, every PFA P with cutpoint λ ∈ [0, 1) defines a language, which is formed by
the strings accepted with probability greater than λ. Remark that the same PFA may
define different languages for different cutpoints. The set of languages recognized by

⋆ Part of this manuscript was prepared while Yakaryılmaz was visiting Institute of Theoretical
and Applied Informatics, Gliwice, Poland in August 2021.
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PFAs with cutpoints is called stochastic languages, which is a superset of regular lan-
guages. Remark that real-valued PFAs or PFAs with real-valued cutpoints may define
uncomputable languages (Rabin (1963); Paz (1971)).

One basic fact about stochastic languages is that the class does not change when
fixing the cutpoint to any value in (0, 1) (Paz (1971)). However, when the cutpoint is
fixed to 0, then the set of languages recognized by PFAs is identical to regular lan-
guages. Indeed, a PFA can be seen as a nondeterministic finite automaton (NFA) when
the cutpoint is fixed to 0, i.e., every transition with non-zero probability is a transition
of the NFA.

Besides the default language recognition mode for PFAs with cutpoints, a language
can be defined as the collection of the strings accepted by the given PFA with probabil-
ities other than the specified cutpoint. Such language is called exclusive stochastic (Paz
(1971)). The class of exclusive stochastic languages is a superset of regular languages
but a proper subset of stochastic languages. A half decade open problem is whether the
complement set of exclusive stochastic languages is a subset of stochastic languages or
not.

The quantum counterpart of PFA is quantum finite automaton (QFA). Due to differ-
ent physical or mathematical motivations, there are several QFA models in the literature
(Ambainis and Yakaryılmaz (2021)). We consider here the most general QFA models.
A QFA works based on the principal of quantum mechanics but still it assigns an ac-
cepting probability to any given input. Therefore, the framework for PFAs is also used
for QFAs. It was shown that the class of languages recognized by QFAs with cutpoints
is identical to stochastic languages (Yakaryılmaz and Say (2011)). On the other hand,
nondeterministic version of QFAs are more powerful than NFAs, and interestingly the
languages recognized by nondeterministic QFAs is identical to exclusive stochastic lan-
guages (Yakaryılmaz and Say (2010)). On the other hand, surprisingly, when we use the
language recognition mode of the exclusive stochastic languages, QFAs still defines all
and only exclusive stochastic languages, not a superset.

The main difference between PFAs and QFAs is that QFAs can have both negative-
valued and positive-valued transitions, which may create interference and so some tran-
sitions may disappear, i.e., some outcomes may disappear. To have a similar affect clas-
sically, affine finite automaton (AfA3) was introduced as a quantum-like generaliza-
tion of PFAs by introducing negative-valued transitions (Dı́az-Caro and Yakaryılmaz
(2016a)). Such generalization appeared in the literature before (Turakainen (1969)), but
the normalization of values based on ℓ1-norm to calculate the probabilities — similar
to the effect of quantum measurement operators — had not been considered before, up
to our knowledge.

The computational power of AfAs and their generalizations have been examined
and compared with their probabilistic and quantum counterparts in a series of papers:
Dı́az-Caro and Yakaryılmaz (2016a); Villagra and Yakaryılmaz (2016); Belovs et al.
(2017); Hirvensalo et al. (2017); Nakanishi et al. (2017); Ibrahimov et al. (2018); Vil-
lagra and Yakaryılmaz (2018); Hirvensalo et al. (2019, 2021); Ibrahimov et al. (2021);
Khadieva and Yakaryılmaz (2021); Yakaryılmaz (2021); Nakanishi et al. (2022).

3 Both PFAs and QFAs are linear system, but AfAs are almost linear system: they evolve linearly
but the last weigting operator is non-linear. We use lowercase “f” to indicate this difference.
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As the fundamental results, they were shown that AfAs recognize more languages
than PFAs and QFAs with cutpoints or with bounded error4, but nondeterministic AfAs
are equivalent to nondeterministic QFAs (Dı́az-Caro and Yakaryılmaz (2016a)). In this
paper, we present two more fundamental results. The first one is that changing the cut-
points does not change the class of languages defined by AfAs with cutpoints. The
second one is that AfAs define more languages than PFA and QFAs with exclusive
cutpoints.

We assume the reader is familiar with the basics of automata theory and quantum
computation (see e.g., Nielsen and Chuang (2000); Sipser (2013); Say and Yakaryılmaz
(2014); Ambainis and Yakaryılmaz (2021)). In the next section, we present the nota-
tions and definitions to follow the rest of paper. We present our result about changing
cutpoints in Section 3 and our results about exclusive affine languages in Section 4.

