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Abstract. Large datasets in agriculture are increasingly available through yearly sur-
veys. However, very few longitudinal datasets providing insights for farmer’s decision
are available. The main objective in this research is to match farm establishments. The
purposes of this investigation is two fold: first, to match successive yearly surveys, pro-
ducing longitudinal records into farm history; and second to use only categorical and
numerical features to match records. We analyzed Ecuadorian national agricultural
surveys from the years 2010 to 2012. In total, 125098 records were compared, using
16 different algorithms. Our results suggest that with this particular data setup, unsu-
pervised methods using a stochastic matching approach outperform other algorithms
in terms of F1 scores. Matching individuals over three consecutive years shows that
ensemble techniques allowed the re-identification of 60% of individuals. In the context
of Ecuador, no data are available to follow individual farms over time, longitudinal
datasets could provide essential insights for local policies.
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1 Introduction

Agriculture today face a difficult challenge: the world’s growing population
continuously drives the need for greater food productivity while at the same
time, modern agriculture threatens the environment, contributing significantly
to greenhouse gas emissions and climate change (McIntyre, 2008). To this day,
small-scale family farms with less than 20 hectares, play an essential role to the
global food supply in middle-income countries (Woodhill et al., 2020). In this
context, it is urgent to understand how efficient and sustainable agriculture can
provide diverse and quality food for an ever-increasing population. Since the cre-
ation of the Food and Agriculture Organization of the United Nations (FAO) in
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1945, standardized methodologies have been developed to enhance agricultural
information systems worldwide.
One key component of national statistics for agricultural systems are surveys
and census. In many developing countries such as Ecuador, these are often the
only source of national information, yet only a few efforts for integration of
yearly records have been made and mainly for health data (Kazanjian, 1998;
Jarvis et al., 2017; Reppermund et al., 2019; Rowlands et al., 2021; FAO, 2015).
Agricultural surveys provide complete descriptions of land ownership and farm
characteristics, systematically reporting land use on a parcel level (Remans et al.,
2019). Surveys usually cover small areas of geographical sampling units. Those
sampling units are not modified from year to year, and with few exceptions (non-
response, drop out) the same farms are surveyed in consecutive years.
These conditions should be ideal for record linkage, but in practice no iden-
tifiers and very few of the farmers’ personal information are provided. On a
national scale, matching datasets by hand is prohibitive, but integrating them
can be done using probabilistic methods (Contiero et al., 2005). Modern Machine
learning techniques offer new and efficient ways for managing large amounts of
data. This is especially advantageous when the quantity of observations is im-
portant, which is the case with agricultural surveys.
In the context of Ecuador, where small-scale farming prevails, very few sources
of national data exist. Agricultural statistics often exist only in isolation, and
are usually poorly-shared and understood by other agencies. Even when the ne-
cessity has long been identified (Hill, 1996), public institutions fail to recognize
that rural economies are intrinsically diverse across farms. Without integration
between datasets and the definition of common identifiers, little effort is made
to support analytical applications in developing countries. Therefore, it is essen-
tial to understand farmers’ practices and drivers susceptible to affect production
over time (O’Donoghue et al., 2017).
The main objective of this study is to adapt previous work related to agricul-
tural data matching (Winkler, 1995; Aiken et al., 2019) to the context of yearly
surveys. The originality of this research is dual: first, matching successive yearly
datasets, with the aim to produce longitudinal records of farm history; and sec-
ondly, match records using only numeric features, an uncommon case in data
matching where textual descriptors are usually employed (producer and farm
names, addresses).
We applied various matching procedures to successive yearly surveys. We used
public datasets from the Ecuadorian National Statistical Institute: the Encuesta
de Superficie y Producción Agropecuaria Continua (ESPAC: Agricultural land
use and continuous production survey) from the years 2010 to 2012. Little to no
variation in survey design occurred during those years, representing a rich source
of information for agricultural policies (Guillermo Otañez, 2004). We compared
125098 records from three datasets, and the results were evaluated over three
pairs of datasets, using two different sets of variables and 16 algorithms leading
to 96 matching trials.
Records did not include names or address, nor consistent identifiers of farm
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households. We explored using numerical features such as production character-
istics, crop area, level of production and sampling features as pseudo-identifiers.
These variables are subject to yearly variations as farms evolve in time, for
instance by acquisition or session of land, or simply change in land use. The
matching algorithm should provide robust matching results in spite of these
variations of farm activities. A wide variety of record linkage methods were eval-
uated, including probabilistic methods and a different set of unsupervised and
supervised machine learning techniques. For each algorithm, calculations were
repeated over various pairs of datasets, which allowed us to evaluate “out of the
sample” and generalization quality.
In the next section this article provides an overview of record linkage standard
procedure; describing the necessary steps and emphasizing evaluation metrics.
The following section details the “data setup”: context, preprocessing and se-
lection of pseudo-identifiers, and a short description of the matching methods
that were applied to the datasets. In the last section, results are reported and
discussed in regards to their implications for agricultural statistical systems.

