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Abstract. The outcome of human viral infections is highly dependent on the host features. The 

scale of COVID-19 spread and amount of deaths caused motivate scientists to search for ways to 

combat this pandemic. We have reviewed 34 scientific papers taking into account two main points 

of COVID-19: the biology behind the infection and the methods used to model the outcome of the 

disease. The findings of the studies suggest that host genetic factors impact the clinical manifesta-

tion and outcome of COVID-19. Scientists are modelling COVID-19 using various computational 

methods, including genome-wide, exome-wide, and phenome-wide association analyses. Machine 

learning and some other methods are used to model COVID-19 to obtain new insights into the 

pathogenesis of the disease. As for now, there is a limited number of causal studies about COVID-

19 and host genetic factors. 
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1. Introduction 

Recently, the world has endured the global crisis induced by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has resulted in the 

infection of over 410 million people worldwide (on the 14
th
 of February 2022), of whom 

5.81 million have died (WHO, 2022). Although showing a declining trend, the infection 

remains dangerous, claiming thousands of lives every day and tending to become 

seasonal in the future.  

COVID-19 is a very complex disorder affecting multiple organs: the respiratory 

system (Zhao et al., 2020), the circulatory system (Teuwen et al., 2020), the heart, the 

brain and the central nervous system (Coony, 2020), the renal system (Argenziano et al., 

2020), and the gastrointestinal system (Ding et al., 2020). The manifestation ranges from 

mild to severe, and these outcomes are highly dependent on the characteristics of an 

individual (Kenney et al., 2017, Tahamtan et al., 2020). Demographic characteristics 

(age, sex, ethnicity), comorbidities, some clinical symptoms, specific laboratory test 
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findings, and diet/lifestyle predetermine a patient's risk of developing the more severe 

course of the disease. Additionally, there is considerable evidence that genetic features 

of human genomes have a clear association with COVID-19 severity (Zhang et al., 2020; 

Wang D. et al., 2020; COVID-19 Host Genetics Initiative 2021). 

Unravelling the host genomic factors associated with the clinical characteristics 

of COVID-19 can lead to a better understanding of COVID-19 development and 

improve disease management. In this overview, we provide the synthesis of current 

scientific knowledge in fundamental pathophysiology underlying COVID-19 and the 

computational methods/software used in the disease modelling, thus applying the system 

biology approach and enabling versatile and comprehensive perception of the topic 

complexity. To our knowledge, it is the first paper which brings insights from the field 

of medicine/biology together with computational modelling. 

2. Literature search strategy 
 

We present the review of overall 34 scientific articles selected by two independent 

scientists: one seeking to explain the biological part of COVID-19 infection, while the 

other reviewing the computational part of the COVID-19 outcome and severity 

modelling. Seven of the reviewed studies did not separate the genetic variants or the 

associations found were not significant, and therefore these studies are not mentioned in 

the part of the COVID-19 biology analysis of this review. In this review, we have used 

the scientific articles published before the 14
th

 of February 2022. 

For the biological part, scientist 1 searched for the articles using the following 

keywords: “covid-19”, “sars-cov-2”, “coronavirus”, “genetic variation”, “gene”, 

“genome-wide association study”, “polymorphisms”, “single nucleotide”, “genetic 

association”, “genetic susceptibility”, “genotype”, “human host”, “genotype”.  

For the computational part, scientist 2 searched for the articles using the 

following keywords: “covid-19 outcome modelling”, “covid-19 severity modelling”, 

“machine learning for covid-19 modelling”, “covid-19 prediction using genomic data”. 

The literature search was carried out in the following databases: PubMed, medRxiv, and 

bioRxiv. We analyze only those articles that first described the SNP associations found. 

3. The biology behind the COVID-19 infection 
 

SARS-CoV-2 is a single-stranded (ss) RNA virus. Its genome contains 29,881  

nucleotides in length and encodes 9,860 amino acids (Huang et al., 2020). The first 2/3 

of the viral genome base pairs are called open reading frame sequences (ORFs). SARS-

CoV-2 has two of them – ORFa and ORFb, which encode two polyproteins (pp1a and 

pp1ab), and other non-structural proteins (NSP). The rest of the SARS-CoV-2 genome is 

composed of 4 genes: S, E, N and M (visualised in Fig. 1), which encode four main 

structural proteins: spike (S), envelope (E), nucleocapsid (N), and membrane (M) 

proteins (Tavasolian et al., 2021; Kang et al., 2020).  

The surface of SARS-CoV-2 is covered in a large number of S proteins. They 

are highly conserved and involved in receptor recognition and viral attachment to host 

cells (here, we focused only on a human). The N protein is a multifunctional RNA-

binding protein necessary for viral RNA transcription and replication. The M protein is 

the most abundant structural protein and defines the shape of the viral envelope and 

organises the new SARS-CoV-2 assembly, interacting with all structural proteins. The E 
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protein is the smallest of the major structural proteins. The SARS-CoV-2 genome 

replication cycle is associated with the assembly of new virions, effective virion transfer 

to new cells, and reduced stress response by the host cell (Schoeman and Fielding, 

2019).  

3.1.  Entry and replication cycle  

 
SARS-CoV-2 uses the S glycoprotein to promote entry into the host cell. This protein 

contains two functional domains: an S1 receptor-binding domain and an S2 domain that 

mediates the fusion of viral and host cell membranes. The S protein binds to the ACE2 

receptor on the host cell, initially through the S1 receptor binding domain. The S1 

domain is then shed from the viral surface, allowing the S2 domain to fuse to the host 

cell membrane. This process depends on the activation of the S protein by cleavage via 

the host protease TMPRSS2 and other proteases (coloured blue in Fig. 1) (V'kovski et 

al., 2021). 

  
 

Figure 1. Schematic representation of SARS-CoV-2  architecture and spike protein (S) binding to 

ACE2 receptor, mediated by TMPRSS2 protease. Based on Huang et al. (2020). 
 

Despite the short time since the beginning of the outbreak, some host genome 

variants have been linked with COVID-19 presentation. It has been reported that the S 

protein and ACE2 binding affinity are correlated with disease severity in SARS-CoV-2 

infections (V'kovski et al., 2021). ACE2 gene polymorphisms that putatively increase or 

decrease susceptibility based on virus interactions with the S glycoprotein on the cell 

surface were recently described (Suryamohan et al., 2020) (Table 1). Additional locus in 

3p21.31 contains several genes (SLC6A20, LZTFL1, FYCO1, CXCR6, XCR1, CCR9), 

and some take part in cellular biology immunity response or interact with ACE2. 

Variations in TMPRSS2 – a protein-encoding gene involved in SARS-CoV-2 

penetration to host cell has been associated with the increased expression of TMPRSS2 

on the cell surface, leading to inhibition of antiviral response (Asselta et al., 2020).  

The release of the coronavirus genome into the host cell cytoplasm initiates the 

highly regulated onset of a complex viral gene expression program. SARS-CoV-2 has a 

highly conserved genomic organisation, with a large replicase, an enzyme that catalyses 
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RNA replication from an RNA template. The first step in the coronavirus lifecycle is the 

translation of the replicase from the virion genomic RNA.  
 

 

Table 1. Genome variants affecting the entry of SARS-CoV-2 into the host cell. 
 

Publication   Gene 
Number of 

variants   

COVID-19 

disease severity 

Sample size 

(cases/controls)   
Laboratory methods     

Stawiski et al., 

2020   

ACE2 

9  Increase  290,000 

(NA / NA)  
Genotyping   

  
17  Decrease     

Benetti et al., 

2020  

3  Decrease  
389 

(131/258)    

Whole exome 

sequencing    

  

2  Decrease    

3  Decrease    

Guo et al., 

2020   

2  Increase  141,456 

(NA / NA)   

Whole exome and 

genome sequencing   

  

7  Decrease    

Gibson et al., 

2020   

5  Decrease   141,456 

(NA / NA)   

Whole exome and 

genome sequencing   

  

4  Increase    
Horowitz et al., 

2020  
1  Decrease  

756,646 

(52,630/704,016)  
SNP genotyping assay    

MacGowan 

and Barton, 

2020   

1  Increase  
- 

Whole exome and 

genome sequencing   

   
3  Decrease    

Hou Yuan et 

al., 2020   

TMPRSS

2   

1  Increase  

81,000 

(NA / NA)   

Whole exome and 

genome sequencing   
  

Wulandari et 

al., 2021   
95 cases   SNP genotyping assay     

Monticelli et 

al., 2021   
1  Decrease  1177 cases   

Whole exome 

sequencing   
  

Grimaudo et 

al., 2021  

TLL-1   
1  Increase  383 cases   SNP genotyping assay     

NA – Information Not Available 

 

The coronavirus genomic RNA encodes non-structural proteins (NSPs) critical 

in viral RNA synthesis and structural proteins, which are essential for virion assembly. 

