
Baltic J. Modern Computing, Vol. 10 (2022), No. 4, pp. 710–737
https://doi.org/10.22364/bjmc.2022.10.4.07

Temporal Multi-View Contracts Help Developing
Efficient Test Models

Jishu GUIN1, Jüri VAIN1, Leonidas TSIOPOULOS1, Gert VALDEK2

1 Tallinn University of Technology, Ehitaja tee 5, 12616 Tallinn, Estonia
2 Airobot OÜ, Tallinn, Estonia

Jishu.Guin@taltech.ee, Juri.Vain@taltech.ee,
Leonidas.Tsiopoulos@taltech.ee, gert@airobot.ee

Abstract. In this work we focus on practical aspects of test automation, namely reducing the
model creation effort for model-based testing by exploiting the multi-view contract paradigm. We
take into account explicitly the design view contracts of the system under test and develop test
models by views. For integration of view models two options are studied: incremental merging
and composition by model conjunction. The view models and their compositions are formalized
as Uppaal Timed Automata. The test requirements are expressed as view contracts and formal-
ized in Timed Computation Tree Logic. This allows test model correctness verification against
test requirements. As a novel theoretical contribution we extend the notion of assume/guarantee
contracts by introducing temporal modalities in contracts. As a second contribution, we demon-
strate the feasibility of the approach on an industrial climate control system testing case study.
The improvement of testing process productivity is compared to that of developing a mono-
lithic model empirically without extracting views. Finally, we discuss the usability aspects of the
method in test development and outline the challenges.

Keywords: Model-checking, Model-Based Testing, Contract-based design

1 Introduction

Automation in industry has not attained the level of maturity required for a reliable and
economically feasible integration testing of cyber-physical systems (CPS). The main-
stream methods used in industry for test automation fail to address the complex dynam-
ics caused by the multiple aspects of the system like functionality, timing constraints,
security and safety requirements, etc (Törngren and Sellgren, 2018). This demands a
method powerful enough to address various design aspects and their integration to pro-
duce conclusive result that can assure high standard of end product quality. Current
industrial practice in software assurance still mostly relies on manual testing or limited
forms of automated testing, e.g., running test scripts as part of continuous integration

Temporal Multi-View Contracts Help Developing Efficient Test Models 711

process (Dias-Neto et al., 2017; PractiTest: The 2022 State of Testing Report, n.d.). The
test scenarios are typically designed by test engineers in ad-hoc manner and their quality
depends on the creativity of the test designer, his/her intuition, the quality of require-
ments specifications, etc. The tools used for automated testing often execute randomly
chosen scenarios using scripts based on combinations of input data. These test scenarios
are limited in scope as they fail to achieve thorough test coverage in terms of param-
eters like execution paths, range of inputs, timing properties, security properties, etc.
These parameters have gained importance especially in complex CPSs because of the
dependability requirements of these systems.

Applying model-based automated testing as an alternative to manual testing is a
well-known approach to attain the level of rigour that current CPS development de-
mands. The method we have chosen for verification in this work is Model-Based Test-
ing (MBT) which is one of the approaches for automatically generating test cases from
a model of the system under test (SUT) (Utting et al., n.d.). However, the main obsta-
cle for the widespread industrial adoption of MBT is the effort required to develop the
models. In order to facilitate this process, the methodology demonstrated in this article
employs the Contract-based Design (CBD) principle (Benveniste et al., 2015) to mod-
ularize the requirements specification and provide more tractable and efficient model
driven test suites. Additionally, enhanced performance is attained in the verification
of the properties of the system when running verification tools on smaller component
models step-wise. In this work we use Uppaal TImed Automata (Uppaal TA) as our
modelling language and Timed Computation Tree Logic (TCTL) to specify correct-
ness properties of the models (Behrmann et al., 2004). These properties of test model
comprise properties of completeness relative to view contracts and consistency with the
specification under test.

As a novel theoretical contribution we extend the notion of assume/guarantee con-
tracts by introducing temporal modalities expressible in TCTL, because temporal and
real-time requirements are often the source of misinterpretation and erroneous imple-
mentation and need explicit specification in the contracts (Benveniste et al., 2015). As
a second contribution, we demonstrate the feasibility of the approach on an indus-
trial climate control system testing case study where two alternative model building
approaches, incrementation and conjunction, are applied for composing view models.
When applying these approaches the rationale of their usage is discussed from the per-
spective of application examples. The improvement in productivity of the testing pro-
cess is corroborated by comparing to that attained by empirically developing a mono-
lithic model in a non-modular manner without clear distinction of views. This resulted
in higher complexity of the model due to the loss of clear structure that, in turn, led to
reduced efficiency in the modeling process and its verification. Finally, we discuss the
usability aspects of the method in test development and outline the challenges.

This article is an extended version of our paper from the proceedings of the 15th
International Baltic Conference on Digital Business and Intelligent Systems (DB&IS)
(Guin et al., 2022).

The rest of the article is structured as follows. In Section 2 we describe the func-
tionality and requirements of the climate control system considered as the case study.
In Section 3 we provide the preliminaries for MBT, for the Uppaal TA formalism and

712 Guin et al.

for CBD. In Section 4 we elaborate on our theoretical extension to temporal multi-view
contracts. In Section 5 we present as a reference method the empirical approach to
test model development and in Section 6 we present the modular approach to develop-
ing test models explicitly elaborating on incrementation and conjunction for composing
models. In Section 7 we provide a comparison of the empirical and multi-view contract-
based approaches to developing test models, followed by related works in Section 8. In
Section 9 we conclude the article.