Part of this paper appeared in the technical report by Dı́az-Caro and Yakaryılmaz
(2016b), which had not been peer-reviewed before.

2 Preliminaries

For a given vector v, v[i] is i-th entry, and for a given matrix A, A[i, j] is its (i, j)-th
entry. For a numeric value α, |α| is its absolute value, its length to the origin. For a given
n-dimensional vector v, |v| is its length in ℓ1 norm, i.e., |v| = |v[1]|+ · · ·+ |v[n]|.

We denote the alphabet Σ not containing the left and right end-markers (resp.,¢ and
$), and Σ̃ denotes Σ ∪ {¢, $}. The set of all strings including empty string (ε) defined
on Σ is represented by Σ∗. For a given string w, |w| is the length of w and |w|σ is
the number of symbol σ in w. For any non-empty string w, w[i] is its i-th symbol,
where 1 ≤ i ≤ |w|. For any automaton M , its accepting probability on the input w is
represented as fM (w).

An affine state is a real-valued column vector with entry summation 1. An affine
operator is a real-valued square matrix, each column of which is an affine state. If only
non-negative values are allowed, then an affine state turns out be a probabilistic state
also called as a stochastic vector, and an affine operator turns out to be a probabilistic
operator also called as a stochastic matrix. If only 0s and 1s are allowed, then both the
state and operator turn out to be deterministic.

A pure quantum state is a complex-valued column vector with length 1 in ℓ2-norm.
When a pure quantum state is measured, the outcome corresponding to an entry with
value α ∈ C is observed with probability |α|2. The most basic quantum evolution
operator is a unitary matrix, which preserves the length of vectors. In general, a quantum
system can be in a mixture of pure states with some probabilities that add up to 1. A
quantum evolution operator is a linear mapping between such mixtures. We refer the
reader to Nielsen and Chuang (2000) for further details.

4 We believe that any linear automaton model does not go beyond the regular languages with
bounded error, e.g., Jeandel (2007).
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2.1 Affine finite automaton

Here we give the formal definition of AfAs. For the definition of PFAs and QFAs, we
refer the reader to Paz (1971) and Ambainis and Yakaryılmaz (2021).

An n-state AfA M is a 5-tuple (S,Σ, {Aσ | σ ∈ Σ̃}, s1, Sa), where

– S = {s1, . . . , sn} is the set of states,
– Aσ is the transition matrix for symbol σ ∈ Σ̃ such that Aσ[j, i] represents the

transition value from si to sj ,
– s1 is the initial state, and
– Sa ⊆ S is the set of accepting state(s).

A given input, say w ∈ Σ∗, is read by M as w̃ = ¢w$ symbol by symbol from
left to right. The left and right end-markers are used for pre- and post-processing. The
initial affine state is v0 = (1 0 · · · 0)T . The affine state after i-th step is

vi = Aw̃[i]vi−1,

where 1 ≤ i ≤ |w̃|. The final affine state is vf = v|w̃|. Then, a non-linear operator

called weighting is applied, and si is observed with probability
|vf [i]|
|vf |

. The accepting

probability of M on w is

fM (w) =

∑
si∈Sa

|vf [i]|
|vf |

.

2.2 Language recognition and language classes

The language L ⊆ Σ∗ recognized by automaton M with cutpoint λ ∈ [0, 1) is defined
as

L = {w ∈ Σ∗ | fM (w) > λ}.

The class of languages recognized by PFAs (resp., QFAs and AfAs) with cutpoints
is called stochastic (resp., quantum and affine) languages denoted SL (resp., QAL and
AfL). We know by Yakaryılmaz and Say (2011) and Dı́az-Caro and Yakaryılmaz (2016a)
that

SL = QAL ⊊ AfL.

As a special case, by fixing the cutpoint to 0, nondeterministic classical, quantum,
and affine automata models are defined (Yakaryılmaz and Say (2010); Dı́az-Caro and
Yakaryılmaz (2016a)). The class of languages recognized by NFAs (or PFAs with cut-
point 0) is regular languages (Rabin and Scott (1959)), denoted REG. The class of lan-
guages recognized by nondeterministic QFAs and AfAs are respectively denoted NQAL
and NAfL, and we have the following relation:

REG ⊊ NQAL = NAfL ⊊ SL.

