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Abstract. With the arrival of European Union’s new Common Agricultural Policy (CAP 2020), a 

paradigm shift in subsidy control is underway. Member states are required to gradually transition 

from a system of on-the-spot checks, where the presence or absence of a crop is detected manually 

on the field, to a system of agricultural monitoring based on remote sensing data; primarily – 

Sentinel-1 and Sentinel-2. This paper presents a classification of regional crop types based on the 

Bidirectional Long-Short-Term Memory (BiLSTM) network. The approach is based on tabular 

time series of Sentinel-1 and Sentinel-2 sensor data over the entire territory of Latvia. Two types 

of LSTM architectures are evaluated in this paper – regular and bidirectional. An exhaustive grid 

search of network hyperparameters with 15 distinct crop types led to the conclusion that the 

bidirectional variant of LSTM yields the highest overall weighted test accuracy of 89.1%.   
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FOI Field of interest 
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NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

RNN Recurrent Neural Network 

RF Random Forest 

RSS Rural Support Service of Latvia 

S1 Sentinel-1 

S2 Sentinel-2 

VH Cross-polarisation of radar sensor 

VV Co-polarisation of radar sensor 
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1. Introduction 
 

As projected by the UN (United Nations, 2019), the Earth’s population will reach ten 

billion inhabitants by 2050. Along with the rising population also rises the need for 

effective management of the agricultural sector. Starting from 2020, as part of the new 

Common Agricultural Policy (ECA, 2021) EU member states are required to shift from 

control by on-the-spot checks, where inspectors physically visit fields of interest, to 

checks by monitoring, where majority of subsidy related decisions are based on analysis 

of remote sensing data, mainly Sentinel-1 and Sentinel-2 satellites of the Copernicus 

program. This approach allows minimizing the administrative burden for both the Paying 

Agency (PA) and farmers alike, as well as diminishes the environmental impact of field 

visits. By providing the PA with this information, crop type classification yields a novel 

approach to subsidy application control where one can remotely discern whether a 

farmer has indicated the appropriate crop type for his field, instead of, for example, a 

different type with a higher Euro per hectare subsidy rate.  

In principle, classification of agricultural crops by remote sensing imagery is a 

process by which a multi-layered dataset of geospatial imagery is transformed into a 

thematic map or a geo-referenced dataset indicating the location and distribution of 

certain crop types. (Dhumal et al., 2013) For the classification to be sufficiently 

representative of the actual situation, the input data must adequately describe the 

phenological and spectral characteristics of the crop types in question. For each land 

cover the amount of reflected and emitted energy is different, this is defined as a spectral 

signature – it is a reflectance characteristic that describes land cover or crop type 

differences in various bandwidths of infrared and visible light. (Chen, et al., 2016) 

Although LSTM and BiLSTM models have been used to classify crop types 

and characteristics from Sentinel data in previous studies and have already shown 

increased prediction accuracy over classical machine learning and statistical methods 

(Filho, et al., 2020; Portalés-Julià et al., 2021; Paris et al., 2020) the prospect of large-

scale multi-sensor tabular time series classification is yet to be fully considered (Pluto-

Kossakowska, 2021). The possible advantages of tabular data classification over pixel-

based classification have been described during the past decade. These potential 

advantages include higher prediction accuracies (Trang et al., 2016), especially when 

working with multiple resolution imagery (Weih and Riggan, 2010), as well as improved 

data portability and reduced model training time, which contributes to a more efficient 

and exhaustive model optimization routine. Additionally, most of the current research 

exploring the performance of LSTM models in crop classification focus on a relatively 

small research area of a several thousand square kilometres (Rußwurm and Körner, 

2018; Metzger et al., 2021) or explore comparatively fewer crop types (Zhao et al., 

2021). This paper proposes an approach to utilize LSTM models on a regional scale with 

a wide variety of crop types, which introduces additional complexity to the problem as 

location differences (continental or maritime climate, soil properties, local weather 

patterns and agricultural practices) impact crop phenology (Gao and Zhang, 2021) and 

the number of considered crop types increases the difficulty of the classification task 

(Pluto-Kossakowska, 2021).  
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2. Methodology 
 
Initial data collection and pre-processing was handled by using Sen4CAP – an Earth 

Observation processing system. This system is a standalone processing chain which 

generates remote sensing products for agricultural monitoring applications, featuring 

pre-processing and data acquisition workflows for Sentinel-1, Sentinel-2 and Landsat-8 

data. (Sen4CAP, 2022) All pre-processing steps related to Sentinel-1 backscatter and 

coherence metrics, as well as Sentinel-2 atmospheric correction were orchestrated using 

this system. Atmospheric correction of Sentinel-2 imagery was handled by the software 

CNES MAJA (Hagolle et al., 2016) version 3.2.2 TM, and Sentinel-1 pre-processing 

was handled by the SNAP toolbox (ESA, 2022). 