First, the polyproteins pp1a and pp1ab are translated into functional NSPs as RNA 

replicase. RNA replicase is responsible for the replication of structural and non-

structural protein RNA. Structural proteins S1, S2, envelope (E), and membrane (M) are 

translated by host ribosomes that are bound to the endoplasmic reticulum (ER) and 

presented on its surface as preparation for virion assembly. The nucleocapsids (N) 

remain in the cytoplasm and are assembled from genomic RNA. They fuse with the 

virion precursor, which is then transported from the host ER through the Golgi apparatus 

to the cell surface through small vesicles (Fehr and Perlman, 2015). These new virions 

are now accessible to infect another healthy cell and can also be released into the 

environment via respiratory droplets, potentially spreading to healthy individuals (Shah 

et al., 2020).  

Comprehensive data summary of the studies presenting the variants interacting 

with the entry of SARS-CoV-2 into the host cell is provided in Supplementary Table S1. 
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3.2. Immune response 
 

Once the virus gets inside the target cell, such as in the epithelial cell of the lungs, its 

number increases exponentially. When a certain number is reached, the host immune 

system recognises the changed environment and locates the virus or its surface antigenic 

determinants, and epitopes, inducing an immune response. Host defences come into play 

to block or inhibit initial infection, protect cells or eliminate virus-infected cells. The 

immune system comprises two main parts: innate (general) and adaptive (specialised).   

Innate immune defences are initiated via pathogen recognition receptors 

(PRRs), and toll-like receptors (TLRs). TLRs are present on the surface of immune cells 

such as dendritic cells, macrophages, lymphocytes, and parenchymal cells. These 

receptors promote the expression of the immune cells' communication proteins called 

cytokines - interferons (IFN), chemokines, and others. IFNs activate natural killer (NK) 

cells. NK cells can kill infected cells. Chemokines may also play an essential role in 

innate antiviral defence by regulating macrophage, neutrophil, dendritic cells (DC), and 

NK responses at the site of infection (Mueller and Rouse, 2008).   

The initiation of adaptive immunity is dependent on innate immunity. Innate 

immunity generally slows the virus, allowing the adaptive immune response to begin. 

Adaptive immunity leading players are lymphocytes: B cells and T cells. Adaptive 

immunity involves virus-specific antigen responses that are highly adapted to the 

specific pathogen and are firmly regulated by cross-talk between innate immune cells. 

Innate immune produced cytokines are drawn into lymphoid tissues, virus antigen-

presenting cells (APC), and lymphocytes. APCs are immune cells that specialise in 

presenting a virus antigen through their major histocompatibility complex (MHC) class I 

and class II proteins, also known as human leukocyte antigen (HLA) (Wieczorek et al., 

2017). The primary type of professional APCs is dendritic cells (DC). T and B cells are 

activated when they recognise foreign antigens presented by MHC proteins from APC 

cells. Activated B cells initiate high-affinity, antibody-producing long-lived plasma cells 

(mature B cells) and memory B cells. Antibodies generally function by binding to free 

viral particles and blocking host cell infection. Antibodies, also known as 

immunoglobulins (Ig), are composed of two heavy chains (H) and two light chains (L). 

There are five main classes of heavy chain domains. Each category defines IgM, IgG, 

IgA, IgD, and IgE isotypes (Schroeder and Cavacini, 2010). Memory B cells circulate 

throughout the body until a specific antigen is re-encountered, triggering an immune 

response. Activated T-cells recognise and destroy virus-infected cells (Mueller and 

Rouse, 2008).  

While the immune system is there to protect itself, it can cause harm and 

requires strict regulation. The findings from studies have suggested that SARS-CoV-2 

can suppress IFN signalling and impair viral clearance from infected cells. Research on 

SARS-CoV shows that multiple viral structural and non-structural proteins antagonise 

interferon responses. Antagonism occurs at various stages of the interferon signalling 

pathway, including preventing PRRs recognition of viral RNA. GWAS performed by 

Spanish researchers identified a signal located in 9q34 within the ABO blood group 

locus suggesting a possible association of the disease severity with blood groups 

(Ellinghaus et al., 2020). The meta-analysis of genetic variation implicated in excessive 

release of cytokines (IL-6, IL-1β, TNFα) ("cytokine storm") revealed an association of 

the 174C allele of the IL6 gene (and a higher level of IL-6) with the severity of 

pneumonia (Ulhaq and Soraya, 2020). Several pieces of research demonstrated that 

lacking Toll-like receptor genes led to increased viral replication and enhanced lung 

pathology (Ovsyannikova et al., 2020). An identified splice variant of the OAS1 gene 

confers protection against COVID-19 in people of African ancestry. OAS genes activate 
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viral RNA degradation and other antiviral defence mechanisms (Huffman et al., 2021) 

(Table 2). 
 

Table 2. Genome variants of human immune response to SARS-CoV-2 associated with increased 

COVID-19 severity.  

Publication Gene 
Number 

of 

variants 

COVID-

19 

disease 

severity 

Sample size 

(cases/controls) 

Laboratory 

methods 

Secolin et al., 2021  

HLA   

3 

Increased 

386 

(NA/NA) 
Whole exome 

sequencing   

Wang D. et al., 2020  2 
3,872 

(82/3,790) 
Next-generation 

sequencing   

Zhang et al., 2020  IFITM3   1 
80 

(NA/NA) 
IFITM3 

sequencing   

Grimaudo et al., 2021  PNPLA3   1 
383 

(NA/NA) 
SNP genotyping 

assay   

Kuo et al., 2020  APOE   2 
322,948 

(622/323,570) 
SNP genotyping 

assay   

Severe Covid-19 GWAS 

Group, 2020 
ABO, LZTFL1 2 

3,815 

(1,610/2,205) 

SNP genotyping 

assay   

Rescenko et al., 2021  
LZTFL1 

3 
2,692 

(475/2,217) 
SNP genotyping 

assay   

The COVID-19 Host 

Genetics Initiative, 2021  

SLC6A20, ABO, RPL24, 

PLEKHA4, LZTFL1, 

FOXP4, TMEM65, OAS1, 
KANSL1, TAC4,  

DPP9, RAVER1, IFNAR2 

13 

2,049,562 

(49,562/2,000,000)
  

SNP genotyping 

assay   

Pairo-Castineira et al., 2021  
LZTFL1, CCHCR1, OAS3, 
DPP9, RAVER1, IFNAR2 

6 
10,056 

(1,676/8,380) 
SNP genotyping 

assay   

Ma et al., 2021 
SLC6A20, ABO, IFNAR2-

IL10RB 
4 

680,128 
(3,288/676,840) 

SNP genotyping 

assay 

Shelton et al., 2021  SLC6A20, ABO 2 
114,240  

(12,972/101,268) 

SNP genotyping 

assay   

Hu et al., 2021  

DNAH /SLC39A10, 

CLUAP1, DES/SPEG, 

STXBP5, TOMM7, WSB1, 
PCDH15, CPQ 

23 
1,096 

(292/804) 
Genotyping  

Pairo-Castineira et al., 2021  
OAS1-3, TYK2, DPP9, 

IFNAR2   
4 

100,000+ 

(2,244/100,000+) 

Genotyping, 

whole genome 
sequencing 

Verma et al., 2021  
ABO, RAVER1   

3 
455,683 

(NA / NA) 
Genotyping 

Fallerini et al., 2021  
TLR7   

6 
156 

(79/77) 
Genotyping 

Tanimine et al., 2021  
OAS1, IL1B 

2 
230 

(NA/NA) 
Genotyping 

Dapeng Wang et al., 2022  
EFCAB4B 

3 
500,000 

(10,118/489,882) 
Genotyping 

Maes et al., 2022  
NLRP3 

2 
528 

(NA/NA) 
Genotyping 

Carapito et al., 2021 ADAM9 1 
72  

(47/25) 
Gene expression 

Huffman et al., 2021 
OAS1 

1 
Decreased 120,473 

(1,842/118,631) 
Genotyping 

 

Recent large-scale studies have shown the role of rs1990760 (p.Ala946Thr) 

of the IFIH1 gene in SARS-CoV-2 infection. Individuals carrying the T allele may be 

more resistant to SARS-CoV-2 infection (Maiti et al., 2020). 

The findings of Kurki et al. (2021) on the Finnish cohort confirm the findings 

of Kuo et al. (2020) that the APOE ε4 allele (APOE4) is a risk factor for severe COVID-
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19. The APOE immunomodulatory agent affects both innate and adaptive immune 

responses by stimulating macrophages and other inflammatory response immune cells, 

such as suppressing T cell proliferation and activating neutrophils. Moreover, Kurki and 

colleagues revealed the relation between APOE4 and post-COVID mental fatigue. 

More details about the studies that have found variants associated with host 

immune response to SARS-CoV-2 infection are listed in Supplementary Table S2. 

4. Methods to model the outcome and severity of COVID-19 

infection 
 

While analysing 34 studies from the modelling perspective, we can discriminate all 

applied methods into three main groups: association studies, machine learning 

techniques, and other statistical methods. We observe that association methods were the 

most common, and machine learning techniques were used less frequently. Some studies 

have applied other statistical modelling techniques. Twenty-nine studies used a single 

method; in 5 publications, the authors report multiple methods (see Fig. 2.). Next, we 

will discuss the models of each group in more detail. 