The language L ⊆ Σ∗ recognized by automaton M with exclusive cutpoint λ ∈
[0, 1] is defined as

L = {w ∈ Σ∗ | fM (w) ̸= λ}.
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The class of languages recognized by PFAs (resp., QFAs and AfAs) is called exclusive
stochastic (resp., quantum and affine) languages denoted SL ̸= (resp., QAL̸= and AfL̸=).
We know by Yakaryılmaz and Say (2010) that

SL̸= = NQAL = QAL̸=.

The complement classes of AfL̸=, QAL̸=, and AfL̸= are respectively SL=, QAL=, and
AfL=.

For given automata M1 and M2, we say that L(M1, λ1) is equivalent to L(M2, λ2),
denoted

L(M1, λ1) ≡ L(M2, λ2),

if for any input w ∈ Σ∗,

1. fM1(w) > λ1 ↔ fM2(w) > λ2,
2. fM1(w) = λ1 ↔ fM2(w) = λ2, and
3. fM1(w) < λ1 ↔ fM2(w) < λ2.

3 Changing cutpoint

It is a folkloric result that for any given pair of n-state PFA (resp., QFA), say M1, and a
cutpoint λ1 ∈ [0, 1] and another cutpoint λ2 ∈ (0, 1), we can define a PFA (resp., QFA)
M2 with (n+ 1) states such that

L(M1, λ1) ≡ L(M2, λ2).

For AfAs, we obtain the same result with different state overheads.

Theorem 1. Let M1 be an n-state AfA and λ1 ∈ (0, 1), then for any λ2 ∈ (0, 1), we
can define another AfA M2 with (n+ 2) states such that

L(M1, λ1) ≡ L(M2, λ2).

Proof. The AfA M2 is obtained from M1 by adding two more states and making certain
modifications. Let w ∈ Σ∗ be the given input, and let vf be the final vector of M1 after
reading w̃. We can represent vf as the summation of two orthogonal vectors: vf =
vaf + vrf , where vaf is the projection of vf on the space spanned by the accepting states,
i.e., vaf is obtained from vf by setting entries of non-accepting states to zeros, and
vrf = vf −vaf . We define |A| and |R| as the l1-norms of vaf and vrf respectively. Remark

that fM (w) =
|A|

|A|+ |R|
and,

– if fM (w) > λ1, then
|A|
|R|

>
λ1

1− λ1
,

– if fM (w) = λ1, then
|A|
|R|

=
λ1

1− λ1
, and

– if fM (w) < λ1, then
|A|
|R|

<
λ1

1− λ1
.
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Here it is enough to show how to obtain the first inequality:

|A|
|A|+ |R| > λ1 =⇒ 1

λ1
>

|A|+ |R|
|A| =⇒ 1

λ1
> 1 +

|R|
|A|

=⇒ 1− λ1

λ1
>

|R|
|A| =⇒ |A|

|R| >
λ1

1− λ1
.

The AfA M2 follows the same computation of M1 except that it applies an addi-
tional affine transformation on the right end-marker $, say A′

$: The final state of M2

is

uf = A′
$

vf
0
0

 ,

and the effect of A′
$ (the details are given below) is as follows:

1. each value of the accepting state(s) in vf is multiplied by
λ2

λ1
,

2. each value of the non-accepting state(s) in vf is multiplied by
1− λ2

1− λ1
,

3. the value of the (n+ 1)-th state in uf is set to λ2(1− T ), and
4. the value of the (n+ 2)-th state in uf is set to (1− λ2)(1− T ),

where T is the summation of all entries except the last two in uf : T =
∑n

i=1 uf [i]. It
is easy to verify that uf is an affine state:

n+2∑
i=1

uf [i] = T + λ2 (1− T ) + (1− λ2) (1− T ) = 1.

The details of A′
$ are as follows. The easiest way to obtain the effects in items 1

and 2, the top-left (n × n)-dimensional sub-matrix of A′
$ is defined as the diagonal

matrix diag(d1, . . . , dn), where di is
λ2

λ1
if si is an accepting state, and it is

1− λ2

1− λ1
if

si is a non-accepting state. If vf = (x1 · · · xn)
T with x1 + · · · + xn = 1, then

un = (d1x1 · · · dnxn ∗ ∗)T with d1x1 + · · ·+ dnxn = T . We define (n+ 1)-th
row of A′

$ as

(λ2(1− d1) · · · λ2(1− dn) 1 0)T .

Then, (n+ 1)-th entry of uf is calculated as

λ2(1− d1)x1 + · · ·+ λ2(1− dn)xn = λ2(x1 + · · ·+ xn)− λ2(d1x1 + · · ·+ dnxn)

= λ2 − λ2T = λ2(1− T ).