2 Related works

2.1 Record linkage

Record linkage consists of merging datasets based on common entities. In this
process, two records are compared. “Matches” are identified when two records
are considered the same entity and “non-matches” in other cases, similar to a
classification problem. The data setup usually involves two datasets with no
unique identifiers (Winkler, 1994). Record linkage has applications in numerous
domains: health records (Contiero et al., 2005; Karr et al., 2019), administrative
surveys (Abowd et al., 2019; Enamorado et al., 2019) or research on historic cen-
sus (Fu, Boot, Christen and Zhou, 2014; Fu, Christen and Zhou, 2014). Previous
work with record linkage in the agricultural context has focused on analyzing na-
tional census, identifying duplicate entries (deduplication) (Winkler, 1995; Bel-
low et al., 2016) and integrating farm records to agro-industrial datasets (Aiken
et al., 2019).
The procedure for record linkage involves four steps: data preparation, indexing
or blocking, classification, and evaluation (see Figure 1). Preparation of data re-
quires common attributes between datasets to be standardized. Typically string
attributes are used, such as names or addresses, and numerical measures, such as
date of birth. In this process various sources of errors may increase the difficulty
of record linkage: the population between datasets may differ, pseudo-identifiers
vary as a result of distinct data acquisition processes, and values may be missing
or changing over time (Christen, 2012).
An optional step called “indexing” or “blocking” consists of dividing the data sets
into smaller groups by using group identifiers, and producing pairs to compare
only from these groups. This technique reduces the number of comparisons to
evaluate and the computation time required to match pairs. Without this group
comparison, the number of pairs for two datasets of size m increase quadratically
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Fig. 1. Data process for Agricultural Survey record linkage.

(m squared). This step of fractionating pairs using a common key is especially
relevant in our case where blocking can be related to sampling structure (Fellegi
and Sunter, 1969). The surveys are conducted through yearly visits to geographi-
cal sampling units. In each unit, systematic sampling of all farms was carried out
each year (Guillermo Otañez, 2008b); further details on blocking are provided
in the data setup section.

The choice of classification algorithms may produce widely different results
depending on the comparison function and selected variables to compare. When
comparing two records, the classification algorithm will receive a similarity vector
based on the considered attributes, and label it as match or non-match. As this
process is realized using blocking, and optimizing execution of methods lead
to run times not exceeding a few hours, computational efficiency will not be
assessed. The evaluation step is equivalent to the evaluation of a binary classifier.
Results can be summarized in a contingency table, comparing true match status
to predicted outcome. Here, the first entry indicates reference true match or
non-match for any given pair and classifiers output as shown in Table 1.

Predicted status is based on a similarity threshold, below which a pair of
records are considered to be a non-match. When comparing methods, evaluat-
ing algorithms in terms of quality of classification is not trivial. Indeed, methods
can produce different sets of pairs, with different distance metrics produced when
comparing results. The similarity value from one method may not be related to
another and could produce misleading comparisons. Comparing different algo-
rithms with the same threshold should be avoided (Hand and Christen, 2018).
Another problem arises from the fact that record linkage produces a strong
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Table 1. Contingency table used in record linkage

Predicted class: Match Non-match

True status: Match True Positives False Negatives
(true match: TM) (false non-match: FNM)

Non-match False Positive True Negatives
(false match: FM) (true non-match: TNM)

imbalance between the number of non-match and matches. Consequently, high
accuracy may arise from a classifier that only predicts non-match without match
identified (Belin and Rubin, 1995).
As imbalance between match and non-match is usually very high, F-score statis-
tics (harmonic mean of precision and sensitivity) is preferred in record linkage
(Hand and Christen, 2018). We propose here to employ an evaluation method
proposed by Hand and Christen (2018) that overcomes the limitation of com-
paring thresholds, providing that for given a value of F-score, the same number
of predicted matches are compared. The main idea is to rewrite F-score as a
weighted mean of precision and recall:

F = 2
P −1 + R−1 = 2P ∗ R

P + R
= 2TM

FNM + FM + 2TM
(1)

and rewrite F-score as:

F = p ∗ R + (1 − p) ∗ P (2)

where:

p = (FNM + TM)
(FNM + FM + 2TM) (3)

Comparing F and p, the weights p could inform on the relative importance given
to precision and recall. Using p in relation to F to evaluate algorithms produce
a fair comparison as the same number of predicted matches are compared. We
can use this metric p to graphically compare various algorithms without the use
of thresholds.
Finally, to evaluate matched databases retaining only predicted pairs, a final
step called deduplication eliminates multiple occurrences of records (Murray,
2016). In fact, farms are uniquely defined in each dataset: only one match per
record should occur between two given datasets. This additional step was added
to produce a single match per observation, using linear assignment, as proposed
by Jaro Jaro (1989); Enamorado et al. (2019). The final result is a longitudinal
dataset for multiple year linkage.
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3 Data setup

Each record linkage exercise is adapted to the nature and availability of informa-
tion. In our case, true match status is available, allowing us to compare results
on a common reference. This true status has been obtained in previous work,
obtaining personal data from each dataset. In this part, we will first describe
the context of the agricultural survey and the comparison that has been per-
formed. Then the preparation and selection of variables is presented. Finally, a
description of the algorithms is provided and, how evaluation was performed.