 

  
 

Figure 2. Main model groups for modelling the outcome of COVID-19: association studies, 

machine learning, and other statistical methods. The number below the title is the frequency the 

method was used. Some studies implemented multiple models. Therefore, the sum of the methods 

is greater than the studies reviewed. 

 

4.1. Association studies 
 

Of the 34 articles analysed, various association techniques were commonly used to 

model the COVID-19 disease (Table 3). Sixteen studies are case-control studies, and, 

respectively, 18 model the different severity of COVID-19 by only analysing the patient 

group. GWAS was applied in COVID-19 studies to discover genetic factors associated 

with the severity, mortality, risk, laboratory, and clinical characteristics of COVID-19. 

Scientists are studying patients of different ancestry, considering different factors such as 

age, sex, comorbidities, and others. In the studies, the sample size was very different 

from the most minor (230 patients) in Tanimine et al. (2021) to the largest (5.37 million 

cases and control) in the COVID-19 Host Genetics Initiative (2021) (COVID-19 HGI). 

(COVID-19 HGI) is a scientific collaboration seeking to spread the research findings and 

knowledge about the genetic basis of COVID-19 susceptibility, severity, and clinical 

outcomes. Currently, 115 registered studies participate in this initiative and constantly 

update the knowledge base with the newest findings. All studies can be summarised as 

having solved two different problems, that is, case-control studies want to find out what 

factors are associated with COVID-19 outcome, and studies that only include data from 
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patients aim to detect what factors are associated with a different course of COVID-19 

disease (see Table 3). Next, we will discuss the studies of associations found now in 

detail. 

Genome-wide association study (GWAS) 
 

In GWAS, scientists apply statistical tests to determine statistically significant 

associations between SNP alleles and phenotypes, and multiple tests are conducted 

simultaneously. GWAS requires three essential elements: (1) sufficiently large study 

samples from populations that effectively provide genetic information regarding the 

research question, (2) polymorphic alleles that can be inexpensively and efficiently 

genotyped and cover the whole genome adequately, and (3) analytic methods that are 

statistically powerful and can be employed to identify unbiased genetic associations 

(Cantor et al., 2010).  

One can employ a single-variant or multiple-variant GWAS when we assume 

the independence of tested variants from the rest. Single-SNP GWAS could be 

performed using the chi-square test, as multiple-SNP analysis could be performed using 

various regression models. Regression models give the possibility to include information 

about confounding factors, whilst other simple inference methods do not have this 

feature. Linear and logistic regression models in GWAS include information about 

covariates, effect sizes, genotype values for all individuals at SNPs, SNP effect sizes, the 

polygenic effect of other SNPs, the additive genetic variation of the phenotype, and 

standard genetic relationship.  

Typically, in COVID-19 GWAS studies analysed, models are corrected for sex, 

age, and principal components (to remove the effect of population structure) (Dey et al., 

2021; Wang  et al., 2022). Additional information about comorbidities, laboratory test 

results, patients’ clinical information, and genotyping array type are used as covariates in 

different study designs (Kuo et al., 2020; Zhu et al., 2021; Maes et al., 2022).   

There is a consensus in COVID-19 HGI that GWAS studies should use a 

logistic regression association model including variant, age, age squared, sex, age 

multiplied by sex, 20 PCs, and study-specific variables as covariates. This requirement is 

applied to ensure the unified methodology for the proper interpretability of results shared 

through the COVID-19 HGI platform. As COVID-19 HGI embraces sharing scientific 

knowledge, summary statistics of GWAS analyses are available for other scientists to 

use in their research.  

Tanimine et al. (2021) have applied a variable selection with forward-backward 

stepwise logistic regression to predict SNPs related to the risk of severe COVID-19 

disease. However, as Ayers and Cordell (2010) noted, forward stepwise regression 

makes decisions in variable selection worse when the model becomes larger. Dite et al. 

(2021) have applied multivariable logistic regression while performing candidate 

variable selection by adding or removing additional candidate variables leaving only 

those with P<0.05. Moreover, Hu et al. (2021) proposed the super-variant concept (a set 

of alleles from multiple loci located anywhere in the genome) to find the association 

between them and the mortality of COVID-19 by applying logistic regression. The 

biggest issue in medical experiments is the insufficient data for computational methods. 

Furthermore, the number of individuals in different groups is usually unequal. To 

combat this problem, Grimaudo et al. (2021) applied multivariable logistic regression 

models to find the associations between the genotypes of mild and severe outcome 

patients and possible confounders (age, sex). The authors used only one genotype at a 

time to remove the bias of unbalanced data (different genotype distribution). The Firth 

logistic regression also combats the same problem and reduces slight sample bias in 

maximum likelihood estimation by penalising the likelihood and thus letting the 
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separation occur during classification (Heinze and Schemper, 2002). Horowitz et al. 

(2020) applied Firth's logistic regression to determine associations between SNPs and 

seven defined phenotypes of COVID-19. The results of this analysis allowed to support 

the hypothesis that ACE2 levels influence COVID-19 risk. 

Instead of using genotypes, Pairo-Castineira et al. (2021) tested genetic 

associations with patient status using a logistic regression model with a dose of gene 

alleles. Furthermore, Shelton et al. (2021) used logistic regression considering additive 

allele effects. In the simulation study performed by Setakis et al. (2008), authors have 

shown that methods based on simple logistic regression models perform well in all 

scenarios. In contrast, other methods (e.g. AdmixMap, Genomic Control) had issues 

with inflated false positive rates and had a low power when cases arose in only one 

subpopulation.  

Ma et al. (2021) have applied this approach to conduct a gene-based association 

analysis to test the association between host genetic characteristics and the risk of 

developing COVID-19. The authors have identified multimarker aggregated effects and 

account for SNP p-values and linkage disequilibrium (LD) between SNPs by applying a 

multiple linear principal components regression approach. This technique achieves 

equivalent results as more sophisticated logistic regression models but with smaller 

computational resources. 

Although regression models can detect associations between genotypes and 

disease status, they cannot detect causality or statistical coupling. Furthermore, a more 

advanced analysis could be conducted when we allow for interdependence between 

SNPs. Detailed information about the studies employing GWAS methods to model 

COVID-19 outcomes is summarised in Table 3. 

Exome-wide association analysis (EWAS) 
 

One of the GWAS variations, exome-wide association analysis (EWAS), differs from 

GWAS in sample and library preparations for sequencing. The aim is to capture only the 

exonic parts of the human genome. Kosmicki et al. (2020) applied EWAS to test whether 

there are significant associations between rare coding variants and COVID-19 outcomes 

(see Table 3). However, as the authors mentioned in their article, this method requires a 

large sample size. Thus the sample size of 7 million rare variants in around 20 thousand 

protein-coding genes was insufficient to reach a genome-wide significance. More studies 

with EWAS for COVID-19 modelling with larger sample sizes should be conducted to 

reach statistically significant results. 

 

Phenome-wide association study (PheWAS) 

 
A phenome-wide association study (PheWAS) aims to find the associations between 

SNPs (or other genetic features) and a variety of phenotypes (any trait, disease, or other) 

(Pendergrass et al., 2011). This approach is usually an additional step in GWAS, and it 

differs from GWAS in that the PheWAS association analysis starts with the specific 

DNA variant in order to find a possible phenotype. Although GWAS analysis is 

conducted reversely, searching for the SNPs associated with particular phenotypes. 

COVID-19 Host Genetics Initiative (2021) applied PheWAS to find out whether SNPs 

associated with other lung diseases could be related to the outcome of COVID-19. 

Verma et al. (2021) applied PheWAS separately for different ancestries and used 

phenotypes obtained from electronic health records (EHR). Authors applied either 

logistic or firth regression with adjustment for sex, age, age squared, and the first 20 

principal components to test the association between SNPs and phenotypes. Associations 
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were considered significant when the p-value was below 0.1 using the FDR correction 

(see Table 3). 

4.2. Machine learning methods 
 

Machine learning (ML) methods allow systems to automatically learn new experiences 

from the previous experience (Woolf, 2010). Although ML methods have become a 

common choice to solve various problems, scientists are just starting to apply them for 

disease prediction using patients’ genomic data. Based on the review study (Kushwaha 

et al., 2020), a variety of ML methods have been applied for the COVID-19 pandemic, 

including regression, clustering, classification, transfer learning, ensemble methods, 

neural networks and deep learning, dimensionality reduction, reinforcement learning, 

word embeddings, and natural language processing. Mieth et al. (2016) have shown that 

machine learning methods (in this particular study - SVM) can identify genetic loci and 

increase the statistical power of GWAS. Next, we will review studies that have applied 

ML techniques to model COVID-19 using genomic patient data (summary presented in 

Table 4). 