2 Climate control system

The climate control system used to demonstrate multi-view test model construction
technique has been chosen intentionally relatively simple though with multiple non-
trivial interacting aspects. The system has four components. Two of them implement
user interfaces (UI) - Wall Mount Panel and Mobile application. The third unit, Con-
troller, regulates the climate based on the settings provided by the user via the UI and
sensor readings. The fourth component, Server, adds cloud access to the system by pro-
viding supervisor control services for the controller and mobile application. As shown
in Fig. 1 Controller interacts directly with Server and the Wall Mount Panel. The con-
troller hardware consists of sensors and the climate unit to interact with the physical
environment. The user is in the loop via the UI components. Server, which is the System
Under Test (SUT) in our case study, communicates with multiple controllers distributed
over various locations forming a distributed CPS. Server software comprises two main
components. One of them serves the Mobile application over HTTP and the other serves
the Controllers over a proprietary protocol using TCP sockets. The case study focuses
on testing a part of the Server-Controller communication.

Fig. 1: Components of the climate control system (Guin et al., 2022).

The message interchange between the components has a request-response format.
The protocol specification not only covers functional behaviour of the component but
also incorporates fault-tolerance, security conditions and time constraints. Each con-
troller can initiate the session independently of others after a successful TCP connection
is established with the server. This is followed by exchanging five messages to complete

Temporal Multi-View Contracts Help Developing Efficient Test Models 713

the connection procedure. The protocol that defines the test scenario includes messages
that are exchanged between the server and controller. Each message consists of header
and data fields. The values of data fields must correspond to the protocol specification.
The sequence of the message exchange for the connection procedure is: 1) Controller
initiates the session by sending client_hello, 2) Server responds with server_hello, 3)
Controller sends init, 4) Server sends ack_init, 5) Controller responds with ack.

The commands exchanged after the hello message, e.g., init, ack, etc, are encrypted
as a security measure. The encrytion is performed as per the standard Cypher Block
Chaining mode which ensures that the messages are sent in multiple equal sized blocks.
Transmission of an invalid block to the server leads to disconnection.

In addition to the security measures, Server enforces certain fault-tolerance and
timing requirements. After successful execution of the connection procedure the com-
ponents continue the session by exchanging data messages. The key requirements for
the test model development demonstrated in this article are - R1) Server disconnects
from the client if it fails to receive client_hello within first ITO seconds after successful
connection. This is a timing requirement. R2) Server disconnects from the client if the
client_hello message data fields have incorrect values. This is a fault-tolerance require-
ment and does not involve any timing constraints. R3) Server shall wait for the first Mh
bytes from the client for ITO seconds after the TCP connection is established. The client
must be able to send Mh bytes in parts within ITO seconds where Mh is as specified in
the system specification. R4) The connection procedure shall successfully complete if
all aforementioned requirements are satisfied. The next sections provide an account of
the approach used to develop the test models of the described fragment of the SUT.

3 Preliminaries

3.1 Model-Based Testing

Model-based testing requires a formal model of the SUT composed from system re-
quirements specification. Typically, in MBT the SUT is considered as a black-box
which accepts sequences of input data and produces corresponding observable outputs
as per the specification (Utting et al., n.d.). MBT provides the test verdict based on
the conformance relation between the observable I/O behaviour of the real SUT and its
model. The test fails when the behaviours of SUT and the model do not match. The
test inputs are generated using assumptions on SUT environment behaviour that are
grouped according to pre-specified use cases. The mainstream MBT methods focus on
input-output conformance (IOCO) testing. However, since CPS requirements generally
refer also to timing constraints, stronger conformance relation that covers also timing,
namely RTIOCO (Larsen et al., 2004) relation, is applied in this study.

When choosing the formalism for MBT three main criteria should be met: sufficient
expressive power to represent features under test, efficient decidability of the model
correctness properties, and relevance for test generation. Model-checking (Baier and
Katoen, 2008) is generally used to generate test cases while the coverage criteria are
expressed in terms of properties whose validity is verified at first by the model-checker
and the witness traces are used thereafter as symbolic test sequences. The test coverage

714 Guin et al.

properties (cf. (Utting et al., n.d.)) can refer to model structural elements such as states
and transitions, branching conditions or path expressions.

In general, the coverage properties are extracted from system requirements and ex-
pressed in a logic language like TCTL and Linear Temporal Logic. While satisfying the
verified property (expressing test coverage criteria in this context), the model-checking
witness traces are used thereafter as symbolic test sequences. Executable on real SUT
test cases can be extracted from these symbolic traces and instantiated (by means of
test adapters) with explicit test data values to reach the test goals. This method is called
offline test generation because it does not require the SUT to be running at the time
when test sequences are generated by model-checking. Converting symbolic traces to
executable can also be done online by executing the model in random walk mode, but
this presumes online compilation of traces to some test scripting language, e.g., TTCN-
3, or running the model against SUT via test adapters. The latter, employed also in our
approach, requires transforming symbolic test inputs of traces to executable input for-
mat of SUT and the outputs of SUT back to symbolic form for conformance check in
test execution tool.

3.2 Uppaal Timed Automata

The time constraints of the SUT advocate the use of Uppaal TA as the preferred mod-
eling formalism. Uppaal TA (Behrmann et al., 2004) are defined as a closed network
of extended timed automata that are called processes. The processes are combined into
one interacting system by synchronous parallel composition. The nodes of the automata
graph are called locations and directed arcs between locations are called edges. The
state of an automaton consists of its current location and valuation of all variables,
including clocks. Synchronization of processes is defined using constructs called chan-
nels. A channel ch relates a pair of transitions in parallel processes where synchronised
edges are labelled with synchronizing input and output actions, e.g., denoted ch? and
ch!, respectively.