3.1 Context

The continuous production and area surveys (ESPAC) are yearly national sur-
veys, which describe land use, crops, forestry, labor, and breeding activities in
roughly 41,700 observations each year. Three consecutive years were selected:
2010-2012 (see Figure 1). To account for variation between years, we evaluated
all three combinations between 2010, 2011, and 2012 datasets.
The goal was to produce a longitudinal dataset for the three selected years. True
match status was established in a previous work (Belmont 2019, unpublished)
using farmer and farm name and address.

Overlapping observations between years is estimated over 80%, enhancing the
potential performance of the linkage algorithm, as noted by (Enamorado et al.,
2019). The remaining observations are missing, possibly due to non-response
or when no agricultural activities were registered on farms. Surveys are usually
based on a multiple frame (Davies, 2009). The sampling design is consituted
by an area frame and a list frame. The area frame is divided into standardized
strata, based upon the predominant land-use in the sampling units: pasture,
temporary and annual crops, forest and natural vegetation, and an additional
stratum for Amazonian region. The list frame is a list of the main farms in ex-
tention or production in a specific sector. The two sampling frames may overlap,
1 or 2% of units, and usually require deduplication (Winkler, 1994); this aspect
of the process is not taken into consideration in this research, as duplicates can
be identified.
As mentioned above, record linkage was performed between the three pairs of
annual datasets for each algorithm: 2010-2011, 2010-2012, and 2011-2012. Pro-
cessing steps are described in Figure 1: identification of features, indexing, clasifi-
cation and evaluation of linkage quality. Corresponding weights were normalized
using minmax (0,1). The analysis was performed using R programming language
(version 4.0.2) and data sets are available online (here). Original datasets have
thousands of variables; in the following section we describe the data preprocess-
ing and selection methods that we applied.

3.2 Pre-processing and attribute selection

Identifying a set of farm features for record linkage is especially challenging in
Ecuador. Small scale farming activities vary significantly over time, as farmers

https://www.ecuadorencifras.gob.ec//encuesta-de-superficie-y-produccion-agropecuaria-continua-bbd/
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Fig. 2. True matches raw difference in value for selected variables: farmers age
(Farmer.age), number of paid workers (Paid.labor), pasture coverage (Pasture.cov),
land tenure (Tenure), sequential survey number (Seq.number).

employ different adaptive strategies (Chen et al., 2018).
In the absence of string identifiers, farms are described numerically. The inclu-
sion of continuous variables provoked a considerable increase in computation
time when testing different algorithms. Converting numerical variables to cat-
egorical variables and using quantiles and normalization within blocks helped
to reduce variance among identified pairs and reduce computational time. We
evaluated consistency of variables based on the true match subset (see Figure 2)
in order to confirm that these remained constant or very similar over time. For
instance, the number of parcels between years is centered on zero but annual
change appears when farmers merge or divide parcels, or as land is transfered,
acquired or leased. A subset of 13 descriptors was defined, selecting variables
with lower contribution to variance using principal component analysis.
Common characteristics representing consistency over time include: (i) category
of farm ownership: (privately owned, rented); (ii) farm category: subsistence
farms which generate no income by selling products, family farms, “capital-
ist” farms, business farms, and haciendas, where no family member works on
the farm, (iii) farmer’s age and (iv) sex, (v) labor on farm, (vi) cattle density
citep(see:Alkemade 2013), (vii) average milk production per cow, (viii) presence
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of horses, donkeys or both; (ix) farm size (as quintile of land distribution), (x)
pasture and (xi) irrigation cover (as percentage of total land), and (xii) forest
cover (as quintile of the percentage of total land) and number of parcels (xiii).
A second reduced set was built to test survey design variables: two “agronomic”
variables: land tenure and farm size as quintile of land distribution, survey pon-
deration factors assigned to each farm with very few adjustments from year to
year; finally, a sequential survey number allows for partial identification. Se-
quential survey numbers correspond to a determined sequence of farms that
each survey taker has to follow. Each year, the sequence begins with the same
first farm and proceeds in the same order as previous years (Guillermo Otañez,
2008a).

In table 2, we report descriptive statistics of retained variables. Valid and
missing data in percentage is described, and number of categories in the left
column and mean value right column are reported. Quantity of missing value
did not exceed 11.2 %, which is within the range of effective record linkage as
tested by Enamorado et al. (2019). Those attributes are common descriptors in
standard agricultural surveys (Winkler, 1995).

3.3 Indexing

As mentioned above, by using group identifiers, we can reduce the number of
comparisons to evaluate. For instance, individuals are paired together using a
region code as a common identifier. One individual from a group in the first
dataset is compared to the others from the same group in the second dataset,
and not from the whole dataset, thus reducing computation of pairs.
Agricultural surveys utilize a rotation scheme of sampling units to avoid repeated
interviews and response burden. Here, consistency of the sampling design over
years, with no sampling rotation, allowed us to define consistent blocking in-
dexes. In this dataset, only small modifications were made in order to adapt
to new political divisions which occurred in 2009, but the majority of sampling
units remained constant. This sampling design would assure a high overlapping
between years. Sampling units contain 16 farms on average and up to 92 in most
populated areas. The total of pairs computed reached 1,036,906 pairs for 2010-
2011, 1,021,664 pairs for 2011-2012, and 1,003,527 pairs for 2010-2012. For each
pair, a distance metric is computed using a classification algorithm. The next
section describes the algorithms employed.