One of the most extensively applied ML methods is Random Forest (RF), based 

on stacked decision trees' votes (Ho Tin Kam, 1995). As Goldstein et al. (2011) noted, 

the RF model is suitable for studying genetic associations due to its ability to predict and 

present variable importance. Moreover, this algorithm, without any substantial 

difficulties, can handle thousands of observations and hundreds of thousands of 

predictors. Wang R.Y. et al. (2020) applied the RF model to the SNP number in the 

haplotype blocks to predict an individual's COVID-19 status and identify the essential 

haplotype blocks for COVID-19. The authors used an RF model with 248 trees in the 

forest and a random state parameter of 140. Even though the model was applied using 

insufficient data, it has reached an accuracy of 90%. These results suggest that 

incorporating the RF model on genomic data could get noteworthy results. 

XGBoost (eXtreme Gradient Boosting) (Chen et al., 2016) is a gradient-

boosting-based method that has outperformed other techniques for various sets of 

features in various settings. Similarly as RF, XGBoost is a tree ensemble method and is 

beneficial in genetic association studies because of their efficient handling of missing 

values, irrelevant and correlated variables, and they are computationally efficient to use. 

XGBoost was applied on the chromosomal-scale length variation (CSLV) (Toh and 

Brody, 2020) or laboratory test results (Wang F. et al., 2020) to predict which patients 

will develop a severe COVID-19 clinical outcome. However, this approach did not reach 

clinically applicable efficiency.  

LASSO logistic regression is a standard ML algorithm used to solve binary 

classification tasks simultaneously, having a possibility to select the most significant 

features for model prediction. Moreover, it penalizes the regression coefficients and, in 

that way, allows more precisely finding the associated haplotypes, especially the rare 

ones (Biswas and Lin, 2012). Seven rare genetic variants of the Toll-like receptor gene 

associated with the outcome of COVID-19 in men were identified using LASSO logistic 

regression with a Boolean representation of genes on the X chromosome with rare 

variants (Fallerini et al., 2021). LASSO logistic regression with misclassification 

penalisation reduces the effect of unbalanced classes. Using this method, Fallerini et al. 

(2022) showed that additional genetic information (or, more precisely, Integrated 

Polygenic Score, IPGS) improves the ability to predict the severity of COVID-19.
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Table 3. Methods applied in association analyses modelling COVID-19. All reviewed studies have used SNPs as an input for the models, except for exome-wide 

association analysis authors have used exomes. NA - information not available. 

Modelling method Publication 

Sample size 

Data source Outcome N 

(cases/controls) 
Comments 

GWAS 

Logistic 

regres-

sion 

COVID-19 
Host Genetics 

Initiative, 2021 

5.37 mln 

(70k/5.3 mln) 

Critical illness due to COVID-19 (n=6,179 cases and n=1,483,780 controls), 
hospitalization due to COVID-19 (n=13,641 cases and 2,070,709 controls), and 

reported SARS-COV-2 infection (n=49,562 cases and n=1,770,206 controls) 

Studies performed in 46 different 

laboratories 
COVID-19 disease severity 

Severe Covid-

19 GWAS 
Group, 2020 

3,815 

(1,610/2,205) 

Cases – patients with severe COVID-19, controls – genotyped patients with other 

diseases (unknown COVID-19 status) 

Seven hospitals in the Italian and 

Spanish epicentres 

Disease severity (with mechanical 

ventilation or without) 

Pairo-Castineira 

et al., 2021 

102,244+ 

(2,244/100,000+) 

Cases from GenOMICC European cohort, controls – from UK Biobank, 

Generation Scotland (n=7,689) and 100,000 Genomes Project; n=1,675 

individuals from the GenOMICC study and n=45,875 unrelated participants of 

European ancestry; An undefined number of individuals from 1000 Genomes 

Project 

GenOMICC, ISARIC 4C, 1000 

Genomes Project, UK Biobank 
Having a disease/healthy individual 

Dey et al., 2021 
12,389 
(4,000/8,389) 

Cases – severe COVID-19 patients (inpatients with a positive test), controls – 
non-severe COVID-19 patients 

UK Biobank 
Loci association with COVID-19 
disease severity 

Hu et al., 2021 
1,096 

(292/804) 

1,096 COVID-19 infected participants, of which 292 are deaths and 804 are 

survivors 
UK Biobank 

Association between SNPs and 

COVID-19-caused mortality/death 

Zhu et al., 2021 
466 
(466/0) 

n=170 with mild COVID-19 symptoms, n=296 with severe COVID-19 symptoms Wuhan Union Hospital 
Association between SNPs and 
COVID-19 disease severity 

Verma et al., 
2021 

455,683 
(NA/NA) 

455,683 VAMVP participants, critical (n=35) and hospitalised (n=42) COVID-19 

patients and controls. Two type GWAS: critical vs population, hospitalised vs 

population 

EHR and genomic data from two 

biobanks: Veteran Affairs Million 
Veteran Program (VAMVP), 

United Kingdom Biobank (UKBB) 

Association between SNPs and 

critical and hospitalised status of 

COVID-19 

Grimaudo et al., 
2021 

383 
(383/0) 

Mild or severe COVID-19 Sicilian patients 
Laboratory for COVID-19 
Surveillance for Western Sicily 

SNP association with COVID-19 
severity 

Dite et al., 2021 
18,221 
(1,713/16,508) 

Cases – severe cases (inpatients), controls – non-severe cases (outpatients) UK Biobank 
COVID-19 disease severity 
(severe/non-severe) 

Horowitz et al., 

2020 

662,403 

(11,356/651,047) 
Cases – with COVID-19, controls – without COVID-19 

AncestryDNA COVID-19 

Research, Geisinger Health System, 

Penn MedicineBioBank, UK 
Biobank 

Association between ACE2 gene 

variants and risk of COVID-19 

disease 
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Modelling method Publication Sample size Data source Outcome 

Kuo et al., 2020 
322,948 

(622/323,570) 
Cases – with COVID-19, controls – without COVID-19 UK Biobank 

Association between SNPs and 

COVID-19 severity 

Tanimine et al., 

2021 

230 

(230/0) 
Patients with COVID-19 3 Hospitals in Hiroshima, Japan 

Associations between genotypes 

and risk of severe COVID-19 
disease 

Shelton et al., 

2021 

114,240 

(12,972/101,268) 
Cases – with COVID-19, controls – without COVID-19 23andMe 

Association between SNPs and 

COVID-19 risk 

Maes et al., 

2022 

528 

(528/0) 
n=308 critical, n=63 moderate, n=157 mild COVID-19 outcome 

University Hospital of Londrina 
(HU) and the Emergency Rooms 

(ER) in Londrina, Paraná, Brazil 

Associations between the sickness 
symptom complex (SSC) and 

COVID-19 and SNPs 

Wang D. et al., 

2022 

10,118 

(NA/NA) 

n=10,118 tested for COVID-19, n=1,265 with COVID-19, of those n=194 were 

fatal and n=1071 non-fatal 
UK Biobank 

Associations between Rab46 SNPs 

and COVID-19 fatality 

Multiple 

linear 

regression 

Ma et al., 2021 
680,128 
(3,288/676,840) 

1,610 cases and 2,205 controls from UK Biobank; 

1,678 COVID-19 patients and 674,635 controls from COVID-19 Host Genetic 

Consortium 

UK Biobank, COVID-19 Host 
Genetic Consortium 

Association between SNPs and 

COVID-19 risk 

Exome-wide 

association analysis 

Kosmicki et al., 

2020 

543,213 

(8,248/534,965) 

n=8,248 had COVID-19, and among those n=2,085 (25.28%) were hospitalized 

and n=590 (7.15%) had severe disease 

Geisinger Health System, Penn 

Medicine BioBank and UK 
Biobank 

Disease susceptibility and disease 

severity 

PheWAS 

 

 

 

 

 
 

 

 

COVID-19 

Host Genetics 

Initiative, 2021 

5.37 mln 

(70k/5.3 mln) 

Critical illness due to COVID-19 (n=6,179 cases and n=1,483,780 controls), 

hospitalization due to COVID-19 (n=13,641 cases and 2,070,709 controls), and 

reported SARS-COV-2 infection (n=49,562 cases and n=1,770,206 controls) 

Studies performed in 46 different 

laboratories 

Association between SNPs and 

defined COVID-19  phenotypes 

(severity) 

Verma et al., 

2021 

455,683 

(NA/NA) 

455,683 VAMVP participants, critical (n=35) and hospitalised (n=42) COVID-19 
patients and controls. The numbers of cases and controls are presented for each 

studied phenotype separately 

EHR and genomic data from two 

biobanks: Veteran Affairs Million 

Veteran Program (VAMVP), 
United Kingdom Biobank (UKBB) 

Association between SNPs and 

defined COVID-19 phenotypes 

(severity) 
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Wu et al. (2009) have shown that penalised LASSO logistic regression can quickly and 

accurately identify predictors in situations with many uncertainties. Moreover, it 

identifies associations previously missed by other methods.  

Ensemble learning in machine learning is often used to obtain better prediction 

performance using an ensemble of a finite number of selected ML models. Carapito et 

al., 2021 employed an ML ensemble of 7 models (LASSO regression, Ridge regression, 

Support Vector Machines (SVM), quantum SVM, XGBoost, RF, Deep Artificial Neural 

Network) to predict the severity of COVID-19 using data from patient RNA sequencing. 