Formally, an Uppaal TA is given as the tuple (L, E, V , CL, Init, Inv, TL), where L
is a finite set of locations (that denote symbolic states), E is the set of edges (that de-
note transitions between symbolic states) defined by E ⊆ L×G(CL,V)×Sync×Act×
L, where G(CL,V) is the conjunction of enabling constraints, Sync is a set of syn-
chronisation actions over channels and Act is a set of assignments with integer and
boolean expressions and clock resets. V denotes the set of variables of boolean and
integer type and arrays of those. CL denotes the set of real-valued clocks (CL ∩ V =
/0). Init ⊆ Act is a set of initializing assignments to variables and clocks. Inv : L→
I(CL,V) maps locations to the set of invariants over clocks CL and variables V . TL :
L→ {ordinary,urgent,committed} maps locations to location types. In urgent loca-
tions the transition denoted by the outgoing edge will be executed immediately when
its guard holds. Committed locations are useful for creating sequences of actions exe-
cuted atomically without time passing.

3.2.1 Uppaal TA Requirement Specification Language. The requirement specifi-
cation language (in short, query language) of Uppaal TA, used to specify properties to

Temporal Multi-View Contracts Help Developing Efficient Test Models 715

be model-checked, is a subset of TCTL (Behrmann et al., 2004). The query language
consists of path formulae and state formulae. State formulae describe individual states,
whereas path formulae quantify over execution paths of the model and can be classified
into reachability, safety and liveness (Behrmann et al., 2004). For example, safety prop-
erties are specified with formula A � ϕ stating that first order state formula ϕ should be
true in all reachable states that is expressed with the pair of modalities A �.

For real-time applications, time bounded reachability is one of the most fundamen-
tal properties. In Uppaal TA, the reachability of a state which satisfies formula ϕ from
model initial state is expressible using TCTL formula pattern A ♦ϕ && Clock 6 T B,
for time bound T B. A special case of time bounded reachability is the reachability of a
state when it is considered relative to some other preceding state of the model. This is
expressed in TCTL using the “leads to” operator as ts T B rs, for preceding state ts and
reachable from this state rs within time bound T B. In this article we use time bounded
reachability to introduce temporality to formulas of assume/guarantee contracts.

3.3 Contract-based Design

The CBD paradigm has proven essential for the development of complex systems with
many parallel and heterogeneous components adhering to various safety and timing
constraints in addition to their basic functionality (Benveniste et al., 2015). Contracts
handle components´ interface properties representing the assumptions on their environ-
ment and the guarantees (regarding output) of the component under these assumptions.
The main advantage of CBD is the explicit identification of responsibilities of the in-
dividual components within a complex system. This facilitates component reuse and
scalability while addressing correctness and system complexity through components´
and their services´ operations. The complexity of CPSs requires separation of design
concerns by introducing multi-view contracts to support compositional design, testing
and verification.

The meta-theory of contracts introduced by Benveniste et al. (Benveniste et al.,
2015) defines interface contracts as abstraction subject to contract algebra. A contract C
can be defined in terms of an environment in which it operates and of a component that
implements it. A contract is said to be consistent if there is a component implementing
it and compatible if there is an environment in which the contract can operate.

For the case study in this paper we are concerned with two main contract op-
erators complementing each other. The first one, the composition operator between
two contracts, denoted by ⊗, is a partial function on contracts involving a compati-
bility criterion. Two contracts C and C′ are compatible if their shared variable types
match and if there exists an environment in which the two contracts properly interact.
Working with Assume/Guarantee (A/G) contracts being pairs (A,G), the composition
C1⊗C2 = (AC1⊗C2 ,GC1⊗C2) of two contracts C1 = (AC1 ,GC1) and C2 = (AC2 ,GC2) is
defined as follows:

GC1⊗C2 = GC1 ∧GC2 , AC1⊗C2 = max
{

A
∣∣∣A∧GC1 ⇒ AC2

A∧GC2 ⇒ AC1
(1)

716 Guin et al.

where “max” refers to the order of predicates by implication and AC1⊗C2 is the weakest
assumption such that the two referred implications hold. The two contracts C1 and C2
are compatible if the assumption computed as above differs from false.

The second contract operator required when merging different view contracts is the
conjunction operator. Conjunction (denoted ∧) of contracts is complementary to com-
position. Full specification of a component can be a conjunction of multiple viewpoints,
each covering a specific aspect (behavioural, timing, safety, etc.) of the intended design
and specified by an individual contract. Similarly to design modularization by view
contracts, the same can be exploited for test model development and its modularization
that will be demonstrated in the rest of the paper.

4 Temporal multi-view contracts

For the work in this paper we consider the contracts to be in saturated form (Benveniste
et al., 2015) where the assumptions imply the guarantee.

Asat = A, Gsat = A⇒ G (2)

However the contracts of form (2) express static view of functionality without distin-
guishing different states of the component in which the assumption or guarantee must
hold. To make these temporal aspects explicit we extend the above to a temporal satu-
rated contract where:

Asat = A, Gsat = A G (3)

When the explicit timing aspects need to be expressed in the contracts then the “leads
to” in (3) is strengthened to time-bounded leads to (T B) and we get formula (4) where
both A and G can be expressed in TCTL.

Atsat = A, Gtsat = A T B G (4)

For contract composition with saturated contracts, the guarantees of each component
are explicitly the assumptions of the other:

GC1⊗C2 = GC1 ∧GC2 , AC1⊗C2 = (GC1 ⇒ AC2)∧ (GC2 ⇒ AC1) (5)

In our approach, since we need the contracts to express also temporal and timing prop-
erties, we extend the saturated contract composition formula (5) to temporal saturated
contract formula (6) by substituting the implication “⇒" with leads to “ ”.

GC1⊗C2 = GC1 ∧GC2 , AC1⊗C2 = (GC1 AC2)∧ (GC2 AC1) (6)

However, this extension does not come for free. Since the distribution law of ∧ and
does not hold in temporal contract, formula (6) is not linearly extendable. Nevertheless,
extension of formula (5) with “leads to” allows compositional verification by checking
the individual conjuncts of (6) independently.