3.4 Classification Algorithms

In this section we summarize the types of algorithms employed for classification.
For a given set of pairs, a distance metric, or weight is assigned to a pair. The
value of the weights indicates if the pair is a match or a non-match, based upon
a defined threshold. We selected a wide range of classification algorithms to pro-
vide an overview of the best-performing algorithms for this task using existing
methods (Aiken et al., 2019). Different methods can produce very different re-
sults.
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Table 2. Variable characteristics

Categorical attributes: Valid Missing (%) Categories

Farm type
2010 41081 - 5
2011 41428 - 5
2012 42590 - 5

Farm ownership: (proper, rent. . . )
2010 41081 - 2
2011 41428 - 2
2012 42590 - 2

Farmer sex
2010 41081 - 2
2011 41428 - 2
2012 42590 - 2

Land extension
2010 41081 - 5
2011 41428 - 5
2012 42590 - 5

Pasture extension quantile
2010 41081 - 5
2011 41428 - 5
2012 42590 - 5

Forest extension quantile
2010 41081 - 6
2011 41428 - 6
2012 42590 - 6

Presence/Absence of horses and/or donkeys
2010 41081 - 3
2011 41428 - 3
2012 42590 - 3

Numerical attributes: Year: Valid Missing (%) Mean
Age (birth year) 2010 40218 863(2.1%) 1967

2011 40887 541(1.3%) 1968
2012 42050 540(1.3%) 1969

Paid Labor (persons) 2010 41081 - 2.06
2011 41428 - 1.9
2012 42590 - 1.85

Area under irrigation (%) 2010 41081 - 0.09
2011 41428 - 0.1
2012 42590 - 0.08

Number of parcels 2010 41081 - 1.49
2011 41427 1(0%) 1.5
2012 42590 - 1.53

Animal density 2010 41081 - 0.36
(cattle unit / 2011 41428 - 0.37
hectare) 2012 42590 - 0.34
Average milk 2010 38703 2378(5.8%) 1.28
production 2011 39033 2395(5.8%) 1.34
(liters/animal/day) 2012 37803 4787(11.2%) 1.21
Ponderation factor 2010 41081 - 0.81

2011 41428 - 0.81
2012 42590 - 0.8
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Before implementing classification methods, we use deterministic matching as
baseline. Deterministic matching evaluates a pair given the assumption that all
fields are equal. Matching methods can be categorized into two general fami-
lies: Stochastic or probabilistic matching and “Machine learning” methods. In
total, 16 methods were applied, leading to 96 evaluations including variation
in parameters, and each producing weight output for the three paired datasets.
Probabilistic approaches included: propensity score matching adapted to the
context of data linkage, Epilink method, Stochastic matching approaches using
an expectation–maximization algorithm with the Fullegi Sunter model, and a
scaling algorithm.
Machine learning algorithms consisted of unsupervised methods: clustering (Fuzzy
C-Means), and supervised methods: Artificial neural network, Recursive parti-
tion tree, Bagging decision tree, and Adaboost. In the case of Machine learning,
models are required to handle highly skewed predicted targets. Indeed, a paired
dataset is mostly composed of non-matched pairs with a very low quantity of
match (Johnson and Khoshgoftaar, 2019). This data imbalance may highly de-
crease the capacity of the machine learning techniques to identify matches among
training datasets (Pixton and Giraud-Carrier, 2006).

3.4.1 Probabilistic and stochastic methods In the following section, we
describe methods using a probabilistic approach to matching. The main idea is
to infer the distribution of distances between pairs to compute weights. These
methods are most commonly used for record linkage.

Stochastic record linkage Stochastic record linkage makes use of the Expectation-
Maximization algorithm. The Fellegi-Sunter model is commonly employed in
record linkage, and a short description of the procedure is given, for more de-
tails see (Pixton and Giraud-Carrier, 2006; Christen, 2012). This method was
computed using the R package Recordlinkage, with the emWeights procedure.
This procedure is based on a decision model, assigning a probabilistic weighting
for pairs of records (Sariyar and Borg, 2010). For a collection of potential pairs,
comparison patterns are computed, then conditional probabilities over these pat-
terns give a probability of belonging to a set of matches or a set of non-matches.
We aim to merge two sets A1 and A2 of size N1 and N2 respectively, using
a set X of common variables. In a sample size of N1*N2 pairs, a comparison
vector noted γx(i, j) is defined with the pair of the ith observation in A1 and
jth observation in A2. This vector represents the level of within-pair similarity
for the xth variable between the ith and jth observations, of datasets A1 and
A2 respectively. As noted in Enamorado et al. (2019), corresponding elements
of the comparison vector can be set according to Lx similarity levels for the xth
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variable:

γx(i, j) =



0
1
...