2.1. Domain of the study 

 
The domain of this research comprises the entire territory of Latvia - 64 589 km² (Figure 

1). The decision to extend this research over the entire country was made because the 

underlying purpose of this study is to develop a model that would work as a tool for 

agricultural subsidy control at the national level. Thus, developing a model robust 

enough to handle local differences in climate and soil conditions was a crucial aspect 

when planning this research.  

 

2.2. Earth Observation data 

 
The entire spatiotemporal data stack is comprised of 470 Sentinel-1 and 1102 Sentinel-2 

acquisitions. The study area is crossed by two Sentinel-1 orbits (number 131 and 160, 

both descending and ascending) and 18 Sentinel-2 MGRS tiles (Figure 1). The dataset 

spans a timeframe from 15.04.2021 until 21.09.2021. Sentinel-2 data with cloud 

coverage over 90% were automatically discarded by the MAJA pre-processing 

algorithm.  

 

 

 

Figure 1. Study area and Sentinel-2 tile coverage 
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After the images were downloaded and pre-processed, a parcel extraction 

routine was performed by the Sen4CAP system wherein a  zonal statistics approach was 

used to compute the mean metrics for each agricultural parcel at each of the acquisition 

dates. The aforementioned process yields a tabular dataset with rows representing 

agricultural parcels and columns representing the input features at each of the dates.  

 As per the Sen4cap data processing procedure, a seven day mean compositing 

procedure was applied to both Sentinel-1 and Sentinel-2 tabular time series in order to 

mitigate the impact of missing acquisitions and regularize the dataset. The final raw 

datasets thus span the entire season with a seven-day step for each of the input features. 

 
 

Table 1. Features used in the dataset 

Sensor Feature 

Sentinel-2 B3, B4, B5, B6, B7, B8, B11, B12, NDVI, NDWI, BI 

Sentinel-1 

 VV and VH polarised coherence 

 VV and VH polarised backscatter 

 Ratio between VV and VH backscatter 
 

 

As indicated in Table 1, a total of 16 features were used for each of the 

composited acquisition dates. Alongside a selection of spectral bands which range from 

visible green light to short wave infrared wavelengths, the dataset includes mean parcel 

values of Normalized Difference Vegetation (NDVI), Normalized Difference Water 

(NDWI) and Brightness (BI) indexes.  

An additional subset containing only Sentinel-1 time series was used to 

determine the performance of the BiLSTM architecture on a dataset with no optical 

sensor data. The purpose of this addition is to ascertain whether an operational solution 

based on this architecture could provide satisfactory results in an agricultural season with 

very little to no Sentinel-2 imagery due to frequent cloud cover, as entire summer 

months without a single clear Sentinel-2 image is not an uncommon occurrence in 

Latvia.   

 

Preparation of dataset features  

 
In order to fit the format requirements for our BiLSTM classifier, the initial dataset had 

to be pivoted to a tabular format where rows represent composited acquisition dates and 

columns represent the input features – mean values for sensor data. Therefore, each field 

of interest (FOI) is represented by a certain number of rows corresponding to the 

composited acquisition dates. This dataset consists of 21 dates; therefore, each FOI is 

represented by 21 rows of sensor data. For illustration purposes, Table 2 presents a 

partial sample of a single field.  The dataset consists exclusively of scalar data, and was 

normalized with a feature range (MinMax) scaler.  
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Table  2. Partial example of a finalized input dataset 

 

Date B3 B4 B8 B11 NDVI  

4/15/2021 809.312 1018.96 1505.56 2423.06 0.193196 … 

4/22/2021 1048.65 1363.7 2008.88 3045.51 0.190432 … 

4/30/2021 1017.88 1363.81 2014.52 3116.77 0.193011 … 

5/7/2021 1012.955 1352.43 2069.225 3142.86 0.210056 … 

5/15/2021 1008.03 1341.05 2123.93 3168.95 0.227102 … 

5/22/2021 1029.56 1283.98 2388.99 3192.47 0.303539 … 

5/30/2021 1051.09 1226.91 2654.05 3216 0.372233 … 

6/6/2021 938.3815 971.738 2963.79 2847.255 0.507477 … 

… … … … … … … 

 