Temporal Multi-View Contracts Help Developing Efficient Test Models 717

Regarding contract conjunction with saturated contracts, assume a contract C ≡
∧i=1,nCi comprising views each of them characterised with its own subcontract Ci ≡
ACi GCi . Proving conjunction ∧i=1,nCi correctness means then proving each conjunct
Ci separately, at first, and thereafter proving non-interfence of individual view contracts
by proving their pairwise conjuncts. Though this increases the number of verification
tasks the complexity of each is kept lower (and more likely feasible for the model-
checker) than proving full C at once. The operators´ applications are exemplified in
Section 6.

5 Empirical approach to model-based test generation

To demonstrate the advantages of multi-view contracts-based test model development
compared with empirical approach we present, at first, empirical in this section and
multi-view approach in Section 6. Fig. 2 shows the Uppaal TA model of the server, the
SUT of our case study described in Section 2. The server model captures only the ses-
sion initialization procedure where different design views manifest themselves clearly.
In addition to the I/O behaviour of SUT, the model also introduces some additional
channels that do not influence SUT I/O behaviour but are needed for implementing the
test execution and communication with test adapters.

The empirically constructed SUT model represents behaviours that cover require-
ments R1-R4 identified in Section 2. Location Cnctd in Fig. 2 is reached when the server
has established TCP connection with the controller. The outgoing edges from location
Cnctd model the four scenarios being subject to requirements. The transition to location
DC occurs when the controller fails to send the client_hello message within ITO sec-
onds after socket connection is established. Location BH is reached if the client_hello
message is received with incorrect values in its fields. The transition to location PH
is taken in case of partial reception of client_hello message. Finally, the transition to
location Hello are taken when the client_hello message is received successfully by the
server. Test case generation step introduces the four corresponding environment models
each to test one of these scenarios.

The four test scenarios based on the requirements R1-R4 are implemented at first
empirically as separate SUT environment models (cf. Fig 2.c - Fig 2.f). These models
are selected to specify the test cases of SUT (Fig 2.a) execution based on the actions of
the controller model as shown in Fig. 2.b. Auxiliary variable hs with value range [1,4]
is used to select the test case to be executed. The edge connecting location Cnctd to
W0 triggers the go signal. The activated test case model identified by the value of hs
initiates the test on reception of go signal. On test completion the controller disconnects
from the server and the test case selection cycle repeats with same or different scenario.
Thus, for running integration tests that capture alternative behaviours in random order
in each cycle a scenario is selected non-deterministically for execution.

Fig. 2.e shows the model for the scenario where the controller fails to send the
client_hello message within the specified time window. The model execution waits for
ITO time units in location W0 after the test is initiated by go signal. The model as shown
in Fig. 2.d executes the test scenario where the controller sends an invalid client_hello
message. The variable bf is assigned a random value between [0x01,0x0F]. The bits

718 Guin et al.

Fig. 2: Empirical model for behaviour, fault-tolerance and timing.

Temporal Multi-View Contracts Help Developing Efficient Test Models 719

in the lower nibble are mapped to four fields of the message. A value of 1 in any field
would generate an invalid client_hello with an incorrect value for that field. Thus, the
test can generate messages with different number of invalid fields.

The third test scenario is shown in Fig. 2.f. The scenario represents the transmission
of client_hello message by the controller to the server in parts till all MH (= Mh) bytes
are sent to the server. The model executes in a loop and randomly chooses the parts of
the data field till all bytes are transmitted. The model also ensures that all bytes must be
transmitted within the time window ITO(=[0, ITO]).

Finally, the model as shown in Fig. 3 depicts the scenario of a correct transmission
of the client_hello message from the client ensuring that i_c_h is triggered before the
time window ITO expires. client_hello message is sent to the server when the signal is
triggered. In this branch of testing the security aspect of the system is modelled. Subse-
quent commands after the controller has received server_hello messages are transmitted
as encrypted blocks. The controller model triggers i_c_blk from location PInit to send
n encrypted blocks sequentially to the server. The transmission stops if a block encryp-
tion error occur. blk_err denotes the block encryption error condition. An error triggers
the disconnection flow in the server model as per requirement.The full model developed
for the work includes few other processes that play supporting role in the test scenario,
e.g., to retry connection to server based on timing requirements for the task.

Fig. 3: Empirical model for security.

6 Test model modularization by multi-view design contracts

6.1 Operations of composing view models

This section elaborates modularization principles that allow one to split the large mono-
lithic test models into smaller and conceptually more homogeneous parts. Namely, we
apply the multi-view approach by formalizing requirements as view contracts and build
the test models by each view individually. This allows compositional verification to

720 Guin et al.

assure that each test model representing a view satisfies the view contract individu-
ally that entails the correctness of the entire conjunction. However, since the feature
interaction of individual view models cannot be always guaranteed, due to potential
non-orthogonality of some views, the non-interference of their conjunctions needs to
be assured by checking their correctness properties conjoining them pair-wise. But due
to the view contracts partiality their implementation models (and their pairs) have gen-
erally smaller size compared with holistic non-modular models.

For better clarification of the modelling process applied in the case study we rep-
resent the multi-view model development scenarios as sublattices of the lattice that re-
flects possible sequences of multi-view model construction operation applications (cf.
Fig. 4). Dotted arrows in the figure represent operations that are possible but not used
in the case study and solid lines represent the operations actually applied in the case
study test model development. Two operations are used, view models incrementing and
conjunction. Both transformations will be clarified as follows.

Fig. 4: Multi-view model building scenario options.

Let a set V = {Bv,FT v,Sv} denote a set of system untimed views where Bv, FT v, Sv
stand for the behavioural, fault-tolerance and security views we consider in this article,
respectively, and let T(V) = {T(Bv),T(FT v),T(Sv)} denote the timed views of V .