Lx − 2
Lx − 1


Different

Similar

Identical

(4)

Thus, the conditional probability of the match status M is denoted:

m(γij) = P (γij |M = 1) ∧ u(γij) = P (γij |M = 0) (5)

Where M take the value 0 for non-match with a probability m(γij) and 1 for
match with a probability u(γij).
Finally, under the Fellegi-Sunter model weights w are computed according to:

wγij = log(m(γij)
u(γij) ) (6)

and used to define linkage rules distinguishing between match and non-match.
The Fellegi-Sunter model has various limitations: the assumption of indepen-
dence of matching variables and the treatment of missing values (Abowd et al.,
2019). An extension of the Fellegi-Sunter model (see: FastLink (Enamorado et al.,
2019)) proposes a different approach, relaxing the assumption of independence
of matching variables. The treatment of missing data is essential and, in ab-
sence of imputation, data is usually treated as disagreement. Here, the canonical
model assumes that data is missing at random conditional to the variables M
(see equation 5: on conditional probability of the match above). The Fastlink al-
gorithm has shown an important increase in computational efficiency and overall
performance.

Other probabilistic methods We adapted Propensity Score Matching (PSM) to
record linkage. For statistical matching, the PSM algorithm consists of pairing
two observations according to a score (Ho et al., 2011). The approach uses a
logit model to estimate a dependent variable taking a binary value in datasets
to match 0 in the first dataset, 1 in the second (Rässler, 2012). The predicted
probability or the propensity score, is a conditional probability of belonging to
a dataset, given a set of variables. Based on the nearest propensity score, each
observation is given a ”donor unit”, in this case using nearest neighbor match-
ing. An R implementation of PSM, MatchIt was employed (see: Ho et al. (2011).
A similar procedure called Epilink, using another distance metric between pairs
(Contiero et al., 2005) was also evaluated (see R package: Recordlinkage, epi-
Classify procedure).
We also evaluated the Scaling procedure, another approach providing no explicit
assumption of statistical independence, based on correspondence analysis (de-
scribed in Healy and Goldstein (1976). This method allows for identification of
most discriminatory identifiers based upon the minimization of a loss function
(Goldstein et al., 2017). The R implementation Scalelink was employed.



634 Belmont Guerrón and Hallo

3.4.2 Machine learning Methods We make a distinction between Machine
learning methods and probabilistic ones as the design of the machine learning
methods employed here are not predicting a probability distribution over a set
of classes. These methods produce a likelihood of an observation to belong to
a certain class. As mentioned above, supervised methods can only be evaluated
using true match as training data.
Supervised classifiers were implemented using a labeled pair as training, and ap-
plying the trained model to the remaining pair dataset, ensuring that no paired
records were shared between training and testing datasets. For instance, a model
trained over 2011-2012 pairs was tested on 2010-2012 pairs, trained model on
pairs from 2010-2012 were tested on 2010-2011 pairs, and trained model on pairs
from 2010-2011 were tested on 2011-2012 pairs.
Four methods are selected: (i) Recursive partitioning tree (Therneau, 1983),
using rpart R-package, using anova as the splitting rule; (ii) artificial Neural
Networks (Ripley and Hjort, 1996) using nnet R-package (decay = 5*10-4, max-
imum iteration off 300, Initial random weights = 0.1); (iii) bagging decision
tree (Breiman, 1996), and (iv) adaptive boosting, using fastAdaboost, Freund
and Schapire (1996) Adaboost.M1 algorithm. The last two methods are a linear
combination of weak decision tree classifiers. Finally, an unsupervised machine
learning method, using clustering as a classifier, was evaluated. Fuzzy C-means
clustering was tested here, in particular because of computational efficiency and
the flexibility of the method (Hartigan and Wong, 1979). An R implementation
of this algorithm was used from package e1071 (cmeans).
For supervised methods, an additional matching exercise was implemented sep-
arately using subsets divided per sampling strata. As for the use of neural net-
works, a committee of networks was evaluated, using various combinations of
pseudo-identifiers and using ensemble averaging.

3.5 Evaluation

In this step, two forms of evaluation are employed using F-score and p met-
ric, as described in section 2. After identifying the best methods, we report the
performance on deduplicated datasets. The first form is used to compare fairly
distinct methods with the same complete set of pairs. In the second form, the
deduplication step consists of removing multiple matches for the same observa-
tion, providing a matched dataset where one observation has one only match.
In the latter, comparisons of methods are less accurate as they are based on
different sets of pairs. We report these results in order to illustrate what can be
obtained building a transversal dataset.
Once classification was completed, F-score and p (as described in section 2)
were calculated for different thresholds after minmax scaling of obtained weights.
Graphical observation of performance helps to fairly distinguish between meth-
ods.
The best methods were assessed as deduplicated results after threshold selection.
This comparison, despite the subjectivity of threshold selection between meth-
ods, will help illustrate the application for multiple year linkage. Thresholds were
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established programmatically, using extreme value theory (Sariyar et al., 2011),
providing an illustration of the potential of building transversal datasets with
yearly agricultural surveys.
For each pair of matched records, algorithm weights and predicted matches were
evaluated. Each algorithm was evaluated over three pairs of datasets, with two
sets of variables for 16 models, leading to a total of 96 evaluations.