2.3. In-situ data 

 
A total of 379 842 agricultural parcels, provided by the Rural Support Service of Latvia 

(RSS), were used for feature extraction and sample labelling. The RSS dataset contains 

agricultural parcel coordinates and geometries for the year 2021 along with the crop type 

declared by the farmer. Parcel geometries were used as input arguments for the 

Sen4CAP system for sensor data time series extraction and the declared crop information 

was used to label each sequence with its respective crop type. Table 3 lists all the crop 

type groups featured in this study along with sample counts for each of the groups. Crop 

group selection was based on the predominant crop types present in the Latvian 

agricultural landscape.  

 
Crop class Support 

Grasslands 211592 

Winter wheat 49793 

Oats 21587 

Summer wheat 20709 

Fallow 15854 

Summer barley 12375 

Winter rapeseed 11655 

Orchards 8236 

Legumes 6250 

Winter Rye 5946 

Potatoes 5944 

Buckwheat 4194 

Maize 2172 

Summer rapeseed 2009 

Winter barley 1526 

 

Table 3. Crop type groups and sample counts 
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2.4. The BiLSTM model 

 
The assumption for the classification task of this study is that each of the different types 

of crops has a distinct phenological cycle that is reflected in the sensor data time series. 

Therefore, this problem requires a robust model that can take into account the various 

temporal states (configurations of the 16 aforementioned features) of each sample, 

“remember” the input data at previous steps, and use all of this information to come to a 

conclusion as to which crop group this sample belongs to. A variant of the Recurrent 

Neural Network (RNN), called Bidirectional Long Short-Term Memory (BiLSTM), was 

chosen as the best fit.  

While RNNs, being a temporal variant of feed-forward Artificial Neural Networks 

(ANN), are capable of retaining feature information in individual time steps, their ability 

to do so decreases as the length of the time series grows – this is known as the vanishing 

gradient problem. To overcome this problem, a variant of the RNN called Long Short-

Term Memory Network (LSTM) is used. LSTM incorporates an additional dimension 

that describes the relationships between the output data sequences and the longer input 

data sequences. Moreover, the bi-directional variant of the LSTM model (BiLSTM) 

feeds the data not only forward (from start to end of time series), but also in the opposite 

direction (from end to start of time series), therefore resulting in generally higher 

classification and prediction accuracies (Siami-Namini et al., 2019; Baldi et al., 1999).  

As part of this research, a comparison between LSTM and BiLSTM model performance 

was conducted in order to determine whether the later part of the time series yields 

additional information in crop phenology sequence classification, when using maximum 

temporal pooling. 

 

 
 
 

Figure 2. Schematic of the BiLSTM model applied in this study 
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Model training 

 

The dataset was split into train and test subsets with a split of 80 and 20 percent 

respectively. The training dataset was used for model training and the validation dataset 

was used for evaluation of model performance after each training epoch. Model 

hyperparameter tuning was performed through a grid search method, where a complete 

training and evaluation sequence was completed for each of the hyperparameter 

combinations (Table 4), yielding 48 training runs.  

 
 

Table 4. Model grid search hyperparameters 

Hyperparameter Values 

Learning rate 1e-3, 1e-4, 1e-5 

Batch size 32, 64, 128, 256 

Hidden size 

Model type 

32, 64, 128, 256 

LSTM, BiLSTM 

 
 

The best performing hyperparameters for the BiLSTM model on the full dataset were a 

learning rate of 0.001, batch size of 32 and hidden size of 64.  For LSTM model hidden 

size of 128 and same batch size and learning rate was chosen. As the classes in the 

training dataset were not balanced, a class ratio-based weighting loss function was 

implemented by adding class weights to the cross-entropy loss function of the model. 

Also weighted random sampling was tested, but class ratio-based loss function yielded 

better results for more represented classes which are more important in practical 

applications. Model accuracy was evaluated with metrics commonly used in 

classification tasks - precision, recall, F1 score and weighted accuracy. F1 score was 

chosen as the representative performance metric as it incorporates both precision and 

recall values for each class, thus describing how the classifier performs from the 

perspective of both user’s and producer’s accuracy.   

 

3. Results 

 
Table 5 reports the highest performing test F1 scores for each of the classes in the 

dataset, as well as overall weighted accuracies for each of the classification scenarios.  