Having defined the set V (respectively T(V)), Mv denotes a model of view v ∈ V ,
(MT v denotes a model of timed view T v ∈ T(V)). Then model incrementing operation
Mv ++ v′ means supplementing a model Mv of view v, with elements that model the
view v′ ∈ V ∪T(V), where v′ 6= v and neither v or v ++ v′ include an untimed view v
and its timed counterpart T v at the same time.

Alternatively, the conjunction Mvi && Mv j of view models Mvi and Mv j presumes
that both view models exist before applying the conjunction. Since Mvi and Mv j may
have same submodel Mvx of some view vx involved in earlier operations (possibly there
may be even more than one of such submodels), then duplicates will be removed in

Temporal Multi-View Contracts Help Developing Efficient Test Models 721

the conjunction Mvi && Mv j. Recall that conjunction does not guarantee correct result
by default, therefore non-interference test should be applied after each conjunction op-
eration to show that the original properties of both conjuncts are still preserved in the
conjunction. It is also important to note that both ++ and && operators are distributive
w.r.t. introducing timing conditions to the model, i.e., T(Mv) ++ Tv′ = T(Mv++v′) and
T(Mv) && T(Mv′) = T(Mv&&v′). So mapping of view models to the timing domain
(incrementing with timing respectively) can be applied on view models both before or
after they are composed.

6.2 From multi-view contracts to view model composition operations

Based on the modular modelling process we introduce design view oriented contracts as
an intermediate step to guide the modularization of requirements specification and con-
struction of test models. The derivation of contracts is done in two steps, where firstly,
a set of requirements is derived from the textual specification and, secondly, a set of
view contracts are formulated based on those requirements. This process is manual and
does not guarantee a strict bijective relation between the requirements and contracts
however it provides a traceable relation between their groups. To further facilitate the
presentation of the multi-view modelling approach we proceed by first presenting the
incremental multi-view model development before we elaborate on the development of
the orthogonal design view´s conjunction for this case study and show how it is com-
posed with the incremental views. The views exemplified in the rest of the paper are the
behavioural, timing and fault-tolerance views, while the security view is orthogonal
to the other views. Note that any view or composition of untimed views can be incre-
mented to timed view without restrictions. In this case study we have incremented all
other views with timing view for exposing explicitly the system timing requirements.
It is also important to distinguish the timing constraints that are extracted from design
requirements from those that are needed to assure the model correctness according to
Uppaal TA semantics, e.g., for ensuring time progress in the model. In the following, the
timing constraints of requirements are explicitly stated in the contracts and transfered
to timed view models.

6.3 Behavioural view

The behavioural view highlights the functional requirements extracted from the system
specification. In order to encode the requirements in the form of contracts, we define
the symbols that are used to denote certain concepts as described in Table 1.

Tables 3 and 4 show the behavioural view contracts for Controller and Server, re-
spectively. Contract Bc

1 in Table 3 asserts that if Controller, identified by id, is not con-
nected to Server, ¬ Acon(id), where Acon(id) represents the state of the connection with
controller(id) in the list of connections Acon, then it moves to a state attempting to con-
nect to Server, Scl(id)= connecting. Bc

1 corresponds to requirement Rb
1 in Table 2, stating

“When controller is not connected, it tries to connect”. Contract Bs
1 in Table 4 denotes

the counter part of this transaction on Server side. It states that given the Controller is
connecting to Server, Scl(id)= connecting, a transition is made by Server from a connec-
tionless state, ¬ Acon(id), to a connected state, Acon(id) ∧ Scon(id)= connected, where

722 Guin et al.

Table 1: Symbols

Symbol Description
id Identifier of a controller

Scl(id) State of the controller with identifier id
ITO Connection timeout for the hello message
Mh Number of bytes in hello message

Scon(id) State of the dedicated connection on the server side to the controller(id)
data_error(id) Value denoting occurence of error in the data exchanged with controller(id)

Acon Set of active connections between server and controllers
I f Time alloted for fast connection retries
Is Short periodicity for faster connection attempts
Il Long periodicity for connection attempts
i Number of the current block of encrypted data
n Total number of blocks in a command

Ssc(id) State of the controller security module with identifier id
Sss(id) State of the server side security module for the connection with controller(id)

block_error(i) Value denoting occurence of error in the encryption of the block number i

Scon(id) represents the state of the dedicated connection from server to controller(id).
The other behavioural contracts formulated in the tables capture the remaining func-
tional requirements as listed in Table 2, regarding exchange of the hello message and
init command. In both Tables 3 and 4 the mapping to the different behavioural require-
ments from Table 2 is indicated in the first column. The timing and fault-tolerance as-
pects of the specification are not considered in this view. However, the contracts reflect
the causality aspect of the system which is expressed by the temporal operator “leads
to” (). In behavioural view contracts ideal lossless communication is assumed. There-
fore, send and receive predicates of the same message are counted logically identical in
this view.