This ensemble, with high accuracy (91%) and efficiency (AUC = 0.94), selects five 

genes (ADAM9, RAB10, MCEMP1, MS4A4A, and GCLM) out of 600 as the most 

important ones deciding the disease severity. The positive unlabeled machine learning 

model and a stable feature learning framework RubricOE (learning rubric for multi-

omics and genetic epidemiology) is an ML ensemble that helped to determine the 

genomic factors driving the severity of COVID-19 (Dey et al., 2021). The authors 

disclose that a combination of human genomic and clinical data improves the accuracy 

of severe COVID-19 cases prediction.  

 

Artificial neural networks 

 
Santus et al. (2021) provided four main research and development areas where artificial 

intelligence might be applied to combat the COVID-19 pandemic: (1) triage, diagnosis, 

and risk of mortality/severity prediction; (2) drug repurposing and development 

(modelling virus-host interactions); (3) pharmacogenomics and vaccines (genetic 

markers identification, infection susceptibility prediction); and (4) mining of the medical 

literature (examining the quality of results in countless scientific studies). 

 The ability of artificial neural networks (ANNs) to process huge amounts of 

data, learn complex features and nonlinear and interaction effects, makes them suitable 

for genomic data analysis. They can model complex relations between traits and genetic 

host features without the need to specify all the possible interactions between those 

features. A multilayer perceptron classifier with two hidden layers and a Rectified Linear 

Unit (ReLU) activation function between them was applied to the number of SNPs in a 

specific haplotype block to predict an individual’s COVID-19 status (Wang R.Y. et al., 

2020). The model reached high accuracy and precision, suggesting ANNs to be an 

appropriate choice for analysing the genomic data. 

4.3. Other statistical methods 
 

Scientists often select genes known to be associated with some specific diseases or 

phenotypes and then try to predict the effect of changes in these genes on the translated 

protein. As summarised in Table 3 and 4, many genes have been described as associated 

with COVID-19 by employing association analysis and machine learning methods. Next, 

we review the studies that model COVID-19 using a single gene and apply the Sherlock-

based integrative genomics analysis (summary in Table 5). 

 

Single-gene analysis 
 

Due to the lack of computational and financial resources, selecting a limited number of 

genes and analysing only their genetic variants is a common practice. The main interest 

here is whether those genetic variants influence the structure and function of translated 

proteins. 
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Table 4. Machine learning techniques applied to model COVID-19 outcome. Abbreviation NA here means information not available. 

Modelling 

method 
Publication 

Sample size 
Laboratory 

methods 
Data source Data type Outcome N 

(cases/controls) 
Comments 

Artificial neural 

network Wang R.Y. et al., 

2020 

673  

(NA/NA) 
NA SNP genotyping 

assay 

From The Personal 

Genome Project 

dataset (Ball et al., 

2012) 

SNPs 

Disease severity ((I) COVID-

19 infected, (II) hospitalised, 

and (III) severe conditions) Random forest 

XGBoost 

Toh and Brody, 

2020 

~2,000 

(981/~981) 

Cases – patients with COVID-19, controls – similar age 

individuals from the general UK Biobank population 
DNA microarray UK Biobank 

Chromoso

mal-scale 

length 

variation 

data 

Severe/not severe COVID-19 

Wang F. et al., 2020 
332 

(332/0) 

Patients with different COVID-19 severity: 

asymptomatic, mild, moderate, severe and critically ill 

Whole-genome 

sequencing 
The same study SNPs 

COVID-19 disease severity 

(from 1 to 5) 

LASSO logistic 

regression 

Fallerini et al., 2021 
156  

(79/77) 

Cases – male patients with COVID-19 and air 

ventilation, controls – asymptomatic male patients with 

COVID-19 

SNP genotyping 

assay 

Italian GEN-

COVID (Daga et 

al., 2021) 

SNPs Feature importance 

Fallerini et al., 2022 
4,591 

(2,944/1,647) 

Cases – patients with severe COVID-19 outcome, 

controls – patients with mild COVID-19 outcome 

Whole-exome 

sequencing 
6 data sources* SNPs 

Predicting the COVID-19 

phenotype from Boolean 

features of protein-changing 

genetic variants with 

correction of age and sex 

Ensemble of 

multiple ML 

models 
Carapito et al., 2021 

72  

(47/25) 

n=47 critical (C) COVID-19 patients, n=25 non-critical 

(NC) COVID-19 patients 

Whole-

transcriptome RNA-

seq 

University hospital 

network in 

northeast France 

(Alsace) 

Gene 

expression 

Classification of NC versus C 

patients, finding a gene 

signature 

Positive-

unlabeled 

learning 

algorithms 

coupled with 

RubricOE 

Dey et al., 2021 
12,389 

(4,000/8,389) 

Cases – severe COVID-19 patients (inpatients with a 

positive test), controls – non-severe COVID-19 patients 

SNP genotyping 

assay 
UK Biobank SNPs 

SNP association with 

COVID-19 disease severity  

* GEN-COVID (Italy); The genetic predisposition to severe COVID-19 (Sweden); German COVID-19 OMICS Initiative (Germany); Quebec COVID-19 Biobank and Swedish Biobank (Canada-

Sweden); Biobanque Québécoise de la Covid-19 (Canada); GenOMICC/ISARIC4C (UK) 
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The SNPs in the coding regions might change the function or structure of the coded pro-

teins. Protein prediction algorithms, such as Polyphen-2 HumDiv, Poplyphen HumVar, Sorting 

Intolerant from Tolerant (SIFT), logistic regression test scores, MutationTaster, DUET program 

(Pires et al., 2014), and GROMACS software (Abraham et al., 2015), have been applied to de-

termine the possible structural changes of ACE2 human receptor caused by specific genetic vari-

ants (Guo et al., 2020; Benetti et al., 2020).  

One of the main steps in entering the host organism for the SARS-CoV-2 virus is binding to the 

cell surface through the interaction of the viral S protein and the human ACE2 receptor. 

Therefore, the ACE2 human cell receptor is widely studied. Suryamohan et al. (2020) analysed 

ACE2 genotypes and calculated the fixation index (Fst) to determine the genetic variation in the 

ACE2 gene, resulting in a different number of significant genetic variants for different datasets.  

The Genome Aggregation Database (GnomAD) (Cummings et al., 2020) with 

aggregated exome and genome sequencing data is a common choice for selecting genomic data 

from COVID-19 patients. ACE2 (Gibson et al., 2020; MacGowan and Barton, 2020) and 

TMPRSS2 (Hou Yuan et al., 2020) coding variants were obtained from this database for the 

theoretical modelling of rare ACE2 coding variants and the effect of ACE2 gene variants on 

binding to viral S-protein. 

 The linear regression model was applied to discover nine relatively common variants 

and six missense variants of TMPRSS2 that can negatively affect the activity of this protease, 

while only one variant significantly decreases the risk of COVID-19 (Hou Yuan et al., 2020; 

Monticelli et al., 2021). Wulandari et al. (2021) have selected a particular TMPRSS2 

polymorphism, p.Val160Met, possibly associated with the severity of COVID-19 disease. 

However, the linear-by-linear chi-square association test did not find a significant association, 

possibly due to the small sample size (n=95). 

 One variant of the IFITM3 gene and its association with COVID-19 severity was 

studied using simple statistical tests (Zhang et al., 2020). While three out of nine selected 

LZTFL1 SNPs were shown to be associated with COVID-19 severity in the Latvian population 

by the logistic regression model (with age and sex as covariates and correction for population 

stratification) (Rescenko et al., 2021). Secolin et al. (2021) have found three SNPs of the HLA 

gene that increase the risk of severe COVID-19 in a Brazilian population. 

Sherlock-based integrative genomics analysis    
 

Sherlock-based integrative genomics analysis is based on the Bayesian inference algorithm (He 

et al., 2013). It searches for SNPs associated with gene expression (called eSNPs), then the 

possible association of the phenotype is estimated. The Bayes factor (LBF) logarithm is 

calculated for each pair of SNPs and summed to get the LBF for each gene. The positive LBF 

will be given for those eSNPs that showed a statistically significant association with the 

phenotype. Negative LBF will be assigned for eSNPs without significant association with the 

studied phenotype. Then the p-value of the LBF for each gene is computed using simulation 

analysis. This method estimated seven genes and their variants associated with COVID-19 in 49 

types of human tissues (Ma et al., 2021).  
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Table 5. Other statistical methods applied to model COVID-19. All studies used SNPs as an input to the models. Abbreviation NA here means information not available. 