In the same way, we define (n+ 2)-th row of A′
$ as

((1− λ2)(1− d1) · · · (1− λ2)(1− dn) 0 1)T .
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Then, (n+ 2)-th entry of uf is (1− λ2)(1− T ). The complete description of A′
$ is

A′
$ =



d1 0 · · · 0 0 0
0 d2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · dn 0 0

λ2(1− d1) λ2(1− d2) · · · λ2(1− dn) 1 0
(1− λ2)(1− d1) (1− λ2)(1− d2) · · · (1− λ2)(1− dn) 0 1


.

It is easy to see that each column summation is 1, and so A′
$ is an affine operator.

The accepting states of M2 is formed by the accepting state(s) of M1 and the (n+1)-
th state. For uf , we similarly define ua

f and ur
f . Then, we define |A′| and |R′| as the

l1-norms of ua
f and ur

f :

|A′| = λ2

λ1
|A|+ λ2 |1− T | and |R′| = 1− λ2

1− λ1
|R|+ (1− λ2) |1− T | .

We are ready to verify our construction:

– If fM1
(w) = λ1, we have

|A|
|R|

=
λ1

1− λ1
. Then, we calculate the following ratio:

|A′|
|R′|

=

λ2

λ1
|A|+ λ2 |1− T |

1− λ2

1− λ1
|R|+ (1− λ2) |1− T |

We can replace |A| with |R| λ1

1− λ1
in the above formula:

|A′|
|R′|

=

λ2

(
|R|

1− λ1
+ |1− T |

)
(1− λ2)

(
|R|

1− λ1
+ |1− T |

) =
λ2

1− λ2
.

That means fM2
(w) = λ2.

– If fM1(w) > λ1, we have
|A|
|R|

>
λ1

1− λ1
, and so there is δ > 0 satisfying that

|A| = |R| λ1

1− λ1
+ δλ2. Then, we can replace |A| in the same way:

|A′|
|R′|

=

λ2

(
|R|

1− λ1
+ δ + |1− T |

)
(1− λ2)

(
|R|

1− λ1
+ |1− T |

) >
λ2

1− λ2
.

That means fM2(w) > λ2.
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– For the case fM1(w) < λ1, we obtain that fM2(w) < λ2 in the same way by using

the equality that |A| = |R| λ1

1− λ1
− δλ2 for some δ > 0.

Therefore, L(M1, λ1) ≡ L(M2, λ2). ⊓⊔

The construction in the above proof does not work when λ1 = 0 or λ1 = 1. There-
fore, we present different constructions.

Theorem 2. Let M1 be an n-state AfA with k < n non-accepting state(s), then for any
λ ∈ (0, 1), we can define another AfA M2 with (n+ k) states such that

L(M1, 0) ≡ L(M2, λ).

Proof. Suppose that the first k states of M1 are non-accepting states: {s1, . . . , sk}.
The AfA M2 is obtained by modifying M1. The first k states of M2 are non-accepting
({s1, . . . , sk}) and all the others are accepting states ({sk+1, . . . , sn+k}). Until reading
the right end-marker, M2 trace the computation of M1 exactly with the same states. On
the right end-marker, M2 first applies the operator of M1 and then applies an additional
affine operator, say A′

$, which (1) multiplies the value of each non-accepting i-th state
(1 ≤ i ≤ k) with (1−λ) and (2) also transfers the values of the non-accepting states to
the additional states by multiplying with λ, i.e., the value of the (n+ i)-th state is set to
λ times the value of the i-th state.

For a given input w ∈ Σ∗, let vf and uf be the final affine states of M1 and M2,
respectively. Then, they are related as follows:

vf =



x1

...
xk

xk+1

...
xn


and uf = A′

$



x1

...
xk

xk+1

...
xn

0
...
0


=



(1− λ)x1

...
(1− λ)xk

xk+1

...
xn

λx1

...
λxk


=

 ur

ua1

ua2

 .

It is easy to see that uf is an affine state and A′
$ can be constructed in a straightforward

way.
If fM1

(w) = 0, ua1
is a zero vector, and so

fM2(w) =
λ (|x1 |+ · · ·+ |xk |)
|x1 |+ · · ·+ |xk |

= λ.