Table 2: Behavioural requirements

Ref. Description
Rb

1 When controller is not connected, it tries to connect
Rb

2 When controller is connected, it sends clear text client_hello message
Rb

3 After receiving a valid client_hello, server responds with server_hello message
Rb

4 After receiving server_hello from server client will send encrypted INIT command
Rb

5 After receiving INIT command, server sends encrypted ACK_INIT command
Rb

6 After receiving ACK_INIT client sends ACK

Temporal Multi-View Contracts Help Developing Efficient Test Models 723

Table 3: Controller behavioural view contracts

R. Id C. Id Assume Guarantee
Rb

1 Bc
1 ¬ Acon(id) ¬ Acon(id) Scl(id)= connecting

Rb
2 Bc

2 Scon(id)= connected Scl(id)= connected Scl(id)= chello_sent
Rb

4 Bc
3 Scon(id)= shello_sent Scl(id)= shello_recv Scl(id)= init_sent

Rb
6 Bc

4 Scon(id)= ackinit_sent Scl(id)= ackinit_recv Scl(id)= ack_sent

Table 4: Server behavioural view contracts

R. Id C. Id Assume Guarantee
(Rb

1) Bs
1 Scl(id)= connecting ¬ Acon(id) Acon(id) ∧ Scon(id)= connected

Rb
3 Bs

2 Scl(id)= chello_sent Scon(id)= chello_recv Scon(id)= shello_sent
Rb

5 Bs
3 Scl(id)= init_sent Scon(id)= init_recv Scon(id)= ackinit_sent

(Rb
6) Bs

4 Scl(id)= ack_sent Scon(id)= ack_recv Scon(id)= cmd_ready

6.3.1 Behavioural view model. The behavioural view model is presented in Fig 5.
The controller automaton is on the left of the figure while the server automaton is in
the middle. On the right, the automaton that models the connection protocol is de-
picted. In this view, the server just responds positively to the controller connection re-
quests, i.e., connection loss and data corruption are abstracted away from this view.
The states of the corresponding view contracts are encoded as locations in the automata
and communication actions between the components are represented with channels.
State names follow a shorthanded notation in the model. For example, controller state
“Scl(id)= chello_sent” maps to location name “CHSent” in the controller model.

Fig. 5: The behavioural view model of the climate control system (Guin et al., 2022).

6.3.2 Behavioural view model verification. In order to verify the model against
the specified contracts, we map the contracts to TCTL queries and apply the UPPAAL
model-checker. This process is exemplified next with a corresponding pair of contracts

724 Guin et al.

for the controller and the server. Contract Bc
2 is mapped to TCTL query:

(Con.Cnctd and C.Cnctd) −−> C.CHSent (7)

stating that when the connection is established, this leads to the state where the con-
troller has sent the client_hello message. Contract Bs

2 is mapped to query:

(C.CHSent and Con.CHRecv) −−> Con.SHSent (8)

stating that the server will send the hello message after receiving the hello message
from the controller. Both these queries are satisfied, as well as all other contract queries
for this view. Notice the saturated temporal contract composition where the guarantee
of contract Bc

2 is the assumption of contract Bs
2:

GBc
2⊗Bs

2
= ...GBc

2
∧GBs

2
...,ABc

2⊗Bs
2
= ...(GBc

2
 ABs

2
)∧ (GBs

2
 ABc

3
)... (9)

Thus, contract composition compatibility and consistency verification requires model-
checking the satisfiability of GBc

2⊗Bs
2

and ABc
2⊗Bs

2
by the model where both SUT and

environment corresponding view models are composed. Recall that contract assumption
strengthens the left hand side of the leads to. This does not violate the contract semantics
under given modelling assumption - lossless communication.

6.4 Fault-tolerance view

The climate control system requirements also address scenarios of faulty communi-
cation between Controller and Server. The connection procedure specification as de-
scribed in Section 2 refers to faults related to network link and data fields. Like in be-
havioural view, the contracts for fault-tolerance view are extracted from requirements.
The main difference is that server component’s environment is set of controllers that
communicate with server via non-ideal media, i.e., the effect of lossy links and data
corruption should be explicitly reflected in the assumptions of the server contracts. The
fault-tolerance requirements are shown in Table 5. Requirement R f

1 specifies that Con-
troller must retry to connect in the event of disconnection. The event may occur due to
network failure or transmission of invalid data. R f

1 in effect is the same as requirement
Rb

1 from the point of view of Controller, i.e., when the controller is disconnected it tries
to connect. Since contract Bc

1 maps to requirement Rb
1 for Controller and therefore R f

1 ,
the fault-tolerance view of the component remains unchanged. R f

2 is relevant for Server
and augments Server’s behavioural view with information pertinent to fault-tolerance.

Server’s fault-tolerance view contracts are shown in Table 6. Contracts Fs
1 and Fs

2
concern the succesful and unsuccesful connection of Server and Controller, respec-
tively, depending if there is connection error or not. Contracts Fs

3 and Fs
4 concern the

succesful and unsuccesful sending and receiving of the hello message, respectively, de-
pending if there is data error or not.

Temporal Multi-View Contracts Help Developing Efficient Test Models 725

Table 5: Fault-tolerance requirements

Ref. Description
R f

1 Controller retries to connect if disconnected
R f

2 Server disconnects if data received is invalid

Table 6: Server fault-tolerance view contracts

R. Id C. Id Assume Guarantee
(Rb

1) Fs
1 Scl(id)= connecting ¬ Acon(id) Acon(id)
∧ ¬conn_error(id) ∧ Scon(id)= connected

(R f
1) Fs

2 Scl(id)= connecting ¬ Acon(id)
∧ conn_error(id)

Rb
3 Fs

3 Scl(id)= chello_sent Scon(id)= chello_recv
∧ ¬data_error(id) Scon(id)= shello_sent

R f
2 Fs

4 Scl(id)= chello_sent Scon(id)= chello_recv
∧ data_error(id) ¬ Acon(id)

6.4.1 Fault-tolerance view model. The fault-tolerance view model is shown in Fig 6.
In addition to the behavioural view model there is an environment component (middle
up) which affects, first, how the server (middle low) responds to the controller in case
of connection error and, secondly, how the later stages of the connection proceed re-
garding data error. The controller (left) and connection (right) models are enriched with
transitions to handle these fault cases.

Fig. 6: The fault-tolerance view model of the climate control system (Guin et al., 2022).

6.4.2 Fault-tolerance view model verification. Alike the behavioural view, the fault-
tolerance view contract verification is exemplified next with one pair of corresponding

726 Guin et al.

contracts for the interacting components. Contract Fs
4 is mapped to TCTL query:

(C.CHSent and data_error and Con.CHRecv) −−> !cnctd (10)

stating that when the controller has sent the hello message and the server has received it
with data error, this leads to the server disconnecting. Contract Bc

1 is mapped to query:

!cnctd −−> C.Cnctng (11)

stating that when the controller is not connected, it tries to connect.