Table 3. An Illustration of matched records over three consecutive years

Pairs of databases
Variable: 2010-2011 2011-2012 2010-2012
Identifier: 996 42220 83914
Year 2010 2011 2012
Name Arcadio Arcadio Arcadio jose
Surname Buendia Buendia Buendia
Farm Class 3 3 3
Sex 0 0 0
Year of birth 1969 1969 1969
Land tenure 1 1 1
Livestock density 0 0.01 0
Number of parcels 1 2 1
Extension area 4 4 5
Pasture 1.5 1.3 1.5
EM weight 0.515 0.437 0.151
EM predicted 42220 83914 996

Table 3 shows reported results for matching over the three pairs of datasets.
We obtained weights for each record to identify individuals without the use of
name and surname as pseudo-identifiers. For each record, a matching weight was
calculated and corresponding prediction of pairs was stored. In this example only
the weights for fastLink EM algorithms are reported. Even for a single algorithm,
between combinations of years, the value of weights varies significantly.

4 Results

In this section results are organized into three sections: (i) a graphical method
using “fair metric” comparison for the whole dataset and per sampling stata;
(ii) an evaluation of best performing algorithms after deduplication; (iii) results
over combined datasets, to obtain transversal records between 2010 and 2012.

4.1 Algorithm Comparison: Graphical Methods

Here, methods are compared using the graphical method discussed in section 2:
a common “similarity threshold” for a given number of matches was calculated.
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Fig. 3. F-score - p plots of the three paired datasets in row and by groups of algorithms
in column (Probabilistic and Machine learning).

Then, using the “p” ratio of known true matches by the sum of predicted and
known matches, results are shown graphically against the values of F-score (see
Figure 3). In this figure, rows show evaluation of pairs formed from the three
different pairs of datasets: the first row with 2010-2011, the second row showing
2011-2012, and the third row 2010-2012.

The plotted lines represent the best algorithms (higher F-scores for a given
value of “p”). Each algorithm is plotted twice: with the first subset of 13 vari-
ables (suffix “ s1”) and with the second with four variables (suffix “ s2”). The
following probabilistic methods are plotted: sca: scaling method, fll: Fastlink :
EM Fellegi-Sunter adaptation, ems: EM Fellegi-Sunter model. For machine learn-
ing methods the following methods were plotted: net: Artificial neural networks,
ada: adaboost, bag: bagged clustering.
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While using only agricultural characteristics, overall, the use of sampling design
variables as pseudo-identifiers performed better in terms of F-score and observ-
ing performance in F-score p plots (line above perform better). This may suggest
that among small farms, variability in characteristics is too high to be considered
across years. Unsupervised learning methods, supervised method with recursive
partition tree, Epilink and propensity score matching performed much worse
than EM and scaling algorithm and are not reported in Figure 3. Globally, al-
gorithms performed with similar performance compared to one another between
the three assessed pair datasets (see Figure 3). As for 2010-2012 pairs, as ex-
pected, globally lower performance was recorded across methods, as variability
due to farm change increased as expected, hindering linkage. Between the two
groups of methods, supervised methods outperform unsupervised ones.
Among unsupervised methods, sampling design subset of variables produced
highly variable results among years, with a high F-score on 2010-2011 dataset
and very low F-score when comparing to 2010-2012 datasets. In comparison with
agronomic variables, quality of matching remained stable over the years. The EM
Fellegi Sunter algorithm consistently performed below the rest of the methods
(Figure 3, “eml s1”, “eml s2”), whereas the canonical model of Fastlink proce-
dure performed best among evaluated methods (see Figure 3, “fll s1”, “fll s2”),
when recall weight p was near 0.53 with almost equal weight to precision (0.47).
Scaling, producing a similar value for F-score (in Figure 3, “sca s1”).

Among supervised methods, using sampling design variables consistently out-
performed agronomical variables; all supervised algorithms remained consistent
in prediction performance through tested yearly dataset pairs. Adaptive boost-
ing and Bagged clustering attained low F-score (0.17 and 0.19 for the 2010-2011
pairs) and ANN performed better than any other method in all cases.

When comparing performance over survey strata, six principal strata of the
survey results remained similar, with ANN performing better in all strata except
the list frame subset of records. In Figure 4, areas with a majority of: temporary
crops, perennial crops, pasture, forest; areas in the Amazon region and list frame
strata are plotted. The size of blocks can vary considerably between strata: 23
farms on average in areas predominantly covered with temporary crops and 10
farms in areas that are predominantly forest. The diversity of land use and farm
systems are linked to the strata, and linkage methods performed significantly
better in pasture strata and significantly worse in the case of the Amazon For-
est region and perennial crop strata. For temporary crops where diversity block
size is superior, all methods performed at a lower level. For those strata, dif-
ferences between supervised methods with sampling variables (ANN “net s2”)
and unsupervised ones with agronomic variables (Fastlink “fll s1”) are almost
not noticeable and ranked similarly. The list frame (Figure 4, on the last row to
the right) behaves differently with an overall better F-score performance than
other stratas, and the Adaptive boosting method performed better than other
methods only in these strata. This sub-population presents different character-
istics: in this subset of farms are only selected farms with important size (over
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Fig. 4. F-score - p plots 2010-2011 pair datasets, and per sampling stratas the following
methods are plotted: sca: scaling, fll: fast linkage, nxt: NN-committee, net: NN, ads:
adaboost, per stratas.

a 100 hectares), specialized in one crop (over 50 hectares dedicated to only one
crop) or specialized (poultry, pig production or flowers for instance). The weak
learner combination of adaboost method may be more adapted to capture these
variations.