If fM1(w) > 0, then ua1 is a non-zero vector, and so

fM2
(w) =

|xk+1 |+ · · ·+ |xn |+ λ (|x1 |+ · · ·+ |xk |)
|xk+1 |+ · · ·+ |xn |+ |x1 |+ · · ·+ |xk |

> λ,

where the inequality can be easily verified by multiplying both sides with the denomi-
nator. ⊓⊔
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Theorem 3. Let M1 be an n-state AfA with k < n accepting state(s), then for any
λ ∈ (0, 1), we can define another AfA M2 with (n+ k) states such that

L(M1, 1) ≡ L(M2, λ).

Proof. We use the same proof with a few modifications. The accepting states of M1

and M2 are the same: {s1, . . . , sk}. For any input w ∈ Σ∗, the final states of M1 and
M2 are respectively as follows:

vf =



x1

...
xk

xk+1

...
xn


and uf = A′

$



x1

...
xk

xk+1

...
xn

0
...
0


=



λx1

...
λxk

xk+1

...
xn

(1− λ)x1

...
(1− λ)xk


=

 ua

ur1

ur2

 .

If fM1(w) = 1, ur1 is a zero vector, and so

fM2
(w) =

λ (|x1 |+ · · ·+ |xk |)
|x1 |+ · · ·+ |xk |

= λ.

If fM1
(w) < 1, then ur1 is a non-zero vector, and so

fM2
(w) =

λ (|x1 |+ · · ·+ |xk |)
|xk+1 |+ · · ·+ |xn |+ |x1 |+ · · ·+ |xk |

< λ,

where the inequality is trivial. ⊓⊔

4 Exclusive affine languages

We have the following equality for PFAs and QFAs:

SL = QAL and SL ̸= = QAL̸=.

But, QFAs are more powerful then PFAs when the cutpoint is fixed to 0 (nondetermin-
istic recognition mode):

REG ⊊ NQAL.

On the other hand, by definition we have NQAL ⊆ QAL̸=, but interestingly this inclu-
sion is not proper as they are identical:

NQAL = QAL̸= (= SL̸=).

AfAs are more powerful than PFAs and QFAs in the case of language recognition
with cutpoints. On the other hand, AfAs and QFAs have the same computational power
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in nondeterministic language recognition mode (Dı́az-Caro and Yakaryılmaz (2016a)).
By definition we have NAfL ⊆ AfL̸=, and the question is whether we can replace the
relation “⊆” with “⊊” similar to PFAs or with “=” similar to QFAs. We show that AfAs
are similar to PFAs in this case.

We work with the complement classes: SL= and AfL=. We introduce a new lan-
guage ABS-EQ defined on {a, b} such that w ∈ ABS-EQ if and only if

|m− n|+ |m− 4n| = |m− 2n|+ |m− 3n|, (1)

where |w|a = m and |w|b = n. It is trivial that ABS-EQ contains every string if we
do not use the absolute value signs in Equation 1. Therefore, the absolute signs makes
language ABS-EQ interesting, which turns out to be an evidence about the power of the
weighting operator.

Lemma 1. Equation 1 is satisfied if and only if m ≥ 4n or m ≤ n.

Proof. Both m and n are non-negative integers. We check each case one by one.
If m ≥ 4n, the left side is m − n + m − 4n = 2m − 5n and the right side is

m− 2n+m− 3n = 2m− 5n, and so the equation is satisfied. If m ≤ n, then the left
side is n−m+4n−m = 5n−2m and the right side is 2n−m+3n−m = 5n−2m,
and so the equation is satisfied.

If m ∈ (n, 4n), the left side is m− n+ 4n−m = 3n. We have three sub-cases for
the right side:

– When n < m ≤ 2n, the right side is 2n−m+3n−m = 5n− 2m = 3n+2(n−
m) < 3n. So, the equation is not satisfied.

– When 2n < m ≤ 3n, the right side is m − 2n + 3n − m = n < 3n. So, the
equation is not satisfied.

– When 3n < m < 4n, the right side is m−2n+m−3n = 2m−5n < 2(4n)−5n =
3n. So, the equation is not satisfied.

⊓⊔

We show that ABS-EQ is not in SL= by using the following fact due to Diêu (1971).

Fact 1 Let L be a language in SL=. Hence, there exists an n-state PFA P such that
w ∈ L if and only if fP (w) = 1

2 . Then, for any x, y, z ∈ Σ∗,

if xz, xyz, xy2z, . . . , xyn−1z ∈ L, we also have xy∗z ∈ L.

Theorem 4. ABS-EQ /∈ SL=.