6.5 Timing view

The timing view of the climate control system addresses scenarios influenced by timing
requirements. Timing requirements concern frequency at which the controller retries
connections with the server, resetting the clock, and waiting times. The timing view
requirements are shown in Table 7. Rt

1 specifies that the controller must retry to connect
every Is minutes for the first I f minutes after disconnection or start up and Rt

2 comple-
ments the requirement by stating that connection is retried every Il minutes thereafter.
Requirement Rt

3 is about the timer reset after the first data transfer and requirement Rt
4

specifies the maximum allowed waiting time for Server to receive the full hello mes-
sage. The requirements are mapped to Controller contracts T c

1 to T c
4 in Table 8 and

Server contracts T s
1 to T s

4 in Table 9. For example, contract T c
4 states that when the con-

nection is established, this leads to Controller sending the hello message in less than
ITO seconds.

Table 7: Timing requirements

Ref. Description
Rt

1 The connection is retried every Is minutes for I f minutes
Rt

2 The connection is retried every Il minutes after I f minutes
Rt

3 The timer is reset on first data transfer over a successful connection
Rt

4 Server waits for ITO seconds to receive Mh bytes of client_hello message

6.5.1 Timing view model. The timing view model is shown in Fig 7. Since tim-
ing is not orthogonal with other views it can be merged with both behavioural and
fault-tolerance views separately. Since fault-tolerance view is already built upon the
behavioural view we superimpose the timing straight on the fault-tolerance view. The
timing additions can be seen on the controller (left) and connection (right) model. The
rest of the model remains the same. The connection might time out before the controller

Temporal Multi-View Contracts Help Developing Efficient Test Models 727

Table 8: Controller Timing view contracts

R. Id C. Id Assume Guarantee
Rt

1,Rt
2 T c

1 conn_error(id) Scl(id)= connecting Scl(id)= wait
Rt

1 T c
2 Cg ≤ I f Scl(id)= wait =Is Scl(id)= connecting

Rt
2 T c

3 Cg > I f Scl(id)= wait =Il Scl(id)= connecting
Rb

2,(Rt
4) T c

4 Scon(id)= connected Scl(id)= connected <ITO Scl(id)= chello_sent

Table 9: Server Timing view contracts

R. Id C. Id Assume Guarantee
(Rb

1) T s
1 Scl(id)= connecting∧ ¬conn_error(id) ¬ Acon(id) Acon(id)

∧Ch = 0 ∧ Scon(id)= connected
Rt

4 T s
2 Scl(id)= connected∧Ch ≥ ITO ¬ Acon(id)

Rb
3 T s

3 Scl(id)= chello_sent Scon(id)= chello_recv
∧ ¬data_error(id)∧Ch < ITO Scon(id)= shello_sent

R f
2 ,Rt

3 T s
4 Scl(id)= chello_sent Scon(id)= chello_recv

∧ data_error(id) (¬ Acon(id) ∧Cg = 0)
∧Ch < ITO

has sent the client_hello message. This is modelled with the upper transitions of both
the controller and the connection automaton. In case connection error occurs initially,
there is new dedicated part in the controller model involving locations “Wait”, “W1”
and “W2” handling explicitly the timing requirements for the connection retrials. The
rest of the timing requirements are about the time bounded completion of the connec-
tion protocol modelled with the clock invariant and clock guards in the lower transitions
of the controller and connection automata.

6.5.2 Timing view model verification. The timing view contract verification is ex-
emplified next with one pair of related contracts for the interacting components. Con-
troller contract T c

4 is mapped to query:

(Con.Cnctd and C.Cnctd and ch == 0) −−> (C.CHSent and ch < ITO) (12)

stating that when the connection has been established this leads to the controller sending
the hello message in less than ITO seconds. Server contract T s

3 maps to query:

(C.CHSent and !data_error and ch < ITO and Con.CHRecv) −−> Con.SHSent (13)

stating that when the controller has sent the hello message without data error in less
than ITO seconds, this leads to the hello message sent by the server. All contracts for
this view are satisfied according to the UPPAAL verifier report.

728 Guin et al.

Fig. 7: The timing view model of the climate control system (Guin et al., 2022).

6.6 Consistency of incremental multi-view contracts

While in general the multi-view contracts consistency has to be verified taking the con-
junction of view contracts (recall that due to scalability constraints in this approach it
is done pairwise), in the incremental approach it suffices verifying only the contract of
the last increment that is the strongest, and that entails all the contracts of all preceding
increments. Let us show this with an instance of a view contract for the server that was
specified for the behavioural view, then was refined to the fault-tolerance view and fi-
nally supplemented with timing constraints. Behavioural view contract Bs

2 is conjoined
with fault-tolerance view contract Fs

3 and with timing view contract T s
3 :

C.CHSent ∧ Con.CHRecv Con.SHSent

∧C.CHSent ∧ Con.CHRecv ∧ ¬data_error Con.SHSent

∧C.CHSent ∧ Con.CHRecv ∧¬data_error ∧ ch < ITO Con.SHSent

(14)

The consistency of the rest of the incremental multi-view contracts was verified in the
same manner.

6.7 Security view

The messages following the hello messages are encrypted in the system. These en-
crypted messages are sent as equal sized blocks as required by the standard Cypher
Block Chaining mode of encryption. The size of the block N is defined by the specifi-
cation and number of blocks n is determined by the size of the message.