The four scenarios were: BiLSTM model with both Sentinel-1 and Sentinel-2 data, 

BiLSTM with only Sentinel-1 data, LSTM with Sentinel-1 and Sentinel-2 data, and 

LSTM with just Sentinel-1 data. 
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Table 5. F1 score comparison between models and datasets 

 

BiLSTM  

S1+S2 

LSTM 

S1+S2 

BiLSTM  

S1 

LSTM  

S1 

 

RF 

S1+S2 

Winter rapeseed 0.976 0.978 0.969 0.957 0.67 

Winter Wheat 0.956 0.954 0.904 0.838 0.84 

Grasslands 0.954 0.952 0.926 0.900 0.86 

Rye 0.865 0.868 0.771 0.634 0.65 

Legumes 0.855 0.840 0.804 0.694 0.47 

Buckwheat 0.851 0.814 0.684 0.459 0.49 

Maize 0.849 0.790 0.765 0.524 0.32 

Winter Barley 0.830 0.807 0.728 0.519 0.26 

Summer rapeseed 0.799 0.739 0.786 0.707 0.31 

Potatoes 0.762 0.721 0.594 0.456 0.31 

Summer Wheat 0.757 0.720 0.670 0.454 0.5 

Oats 0.751 0.701 0.630 0.516 0.28 

Summer Barley 0.699 0.639 0.580 0.351 0.22 

Fallow 0.626 0.609 0.519 0.362 0.19 

Orchard 0.487 0.412 0.191 0.017 0.20 

Weighted OA 89.43% 88.34% 84.50% 78.67% 66% 

 

 
The BiLSTM classifier with both Sentinel-1 and Sentinel-2 data was the highest 

performing of the four scenarios, yielding a weighted accuracy of 89.43%, improving on 

the LSTM model by +1%. The LSTM classifier outperforms BiLSTM in two classes – 

winter rapeseed and rye – but only by a narrow margin. As expected, the LSTM 

classifier is less accurate. Highest prediction accuracies were attained for winter 

rapeseed, winter wheat and grasslands with F1 values above 0.95. Datasets with only S1 

features performed comparatively poorly, as was expected. However, the performance in 

the BiLSTM S1 scenario still provides an overall weighted accuracy of 84.5% which 

provides some basis for the assumption that this method may be used operationally 

(albeit in a more limited capacity) even in particularly cloudy summer seasons where a 

clear Sentinel-2 image of the entire country may be expected once per month. As a 

benchmark a traditional Random Forest classification approach was tested as well, 

however, its performance was well below that of the other classifiers, most likely due to 

the fact that random forest classifiers do not retain knowledge of previous states in a 

time series. When conducting 10 repeated training runs with a randomized train-test 

split, no significant change in test accuracy was observed for the BiLSTM model with 

Sentinel 1 and Sentinel 2 data with confidence above 95% and z-score above 1.99. Also, 

BiLSTM results are statistically significant when comparing with LSTM and RF results 

with p-value below 1e-7. 
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Overall, the BiLSTM model along with the full dataset of both Sentinel-1 and 

Sentinel-2 proved to be the most accurate in predicting crop types from the validation 

dataset. The following hyperparameter combination was found yield the best accuracy 

performance – learning rate of 0.001, batch size of 32 and hidden size of 64, alongside 

two LSTM layers. The model training process proceeds as expected – training and 

validation loss decreased until the model started overfitting. No further useful 

information was learned after Epoch 32; however, 30 additional epochs were used as a 

training patience threshold in the training process. 

Inter-class misclassification is illustrated by the confusion matrix featured in Table 6, 

where rows represent the validation data and columns represent predictions by the 

BiLSTM model. The grassland (GRA) crop type appears to be the most intrusive, 

contributing a 28% and 55% misclassification rate for fallow land (FAL) and orchards 

(ORCH) respectively. Additionally, both summer wheat and summer barley fields have a 

tendency to be misclassified as oats, which is the second most intrusive class in this 

dataset. 

 

 

Table 6. Confusion matrix for the validation dataset, BiLSTM S1+S2 combination. 

Expressed in percentage relative to count of actual samples per class.  

Order of crop types inversely corresponds to Table 5. 

 
TRUE/PRED

. 