Modelling 

method 
Publication 

Sample size 

Data source Outcome N 

(cases/controls) 
Comments 

Sherlock  Ma et al., 2021 
680,128 

(3,288/676,840) 

1,610 cases and 2,205 controls from UK Biobank; 

1,678 COVID-19 patients and 674,635 controls from COVID-19 

Host Genetic Consortium 

UK Biobank, COVID-19 Host 

Genetic Consortium 

Association between SNPs and 

COVID-19 

Other statistical 

methods 

Suryamohan et al., 

2020 

60,164  

(NA/NA) 

n=2,381 from the 1000 Genomes Project Phase 3 and n=57,783 

female individuals from gnomAD 
1000 Genomes Project, gnomAD Estimate of genetic variation 

Benetti et al., 2020 
389  

(131/258) 

131 individuals belonging to the GEN-COVID MULTICENTER 

STUDY (Giliberti et al., 2020), controls consist of 258 Italian 

individuals 

gnomAD 
Variant effect on protein function 

prediction 

Guo et al., 2020 
141,456  

(NA/NA) 

n=125,748 from whole-exome sequencing and n=15,708 – whole-

genome sequencing  
gnomAD 

Variant effect on protein function 

prediction 

Gibson et al., 2020 
141,456  

(NA/NA) 

n=76,702 of male and n= 64,754 of female participants’ 

exomes/genomes 
gnomAD 

Variant effect on protein function 

prediction 

MacGowan and 

Barton, 2020 
NA NA gnomAD 

Variant effect on protein function 

prediction 

Hou Yuan et al., 

2020 

~81,000  

(NA/NA) 

437 non-synonymous single-nucleotide variants from 81 thousand 

genomes 

GnomAD, Exome Sequencing Project 

(ESP), 1000 Genomes Project 

Association between ACE2 and 

TMPRSS2 DNA polymorphisms with 

COVID-19 severity 

Wulandari et al., 

2021 

95 

(NA/NA) 

62 patients with moderate and severe COVID-19 from Dr Soetomo 

General Academic Hospital, 33 patients with asymptomatic or mild 

symptoms from Indrapura KOGABWILHAN II Hospital 

Dr Soetomo General Hospital and 

Indrapura Field Hospital (Surabaya, 

Indonesia) 

Correlation between a genetic variant 

within the human TMPRSS2 gene and 

COVID-19 severity and viral load 

Monticelli et al., 

2021 

1,177  

(NA/NA) 
Patients affected with COVID-19 in Italy GEN-COVID Multicenter Study 

Correlation between protein variants 

with the clinical features of COVID-19 

patients 

Secolin et al., 2021 
386 

(NA/NA) 
NA BIPMed (www.bipmed.org) and 

ABraOM(abraom.ib.usp.br) datasets 

Genetic variation in COVID-19-related 

genes in the Brazilian population 

Zhang et al., 2020 
80 

(NA/NA) 

Patients with mild (56) and severe (24) COVID-19. Not a case-

control study 

Beijing Youan Hospital, Capital 

Medical University, Beijing 

Association between rs12252 SNP and 

COVID-19 severity 

Rescenko et al., 

2021 

2,692  

(475/2,217) 
Individuals from the Latvian population 

Genome Database of Latvian 

Population 

Association between SNPs and 

increased risk of COVID-19 and 

hospitalisation status 
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5. Discussion 
 

According to current scientific knowledge, seven zoonotic coronaviruses are capable of 

causing infections in humans. Although the disorder usually manifests with mild 

features, recently, the world experienced two global outbreaks associated with many 

lethal outcomes (SARS-CoV in 2002 and MERS-CoV in 2012). SARS-CoV-2 has a 

much wider spread and has affected more people than previous entities. Demographic 

characteristics (age, sex, ethnicity), comorbidities, some clinical symptoms, specific 

laboratory test findings, and diet/lifestyle predetermine a patient's risk of developing the 

more severe course of the disease. Morbidity and mortality due to COVID-19 rise 

dramatically with age and co-existing health conditions. Still, even very young 

and otherwise healthy patients can unpredictably succumb to this disease.  

Previous studies of SARS and MERS infections have provided insight into 

possible functional pathways of disease development, yet the prior experience cannot be 

directly applied to this new virus entity. The mechanisms underlying the spectrum of 

COVID-19 characteristics remain largely unknown. Obviously, viral and human (host) 

genetic factors are suspected to play a significant role in pathogenesis, and there is 

already considerable evidence that the genetic characteristics of human genomes have a 

clear association with the severity of COVID-19 (Zhang et al., 2020; Wang et al., 2020; 

COVID-19 Host Genetics Initiative 2021). The data from several studies suggest that 

host genetic factors determine the 'predicted COVID-19' phenotype in 50% of cases 

(Williams et al., 2020).  

Since the beginning of an outbreak, many human genome variants (see 

Supplementary Tables S1 and S2) have been linked with the increased or decreased risk 

of developing rough COVID-19. About 70 % of identified variants, namely in ACE2, 

TMPRSS2 and TLL-1 genes associated with the virus attachment and entry, decrease the 

risk of COVID-19, while almost all identified variants associated with the immune 

response in 6p21.3 (HLA genes), 9q34 (ABO genes), 3p21.31 (SLC6A20, LZTFL1, 

FYCO1, CXCR6, XCR1, CCR9 genes), and 12q24.13 (OAS1/2/3 genes) genetic loci as 

well as in IFIH1 and IL6 genes increase the risk of severe COVID-19.  
When reliable genetic associations for various phenotypes are known, scientists 

are faced with the next big challenge: interpreting these associations in a biological and 

genomic context. Prediction of disease characteristics using computational methods is 

one of the areas where big healthcare data and computational methods can merge to 

provide potentially more accurate diagnoses for patients. Naturally, it is essential to 

understand the biology behind SARS-CoV-2 infection to interpret the results of applied 

computations correctly. Therefore, the system biology approach offers the most 

appropriate way to reach the purpose and the tight collaboration of biologists, 

physicians, mathematicians and programmers is highly appreciable and recommended. 

A wide variety of experimental and computational methods have been applied 

to find associations of human genetic characteristics with the susceptibility and 

outcomes of COVID-19. Whole-genome/exome genotyping data or specific genomic 

variants are used to estimate the association. These methods include conventional 

methods such as genome-wide association study (GWAS), statistical methods like linear 

or logistic regression, and more sophisticated machine learning methods including 

Random Forest, XGBoost, LASSO logistic regression, artificial neural networks, and 

others. 

One of the most significant drawbacks of conventional methods used for 

modelling the disease phenotypes is that they do not analyse the causality relationships 
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between genetic markers and the phenotype of interest (Sun et al., 2020). Usually, these 

methods use one type of data (e.g. genotyping data) to look for differences between 

individuals in the population. As association studies mainly apply a series of single-SNP 

statistical tests, they miss the correlations between SNPs and possibly discard relevant 

SNPs with a low effect on the phenotype (Yang et al., 2010). While discussing the 

association studies of genetic variants with COVID-19 susceptibility and possible 

outcomes, we must remember that additional factors such as selected groups of subjects, 

non-genetic factors, and other co-variables such as age and gender can impact the 

results. In that way, complex diseases resulting from the effect of multiple genes cannot 

be efficiently studied. Models using additional information, such as clinical data or more 

complex approaches that evaluate interactions between several places in the genome, 

could help see the whole perspective. Therefore, various novel methods, such as 

machine learning for genomic data analysis and association studies, are being applied. 

The application of advanced computational methods (e.g., machine learning methods, 

artificial neural networks) for predicting COVID-19 could potentially suggest new 

insights into the previously unseen. As Stoeger and Amaral (2020) suggest, scientists are 

prone to study the formerly known genes associated with the studied object, leaving 

behind the potential new host genomic candidates. Furthermore, conventional methods 

are insufficient to study complex diseases associated with more than one gene 

variant/locus. The use of novel methods could help to find the associations mentioned 

earlier. 

Sun et al. (2021) reviewed statistical modelling and machine learning methods 

as a replacement for the GWAS and concluded that one method could not solve all 

problems; therefore, conventional GWAS methods will still be used in the future. 

However, the additional information provided using novel methods adds value to 

scientific knowledge and allows us to see the bigger picture. A combination of GWAS 

and machine learning algorithms might be a promising solution for this issue. 

After a comprehensive review of artificial intelligence (AI) implications in 

COVID-19 studies, Rasheed et al. (2021) observed that AI methods are applied to 

estimate the disease severity in patients from chest CT or X-ray images clinical or time-

series data. In addition, Monte Carlo-based simulations, hidden Markov models, and 

neural networks are used to predict vaccine targets. Díez Díaz et al. (2021) have 

developed a machine learning methodology to study multi-SNP associations by 

incorporating the GWAS data and sophisticated ML algorithms - genetic algorithms 

together with support vector machines. However, there is an insufficient number of 

studies applying advanced machine learning/AI methods to human genomic data. 

Further investigation is required to precisely understand the mechanisms behind the 

disease genetics in the human organism. 

Mendelian randomisation studies are being enrolled to determine causal 

relationships between risk factors and diseases. Namely, Wu et al. (2021) have applied 

an integrative multi-omics approach by combining the cross-methylome omnibus 

(CMO) method with association analysis with S-PrediXcan and fine-mapping of gene 

sets strategy to discover putative causal genes for COVID-19. However, causal 

relationships between factors and COVID-19 are understudied, and research is only 

beginning to emerge, suggesting an exciting topic for future studies.  