Proof. Suppose that there exists n-state PFA P as described in the above fact for the
language ABS-EQ for n > 1. (When n = 1, P either accepts all strings or accepts
none.) We pick x = a8nb, z = bn, and y = b. Then, we have the following list (due to
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Lemma 1, as long as |w|a − 4|w|b ≥ 0, Equation 1 is satisfied):

w = xy = a8nbn+1 is in ABS-EQ since |w|a − 4|w|b = 4n− 4 ≥ 0
w = xyz = a8nbn+2 is in ABS-EQ since |w|a − 4|w|b = 4n− 8 ≥ 0
...

...
...

w = xyjz = a8nbn+j+1 is in ABS-EQ since |w|a − 4|w|b = 4n− 4j − 4 ≥ 0
...

...
...

w = xyn−1z = a8nb2n is in ABS-EQ since |w|a − 4|w|b = 0 ≥ 0

Due to the above fact, xynz = a8nb2n+1 must be in ABS-EQ but Equation 1 cannot be
satisfied for xynz:

|8n− (2n+ 1)|+ |8n− 4(2n+ 1)| ?
= |8n− 2(2n+ 1)|+ |8n− 3(2n+ 1)|

(6n− 1) + 4
?
= (4n− 2) + (2n− 3)

6n+ 3 ̸= 6n− 5

Thus, xynz is not in ABS-EQ, which leads us to a contradiction. Therefore, ABS-EQ is
not in SL=. ⊓⊔

Now, we present our AfA algorithm for ABS-EQ which only calculates the values
inside the absolute values in Equation 1 and the desired decision is followed by the
weighting operator.

Theorem 5. ABS-EQ is in AfL=.

Proof. We design a 6-state AfA M for ABS-EQ. The initial state is (1 0 0 0 0 0)T . The
operator for ¢ is the identity matrix. Let w ∈ {a, b}∗ be the given input and |w|a = m
and |w|b = n. After reading w, the values of m and n are stored in the second and third
states:

v|¢w| =


1−m− n

m
n
0
0
0

 ,

where the updates for three states for symbols a and b are as follows. The value of the
second (first) entry is increased (decreased) by 1 when reading an a:−m′ − n′

m′ + 1
n′

 =

0 − 1 − 1
1 2 1
0 0 1

1−m′ − n′

m′

n′

 .

The value of the third (first) entry is increased (decreased) by 1 when reading a b:−m′ − n′

m′

n′ + 1

 =

0 − 1 − 1
0 1 0
1 1 2

1−m′ − n′

m′

n′

 .
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On the right end-marker, we have the following operation:

vf =


m− n
m− 2n
m− 3n
m− 4n

1−T
2

1−T
2

 =


0 1 − 1 1 0 0
0 1 −2 0 1 0
0 1 −3 0 0 1
0 1 −4 0 0 0
1
2 − 3

2
11
2 0 0 0

1
2 − 3

2
11
2 0 0 0




1−m− n

m
n
0
0
0

 ,

where T = 4m−10n, the summation of the first four entries in vf . Let the first, fourth,
and fifth states be the accepting ones. Then fM (w) = 1

2 if and only if

|m− n|+ |m− 4n|+
∣∣∣∣1− T

2

∣∣∣∣ = |m− 2n|+ |m− 3n|+
∣∣∣∣1− T

2

∣∣∣∣ ,
which is

|m− n|+ |m− 4n| = |m− 2n|+ |m− 3n|.

Therefore, ABS-EQ is a member of AfL=. ⊓⊔

Corollary 1. SL= = NQAL = NAfL ⊊ AfL= and SL̸= = NQAL = NAfL ⊊ AfL̸=.

Thus, similar to PFAs, if we change the cutpoint in (0, 1), the class AfL̸= does not
change, but when setting the cutpoint to 0 or 1, we obtain NAfL, a proper subset of
AfL̸=.

The anonymous reviewer pointed out the status of the following languages: For
a given set of integers I = {a1, . . . , a4, b1, . . . , b4}, LI ⊆ {a, b}∗ is the language
composed by the strings satisfying the following linear equation:

|a1m+ b1n|+ |a2m+ b2n| = |a3m+ b3n|+ |a4m+ b4n|,

where m and n are respectively the numbers of as and bs in the strings. Even though
it is easy to design an AfA for each such language, it is not trivial to derive some
impossibility proofs – at least we do not see any easy generalization. It is clear that for
some sets I , LI can be trivial regular languages such as the empty language. However,
for some other cases, the analysis of the above equation can be very complicated. We
left open to classify these languages (whether in SL= or not) as a future work.
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