O

A 

B

W PO 

M

A LE FA 

W

R 

O

R 

S

W SB SR 

G

R 

W

W 

W

B 

W

R 

OAT 77 0 1 0 1 2 0 0 7 5 0 7 1 0 0 

BWH 1 84 0 1 0 7 0 0 0 1 0 6 0 0 0 

POT 2 0 76 1 1 3 0 0 0 2 0 13 1 0 0 

MAI 0 1 3 87 1 3 0 0 0 1 0 3 0 0 0 

LEG 2 1 1 0 83 5 0 0 1 1 0 4 0 0 0 

FAL 2 1 2 0 1 61 1 1 1 1 0 28 1 0 1 

WRY 1 0 0 0 0 3 86 0 0 0 0 2 6 0 0 

ORCH 0 0 1 0 0 4 0 38 0 0 0 55 0 0 0 

SWH 13 0 1 0 0 1 0 0 72 7 0 3 2 0 0 

SBAR 11 0 1 0 0 3 0 0 11 68 0 5 1 0 0 

SRYE 2 3 1 1 4 10 0 0 1 0 71 6 1 0 2 

GRA 0 0 0 0 0 1 0 1 0 0 0 97 0 0 0 

WWH 0 0 0 0 0 1 1 0 1 0 0 1 95 0 0 

WBAR 0 0 0 0 0 3 3 0 0 1 0 3 10 79 0 

WRA 0 0 0 0 0 1 0 0 0 0 0 0 0 0 98 

. 
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4. Discussion 
 
By analysing nearly four hundred thousand samples of multi-temporal sensor data, as 

well as exploring the predictive capability of this data, some assumptions can be made 

by looking at the confusion matrix presented in table 6. 

The largest misclassification proportional to the sample size can be observed 

between various types of summer crops, as well as between classes of high inherent 

spectral variability – fallow lands, grasslands and orchards. The difficulty to correctly 

delineate types of summer crops from one another possibly stems from the fact that 

crops such as summer barley, summer wheat and oats all share similar phenologic cycles 

and spectral signatures, thus illustrating the issue that at current scale this data does not 

offer sufficient information to separate some crop types. An investigation into what 

could be done to improve classification performance of spectrally and phenologically 

similar crop types would serve as a potential next step to further increase the operational 

effectiveness of this model.  

As for the confusion between fallows, orchards and grasslands, an assumption 

could be made that these classes have high internal variability both spectrally and 

temporally, and thus they overlap with one another. An orchard might consist or various 

tree types, with a different growing cycle for each plot or even segments within a field, 

introducing an increased cardinality within a single sample. The same can be said for 

grassland fields, where each parcel can contain different combinations of plant species. 

Moreover, fallow lands can resemble a grassland for most of the season, as they develop 

similarly to temporary grasslands for most of the season, and are ploughed whenever the 

farmer decides, thus sharing an inconsistent temporal profile with grasslands, which are 

mown on an irregular or even a once-per-season basis. A potential solution for this issue 

would be further separation of the orchard class into distinct species, as well as 

separating temporary from permanent grasslands.  

It is worth noting that the BiLSTM architecture performs only marginally 

sbetter (+1.1% of test accuracy) on the full dataset, which seems to imply that the input 

features might not yield a large amount additional information when analysed backwards 

(from end to start of the time series). However, a much larger improvement in accuracy 

from the BiLSTM model is achieved when classifying only Sentinel-1 data (+6%), 

which might imply that radar backscatter and coherence data contain more information 

on the backward pass. 

The fact that winter crops are classified more accurately is also noteworthy. 

This might be explained by the fact that these crops have a significantly higher 

vegetation index at the start of the season, as they have been sown before the winter and 

therefore exhibit a very distinct temporal profile and do not mix with grasslands, which 

could be another reason why summer crops perform worse. Some inter-class confusion 

between winter crops can be observed, especially between winter rye and winter wheat, 

but not so much winter rapeseed, most likely due to its distinct yellow hue during the 

flowering season.  

The main focus of this work was to explore the potential of combining large 

scale sensor time series with state-of-the-art deep learning methods in order to develop a 

methodology for a crop type classification accurate enough to use in operational rural 

service administration. With an overall weighted accuracy of 89.4%, the underlying goal 

of this study appears to be at least partially achieved, but not without its set of challenges 

and   considerations.   While   the   BiLSTM   model   yields  the  highest  accuracy,  the  
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improvement is marginal, and might be introduced by random patterns inherent to this 

specific dataset. The issue of inter-class confusion also one that should not be 

understated, as, for example, different types of summer crops are applicable to different 

payment rates per hectare. Bearing these considerations and limitations in mind, this 

method still proves to be a solid foundation for performing regional-scale multi-class 

crop type classification tasks in order to support effective and objective agricultural 

subsidy administration.  
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