As far as sufficient precision for medical decisions is concerned, the critical 

factor of not reaching adequate accuracy is too little data. Fortunately, the amount of 

data is constantly expanding and waiting to be harnessed for the well-being of humanity. 

At the current stage, many studies are seeking to recruit a variety of available data 

(computer tomography (CT)/X-ray scans, clinical data, epidemiological data, various 

omics data, and others) and different methods to combat COVID-19. Additional data can 

lead to a more accurate disease prognosis for patients by employing computational 
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approaches to test research hypotheses or add additional information on the topic. 

Nevertheless, after analysing 169 studies with COVID-19 prediction models, Wynants et 

al. (2020) concluded that even though scientists are making models to predict the 

outcome/severity of COVID-19 or the overall risk of developing this disease, the quality 

of those methods is poor, and the operation of them in practice might be unreliable. 

Large-scale studies with larger cohorts of individuals are required to elucidate the host 

response to SARS-CoV-2, and more COVID-19 prediction studies should be enrolled 

correctly validating the created methods using enough real-life data and/or data from 

other studies. An increasing number of the collected data in the healthcare system opens 

up opportunities to use them for scientific and medical purposes.   
An urgency in obtaining insights into COVID-19 pathogenesis and highly 

variable clinical manifestations of SARS-CoV-2 infection for improved management, 

better patient outcomes and disease prevention is critical for the scientific and healthcare 

communities. By using this knowledge, we could protect the most vulnerable people and 

prevent the worst outcomes of COVID-19. 

6. Conclusions 
 

The COVID-19 pandemic is a global crisis that creates severe disruptions in the 

economy and health system. Insights into better understanding and treatment of COVID-

19 are desperately needed. Given the importance and urgency of obtaining these insights, 

the scientific community must come together around this shared purpose.  

  The collection of massive genomic and health data followed by comprehensive 

biostatistics/bioinformatics analysis will enable the identification of genomic factors that 

influence the characteristics of the disease. Learning the genetic determinants of 

susceptibility, severity, and outcomes of COVID-19 could contribute to the translation of 

the findings into patient care and disease prevention, help generate hypotheses for drug 

repurposing, identify individuals at unusually high or low risk, and contribute to global 

knowledge of the biology of SARS-CoV-2 infection and disease. 
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Supplementary tables 

 
Table S1. SARS-CoV-2 entry into the host cell cycle genome variants linked with COVID-19. Abbreviation NA here means “Not Available”. 

 

Gene  Publication  

Variant  Sample Size  

Laboratory methods  Protein 

change  
Accession 

number* 
Allele  

Frequency**  
P-value  Possible Effect  N (cases/controls)  Comments  

ACE2  
Suryamohan et 

al., 2020  

Ser19Pro  rs73635825 0.0003 

0.0656  

Enhanced susceptibility to 

viral attachment  

290,000 

400 population groups 

(gnomAD, RotterdamStudy, 

ALSPAC, GenomeAsia100k, 

HGDP, TOMMO-

3.5kjpnv2, IndiGen, HGDP 

databases)  

Genotyping  

Ile21Val  rs778030746 0.00001 

Glu23Lys  rs756231991 0.000005 

Lys26Arg  rs4646116 0.004  

Thr27Ala  rs781255386 0.00001 

Asn64Lys  rs119910071 0.00002 

Thr92Ile  rs763395248 0.00001 

Gln102Pro rs139587809 0.00002 

His378Arg rs142984500 0.00009 

Lys31Arg  rs758278442 0  

Decrease attachment 

propensity to spike 

protein  

Asn33Ile  NA 0  

His34Arg  NA 0  

Glu35Lys  rs134811469 0.00002 

Glu37Lys  rs146676783 0.00004 

Asp38Val  NA 0  

Tyr50Phe  rs119219261 0.000006 
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Asn51Ser  rs156924369 0.000006 

Met62Val  rs132554210 0.000006 

Lys68Glu  rs755691167 0.00001 

Phe72Val  rs125600725 0.000005 

Tyr83His  rs759134032 0  

Gly326Glu  rs759579097 0.000006 

Gly352Val rs370610075 0.000006 

Asp355Asn rs961360700 0.00001 

Gln388Leu  rs751572714 0.00002 

Asp509Tyr NA 0  

Benetti et al., 

2020 

Lys26Arg  rs4646116 0.0039  NA 
Impact ACE2 stability  

389 (131/258)   Gen-covid multicenter study  Whole exome sequencing   

Gly211Arg rs148771870 0.0013  NA 

Leu351Val NA 0  NA Interfere with ACE2 and S 

binding  Prp389His rs762890235 0.000039  NA 

Val506Ala rs775181355 0.0000066  NA 

Destabilize spike protein 

and ACE2 interaction  
Val209Gly NA 0  NA 

Gly377Glu  rs767462182 0.0000056  NA 

Guo et al., 2020  

His378Arg rs142984500  0.0002 NA Enhanced susceptibility to 

viral attachment  

141,456 Genome Aggregation Database  
Whole exome and genome 

sequencing  

Ser19Pr o rs73635825 0.003 NA 

Gly211Ala rs148771870 0.0012 NA Affect secondary ACE2 

structure  Asp206Gly rs142443432 0.00029 NA 
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Arg219Cys rs759590772 0.00009 NA 

Arg219His rs759590772 0.00009 NA 

Leu341Arg rs138390800 0.0004 NA 

Ile468Val  rs191860450 0.0008  NA 

Ser547Cys rs373025684 0.0002 NA 

Gibson et al., 

2020  

Lys26Arg  rs4646116 0.00397 NA 
Decrease the binding 

affinity between S protein 

and ACE2  

141,456 Genome Aggregation Database  
Whole exome and genome 

sequencing  

Ser43Arg rs1447927937 0.000005 NA 

Gly326Glu rs759579097 0.000005 NA 

Met82Ile rs766996587 0.00001 NA 

Glu37Lys  rs146676783 0.00003 NA 

Increase the binding 

affinity between S protein 

and ACE2  

Thr27Ala  rs781255386 0.00001 NA 

Lys329Gly rs143936283 0.00003 NA 

Lys26Glu  rs1299103394  0.000005 NA 

Horowitz et al., 

2020 
NA rs190509934 0.3 4.5 × 10-13 Lower risk of  

COVID-19 

756,646 

(52,630/704,016) 

AncestryDNA COVID-19 

Research, Geisinger Health 

System, Penn MedicineBioBank, 

UK Biobank 

SNP genotyping assay 

MacGowan and 

Barton, 2020  

Gly326Glu rs759579097 0.000006 NA 
Enhance ACE2 binding 

with spike protein  

NA Genome Aggregation Database  
Whole exome and genome 

sequencing  
Glu37Lys  rs146676783 0.00003 NA 

Weaken ACE2 binding 

with spike protein  
Gly352Val rs370610075 0.000005 NA 

Asp355Asn rs961360700 0.00001 NA 
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* Accession number in bold is obtained from https://varsome.com/ 

** Allele frequency in bold is obtained from https://gnomad.broadinstitute.org/ 

 

  

TMPRSS2  

Hou  Yuan  et 

al., 2020  
Val160Met rs12329760 0.384 0.00005 

Susceptibility to COVID-

19  

81,000 
Genome Aggregation Database, 

Exome Sequencing Project, 1000 

Genomes Project  

Whole exome and genome 

sequencing  

Wulandari et al., 

2021  
95 cases  

Patients with moderate and severe 

COVID-19  
SNP genotyping assay  

Monticelli et al., 

2021  
    0.3735 0.0153 Protective effect  1,177 cases  GEN-COVID Multicenter Study Whole exome sequencing  

TLL-1  
Grimaudo et al., 

2021 
NA rs17047200  0.13 0.029 

Increased risk of 

COVID19  
383 patients  Mild or severe Sicilian patients  SNP genotyping assay  
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Table S2. Immune response to SARS-CoV-2 genome variants linked with COVID-19. NA – information not available. 