When comparing performance over survey strata, six principal strata of the
survey results remained similar with ANN performing better in all strata ex-
cept for the list frame subset of records. In Figure 4, areas with a majority of
temporary crops, perennial crops, pasture, forest, amazon region and list frame
strata are plotted. The size of blocks can vary considerably between strata: 23
farms on average in areas predominantly covered with temporary crops and
10 farms in areas that are predominantly forest. Linkage methods performance
was significantly better in pasture strata and worse in the Amazon Forest re-
gion and perennial crop strata. For temporary crops where block size can reach
more than a hundred farms, the results are less accurate. For those stratums,
differences between supervised machine learning methods (ANN “net s2”) and
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unsupervised ones with agronomic variables (Fastlink “fll s1”) are similar. The
list frame (see Figure 4, on the last row to the right) behaves differently with
overall better F-score performance than other stratas and the method Adaptive
boosting performed better than other methods only in these strata. This sub-
population presents different characteristics, with selected farms according to
their degree of specialization and important size. The weak learner combination
of the adaboost method may be more adapted to capture these variations.

4.2 Results after deduplication

Once a classification algorithm is applied, the complete dataset of pairs, including
match and non-match, can be used to describe relations between datasets, using
pair weights as ponderation. Nevertheless, as the entities are fixed farms, de-
scribed only once in each dataset, there is an important overlap between datasets:
a large proportion of the individuals are present in both datasets. The process of
eliminating duplicates, or deduplication, allows one to obtain a ‘clean’ dataset
with only one farm linked to another. Ideally, overall precision and recall should
be maximized to ensure a high linkage quality during deduplication. It is es-
pecially difficult to establish a threshold that optimizes F-score, and produces
a high match rate. Additionally, for this step, mean weights were averaged to
produce an ensemble of learners based only on the best algorithm giving slightly
better results than best algorithms (see Table 4: “ensemble”).

Table 4. Merging results for four different methods, after deduplication

Method Variable subset Year TP Precision Recall F-score

ANN
Sampling 2010-2011 12518 44 83.6 57.6
Design 2010-2012 6728 23.1 78.5 35.7
Variables 2011-2012 11536 38.9 84.9 53.3

EM fastlink
Agronomic 2010-2011 12005 39.3 92.8 55.2
Variables 2010-2012 8315 27.7 89.4 42.3

2011-2012 12066 39 92.8 54.9

Ensemble
Sampling 2010-2011 13052 48.6 79.1 60.3
Design 2010-2012 7098 25.6 75 38.1
Variables 2011-2012 12021 42.8 79.9 55.8

After deduplication: methods performed with average precision but recall re-
mained high: for pairs of consecutive years (2010-2011 and 2011-2012) almost
50% of true match pairs were re-identified, with ANN algorithm leading to high-
est F1-scores and EM algorithm fastlink with only agronomic variables.

4.3 Results on successive years

When evaluating methods identifying pairs of records matched on the three pairs
of datasets, validation dataset raised 12280 individuals.
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Table 5. Merging results for four different methods, with identified individuals over
three years

Method Variable subset TP Precision Recall F-score
ANN SDv 5638 27.7 45.9 34.6
EM fastlink SDv 4895 39.1 39.9 39.5
EM fastlink Agv 4624 43.6 37.7 40.4
Ensemble: majority SDv 6292 60.4 51.2 55.4

Among evaluated algorithms, interestingly the unsupervised method outper-
forms the supervised one (see Table 5), in terms of precision and it allows for
the identification of almost around 40% of individuals; whereas using ensemble
“majority” over deduplicated results more than 50% of these individuals were
re-identified.