 

Gene  Publication 

Variant  Sample Size  

Laboratory methods  
Protein 

change/ 

Allele  

Accession 

number* 

Allele  
Frequency

**  
P-value  

Possible 

Effect  
N (cases/controls)  Comments  

HLA  

Secolin et al., 2021 

DRB1*15:01 NA 0.06 NA 

Increased  

 

386 
BIPMed dataset, ABraOM data

set, Brazil  
Whole exome 

sequencing  
DQB1*06:02 NA 0.08 NA 

B*27:07  NA  0.001 NA 

Wang F. et al., 2020 
C*07:29  NA 0.0001 1.00 × 10-3 

3,872  
(82/3,790)  

The same study Next-generation 

sequencing  
B*15:27  NA 0.00004 1.00 × 10-3 

IFITM3  Zhang et al., 2020 Ser14=  rs12252 0.13 9.30 × 10-3 80 cases  
Beijing Youan Hospital, Capital 

Medical University, Beijing  
IFITM3 sequencing  

PNPLA3  Grimaudo et al., 2021 Ile148Met  rs738409 0.28 3.50 × 10-2 383 patients  Mild or severe Sicilian patients  SNP genotyping assay  

APOE  Kuo et al., 2020 
Cys130Arg  rs429358 0.22 NA 

322,948 

(622/323,570  
UK Biobank  SNP genotyping assay  

Arg176Cys rs7412 0.101 NA 

ABO  
Severe Covid-19 GWAS 

Group, 2020 

NA rs657152 0.44 5.00 × 10-8 
3,815 

(1,610/2,205)  
Seven centers in the Italian and 

Spanish epicenters  
SNP genotyping assay  

LZTFL1  

NA rs11385942 0.08 1.00 × 10-10 

Rescenko et al., 2021 

NA rs71325088 0.05 7.00 × 10-3 

2,692  
(475/2,217)  

Genome Database of Latvian 

Population  
SNP genotyping assay  NA rs11385942 0.068 5.00 × 10-5 

NA rs73064425 0.056 7.00 × 10-3 
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Gene  Publication 

Variant  Sample Size  

Laboratory methods  
Protein 

change/ 

Allele  

Accession 

number* 

Allele  
Frequency

**  
P-value  

Possible 

Effect  
N (cases/controls)  Comments  

SLC6A20 

The COVID-19 Host 

Genetics Initiative, 2021 

NA rs2271616 0.118 1.79 × 10-34 

2,049,562 

(49,562/2,000,000) 

COVID-19 Host Genetics 

Initiative 
SNP genotyping assay  

ABO NA rs912805253 0.65 1.45 × 10-39 

RPL24 NA rs11919389 0.352 3.46 × 10-15 

PLEKHA4 NA rs4801778 0.18 1.18 × 10-8 

LZTFL1 NA rs10490770 0.085 9.72 × 10-30 

FOXP4 NA rs1886814 0.047 2.41 × 10-8 

TMEM65 NA rs72711165 0.013 2.13 × 10-9 

OAS1 NA rs10774671 0.66 1.61 × 10-11 

KANSL1 NA rs1819040 0.18 1.83 × 10-10 

TAC4 NA rs77534576 0.033 4.37 × 10-9 

DPP9 NA rs2109069 0.31 4.08 × 10-9 

RAVER1 NA rs74956615 0.04 1.94 × 10-4 

IFNAR2 NA rs13050728 0.65 2.72 × 10-20 

LZTFL1 
Pairo-Castineira et al., 

2021 

NA rs73064425 0.0761 4.77 × 10-30 
10,056 

(1,676/8,380) 

European descent from 

GenOMICC, UK Biobank 
SNP genotyping assay  

CCHCR1 NA rs143334143 0.14 8.82 × 10-18 



                                Functional Pathways and Methods for COVID-19 Modelling                     607 
 

 

Gene  Publication 

Variant  Sample Size  

Laboratory methods  
Protein 

change/ 

Allele  

Accession 

number* 

Allele  
Frequency

**  
P-value  

Possible 

Effect  
N (cases/controls)  Comments  

OAS3 NA rs10735079 0.75 1.65 × 10-8 

RAVER1 NA rs74956615 0.04 2.31 × 10-8 

IFNAR2 NA rs2236757 0.77 5.00 × 10-8 

SLC6A20 
Shelton et al., 2021 

NA rs2531743 0.84 7.60 × 10-10 

114,240 

(12,972/101,268) 
23andMe SNP genotyping assay  NA rs13078854 0.867 1.60 × 10−18 

ABO NA rs9411378 0.22 5.30 × 10-20 

SLC6A20 

Ma et al., 2021 

NA rs11385942 0.07 2.87 × 10−16 

680,128  
(3,288/676,840)  

GWAS summary data from 

Ellinghaus et al. and COVID-19 

Host Genetic Consortium 

SNP genotyping assay  ABO 
NA rs8176719 0.38 4.00 × 10−7 

NA rs657152 0.43 5.53 × 10−6 

IFNAR2-

IL10RB 
NA rs9976829 0.77 2.57 × 10−6 

DNAH /SL

C39A10  
Hu et al., 2021 

NA rs73060484 0.069 6.00 × 10-4 

1,096 
(292/804) 

 

 

UK Biobank 

 

Genotyping 

 

NA rs77578623 0.070 6.20 × 10-4 

NA rs74417002 0.034 3.00 × 10-2 

NA rs73070529 0.048 3.60 × 10-4 

NA rs113892140 0.044 2.80 × 10-3 



608  Vaišnorė et al. 

 

Gene  Publication 

Variant  Sample Size  

Laboratory methods  
Protein 

change/ 

Allele  

Accession 

number* 

Allele  
Frequency

**  
P-value  

Possible 

Effect  
N (cases/controls)  Comments  

NA rs200008298 0.032 3.10 × 10-2 

NA rs183712207 0.007 7.70 × 10-3 

NA rs191631470 0.007 3.90 × 10-2 

CLUAP1  NA rs2301762 0.055 2.00 × 10-5 

DES/SPEG

  
NA rs71040457 0.355 7.70 × 10-3 

STXBP5  
NA rs117928001 0.049 1.10 × 10-5 

NA rs116898161 0.046 6.90 × 10-5 

TOMM7  
NA rs13227460 0.278 2.60 × 10-2 

NA rs55986907 0.286 3.50 × 10-5 

  
WSB1  

NA rs60811869 0.024 6.50 × 10-4 

NA rs117217714 0.013 3.30 × 10-5 

PCDH15  NA rs9804218 0.357 3.30 × 10-3 

CPQ  

NA rs7817272 0.194 1.70 × 10-5 

NA rs4735444 0.201 5.80 × 10-6 

NA rs1431889 0.193 3.50 × 10-5 
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Gene  Publication 

Variant  Sample Size  

Laboratory methods  
Protein 

change/ 

Allele  

Accession 

number* 

Allele  
Frequency

**  
P-value  

Possible 

Effect  
N (cases/controls)  Comments  

NA rs2874140 0.194 4.00 × 10-5 

NA rs531453964 0.185 3.20 × 10-6 

NA rs7007951 0.184 4.40 × 10-5 

NA rs920576 0.201 1.60 × 10-4 

OAS1-3  

Pairo-Castineira et al., 

2021 

NA rs10735079 0.755 1.65 × 10−8 

100,000+ (2,244, 

100,000+) 
GenOMICC and ISARIC 4C 

studies 
Genotyping, whole 

genome sequencing 

TYK2  NA rs74956615 0.047 2.30 × 10−8 

DPP9  NA rs2109069 0.300 3.98 × 10−12 

IFNAR2  NA rs2236757 0.770 4.99 × 10−8 

ABO  
Verma et al., 2021 

 

NA rs550057 0.240 NA 

455,683 

EHR and genomic data from 

two biobanks: Veteran Affairs 

Million Veteran Program 

(VAMVP), United Kingdom 

Biobank (UKBB) 

Genotyping NA rs505922 0.350 NA 

RAVER1  NA rs74956615 0.047 NA 

TLR7  Fallerini et al., 2021 

Ser301Pro  NA NA NA 

156 (79, 77) 
From Italian GEN-COVID 

(Daga et al., 2021) 

Genotyping 

 

Arg920Lys  rs189681811 0.0002  NA 

Ala1032Thr  rs147244662 0.0006  NA 

Val219Ile  rs149314023 0.0003  NA 
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Gene  Publication 

Variant  Sample Size  

Laboratory methods  
Protein 

change/ 

Allele  

Accession 

number* 

Allele  
Frequency

**  
P-value  

Possible 

Effect  
N (cases/controls)  Comments  

Ala288Val  rs200146658 0.000012 NA 

Ala448Val  rs5743781  0.00465  NA 

OAS-1 

Tanimine et al., 2021 

NA rs1131454 0.41 0.0048 

230 cases 3 Hospitals in Hiroshima, Japan Genotyping 
IL1B NA rs1143627 0.48 0.0207 

EFCAB4B Wang D. et al., 2022  

Ala98Thr rs17836273 0.123 0.012 

500,000 

(10,118/489,882) 
UK Biobank Genotyping His212Gln rs36030417 0.118 0.013 

Arg7Gly rs9788233 0.1453 0.004 

NLRP3 Maes et al., 2022  

NA rs10157379 0.6067 0.106 

528 cases 

University Hospital of Londrina 

(HU) and the Emergency 

Rooms (ER) in Londrina, 

Paraná, Brazil 

Genotyping 

NA rs10754558 0.6325 0.167 

ADAM9 Carapito et al., 2021 NA rs7840270 0.434 0.017 
72  

(47/25) 

University hospital network in 

northeast France (Alsace) 
Gene expression 

OAS1 Huffman et al., 2021 NA rs10774671 0.672 0.03 Decreased  
120,473 

(1,842/118,631) 

COVID-19 patients of African 

ancestry 
Genotyping 

 
* Accession number in bold is obtained from https://varsome.com/ 

** Allele frequency in bold is obtained from https://gnomad.broadinstitute.org/ or http://www.allelefrequencies.net/ 
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