5 Discussion

In this research, we used yearly data to test various record linkage techniques
to produce longitudinal data. We showed that common linkage methods demon-
strate remarkable results in allowing complex linkage with numerical descriptors
between yearly databases. When no true match is available, only unsupervised
methods can be used, and Fellegui Sunter algorithm showed similar accuracy as
supervised methods (AdaBoost, Artificial Neural Networks), proving adequate
to rebuild populations of individuals with anonymized data. In this section, we
review the implications of using agriculture survey for record linkage: yearly
data, numeric pseudo-identifiers and the interest of using sampling data.
Typical record linkage makes use of textual pseudo identifiers such as name, sur-
name, or company name. This information can be used to re-identify a unique
individual with high likelihood, despite differences in text fields. Here, we propose
using only numeric attributes such as farmer age, number of workers, categories
land tenure, land extension, or irrigation to identify the correct match between
data sets. Using similar setup, recent work on the potential of re-identification in
public surveys, using only demographic attributes, have shown strong evidence
that the combination of pseudo-identifiers (15 socio-demographic variables) in
anonymized data-sets lead to very high linkage precision (99.98%) for North-
American populations (Rocher et al., 2019).
Re-identification was carried out successfully on numerous national surveys, us-
ing sampling zip codes as blocking attributes. Our hypothesis was that by using
adequate blocking variables and comparison functions, similar results can be
obtained. for farm surveys records. These are, by nature unmovable, but their
extension can vary by acquisition or transfer of land. Despite the variable nature
of the pseudo-identifiers, we could review differences between identified matches
(true match), and show that little variation occurs over time for selected vari-
ables. Descriptors of farm categorical characteristics (ownership, type of farm)
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and land use (size, pasture, forest, irrigated area, number of parcels) are less
susceptible to change from one year to another. For production, cattle density,
average milk production per cow, presence of horses or donkeys were robust char-
acteristics to identify a farm over years. Finally, Farmer’s personal information
(age, sex), or the availability of permanent labor on farm were expect to have
the same consistency over time but performed poorly, as a different person is
selected from one year to another for the same farm.
Understanding survey sampling structure can contribute to record linkage qual-
ity. Sequential numbering within primary sampling units for instance, can be
viewed as pseudo identifier. In a sampling unit, the path followed by surveyor
is fixed, starting and following the same path every year. This variable, despite
the fact that farms are not always surveyed consecutively, was determinant in
farm re-identification, and could be used as window blocking, a proxy of the
geographical sub units inside sampling units.
Sampling frames for national surveys are generally defined by census enumer-
ation areas, or census tract. These units are the smaller administrative units,
standardized in size among urban and rural areas (Aday and Cornelius, 2006).In
Ecuador, geographic units were stratified according to a coarse land-use classi-
fication and then combined with a list frame. Results showed that within the
diversity of rural landscapes, record linkage for the list frame produce the best re-
sults, followed by “pasture” farms, extension with prevailing forest cover and the
amazon region. This could be explained considering farm density across strata,
with fewer observation within sampling unit in the best performing regions.
Conversely, high farm density causes an increase in comparison pairs, reducing
correct matching.

6 Conclusions

Our results help to provide insights on how to improve data integration process
for agricultural establishments: (i) carefully selected numeric farm characteris-
tics can provide enough information for matching, (ii) for agriculture survey,
geographical blocking allows to reduce calculations, and sequential identifiers
and ponderation factors are survey characteristics helping re-identification. De-
spite the fact that this evaluation was performed on an almost constant sam-
pling design, matching results suggest that at most 51% of individuals could
be re-identified thru years, but it is necessary to provide more stable pseudo-
identifiers to increase recall levels. In the context of small-scale farm, the major
type of farm in developing countries, there is a wide variation in characteris-
tics and non-response rate that affect accuracy of matching. Small scale farming
is a key population for future food systems (McIntyre, 2008; Woodhill et al.,
2020) and beyond the scope of agriculture production, it is necessary to build,
at a national scale, a more efficient information system to understand speci-
ficities in small scale farming systems. The scope of these surveys is limited to
the productive components of the farms, relevant in the context of developed
countries, but incomplete for developing economies. In those countries, produc-
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tion is inter-related to the social background, and the multiple incomes of a
farmer’s family are key drivers for production (Mundler, 2014), but this infor-
mation is often lacking (Carletto et al., 2013). This evaluation of record linkage
methods for agricultural survey shows that despite low false positive rates, the
quality of matching experiments led to low recall in matching. For future works,
complementing surveys with socio-economic background could provide enough
information for better record linkage, and, at the same time, complement infor-
mation of social background on each farm to provide insights for local policies
and development entities.
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(2018). Diversification and intensification of agricultural adaptation from global to
local scales, PLoS ONE 13(5).
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935394/

Christen, P. (2012). Data matching: concepts and techniques for record linkage, entity
resolution, and duplicate detection, Springer Science & Business Media.

Contiero, P., Tittarelli, A., Tagliabue, G., Maghini, A., Fabiano, S., Crosignani, P. and
Tessandori, R. (2005). The EpiLink record linkage software, Methods of Information
in Medicine 44(01): 66–71.

Davies, C. (2009). Area frame design for agricultural surveys, United States Depart-
ment of Agriculture, National Agricultural Statistics . . . .

Enamorado, T., Fifield, B. and Imai, K. (2019). Using a probabilistic model to assist
merging of large-scale administrative records, American Political Science Review
113(2): 353–371.

FAO (2015). World Programme for the Census of Agriculture 2020 Volume 1: Pro-
gramme, concepts and definitions, Report, FAO.
URL: http://www.fao.org/3/a-i4913e.pdf



ML Approaches to Farm History Integration 643

Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage, Journal of the
American Statistical Association 64(328): 1183–1210.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm,
icml, Vol. 96, Citeseer, pp. 148–156.

Fu, Z., Boot, H. M., Christen, P. and Zhou, J. (2014). Automatic record linkage
of individuals and households in historical census data, International Journal of
Humanities and Arts Computing 8(2): 204–225. Publisher: Edinburgh University
Press 22 George Square, Edinburgh EH8 9LF UK.

Fu, Z., Christen, P. and Zhou, J. (2014). A graph matching method for historical
census household linkage, Pacific-Asia Conference on Knowledge Discovery and
Data Mining, Springer, pp. 485–496.

Goldstein, H., Harron, K. and Cortina-Borja, M. (2017). A scaling approach to record
linkage, Statistics in medicine 36(16): 2514–2521. Publisher: Wiley Online Library.
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