In this work the security view is demonstrated on the init messages which follows
the hello message. Security view model is created as a separate model orthogonal to rest
of the system and then composed with the timing view model which is the final incre-
ment including the fault-tolerance increment of the bahavioural view. The requirements
for the security view are shown in Table 10. Requirement Rs

1 states that commands are

Temporal Multi-View Contracts Help Developing Efficient Test Models 729

Table 10: Security requirements

Ref. Description
Rs

1 Commands are sent and received in encrypted blocks of size N
Rs

2 Block encryption errors lead to immediate disconnection

sent and received in encrypted blocks of size N and requirement Rs
2 states that an error

in the block creation and encryption leads to disconnection.
The Controller and Server view contracts are shown in Tables 11 and 12, respec-

tively. Contracts Sc
1 to Sc

3 for Controller and contracts Ss
1 to Ss

3 address requirement Rs
1

handling the first, intermediate and final block sending. Contract Ss
4 addresses require-

ment Rs
2 for immediate disconnection if block error occurs.

Table 11: Controller security view contracts

R.Id C. Id Assume Guarantee
Rs

1 Sc
1 Sss(id)= Ready Ssc(id)= Ready Ssc(id)= Sent(1)

Rs
1 Sc

2 Sss(id)= Recv(i) i < n Ssc(id)= Sent(i+1)
Rs

1 Sc
3 Sss(id)= Ready Ssc(id)= Sent(n) Ssc(id)= Ready

Table 12: Server security view contracts

R. Id C. Id Assume Guarantee
Rs

1 Ss
1 Ssc(id)= Sent(i) ∧ ¬block_error(i) Sss(id)= Recv(i-1) Sss(id)= Recv(i)

∧ i < n ∧ i > 1
Rs

1 Ss
2 Ssc(id)= Sent(1) ∧ ¬ block_error(1) Sss(id)= Ready Sss(id)= Recv(1)

Rs
1 Ss

3 Ssc(id)= Sent(n) ∧ ¬block_error(n) Sss(id)= Recv(n-1) Sss(id)= Ready
Rs

2 Ss
4 Ssc(id)= Sent(i) ∧ block_error(i) ¬Acon(id)

6.7.1 Security view model. The security view model is created as a separate model
because it is orthogonal to the rest of the system and it is shown in Fig 8. The process
starts when Controller (middle) receives the command from the environment (left) on
channel cmd. Then Controller starts sending one by one n encrypted blocks to Server
(right) and each time Server acknowledges the receiving of blocks. If there is block en-
cryption error the process is terminated (shown in lower parts of Controller and Server
automatons) and the connection is closed in turn.

730 Guin et al.

Fig. 8: The security view model of the climate control system.

6.7.2 Security view model verification. Let us exemplify the security view contract
verification with a pair of corrsponding contracts for Controller and Server. Controller
contract SC

1 maps to query:

S.Ready and C.Ready −−> (C.Sent and i == 1) (15)

stating that when both Controller and Server are ready to start the process, this leads to
Controller sending the first block. Server contract SS

2 maps to query:

C.Sent and i == 1 and !blk_err −−> S.Recv and S.cb == 1 (16)

stating that when Controller has sent the first block and there is no block error, this leads
to Server receiving it (Server’s current block variable cb is equal to 1).

6.8 Composition of incremental and orthogonal views

In this work the orthogonal security view model is created as a separate model to the
rest of the system views which can then be composed with the other system models
constructed incrementally in different configurations depending on testing goal and sce-
narios.

For this case study the security view model is applied on the init message which
follows the hello message. The composed model of the security view with all the inte-
grated incremental views developed previously is shown in Fig 9. In the upper part of
the figure the Controller and the Server timing view model is shown and in the lower
part of the figure the security view model is shown.

In order to compose the models, relevant updates are required to sunchronise them.
These updates are seen in the lower right part of each timing view automaton and in the
environment automaton of the security view in the lower left part of the figure. Split-
ing of existing transitions and addition of sunchronisation channels scmd (for security
command), sdone (for security done) is applied. Also addition of transitions with syn-
chronisation channels serr (for security error), dc (for disconnect) is needed to close the
connection if encryption block error occurs. The rest of the models, i.e., their original
functionality is unchanged.

6.8.1 Verification of the composition consistency. In order to verify the consistency
of the composed orthogonal and incremental view models, all the contracts from each

Temporal Multi-View Contracts Help Developing Efficient Test Models 731

Fig. 9: The composed timing view and security view model of the system.

view composed need to be checked by the UPPAAL verifier. If each of these contracts
is satisfied on composition model it means that their conjunction is satisfied as well and
there is no interference. For the composed timing and security view model all except
two of the individual view contracts are satisfied. The updates to the unsatisfied view
contract queries are as follows.

Query for contract SC
1 as exemplified in the security view above needs to be updated

to query:

S.Ready and C.Ready −−> (C.Sent and i == 1) or conn_error or data_error

or blk_err
(17)

in order to consider also the options that can interfere the correct sending of encrypted
blocks from Controller to Server.

Query for contract BC
3 is updated to query:

(Con.SHSent and C.SHRecv) −−> C.ISent or blk_err (18)

because the init message from Controller to Server cannot be sent if there is block
encryption error. This is reflected in the second disjunct of the leads to right hand side.

7 Comparison of empirical and multi-view contract-based testing

In this section, the usability aspects of the test model development method proposed in
Section 6 are compared with those of empirical approach (Section 5). Here we discuss

732 Guin et al.

how the criteria used for comparison are defined/understood, at first, and, second the
characteristics of used criteria are evaluated based on the experience gathered by prac-
tical application of both test model development methods on the climate control system
(cf. Section 2). The following criteria are used for comparison: test model construction
effort, test model correctness verification effort, test deployment effort, test execution
effort, and root cause analysis effort. The comparison results presented in this section
are also in line with the identified benefits of the CBD in general when coping with
complex systems (Benveniste et al., 2015).

The empirical model and the views models formalize the same set of requirements.
In the empirical method the requirements are taken as is from the text specification
and modelled without intermediate steps and without following any systematic model
building discipline.. For example, the security requirements enforce two conditions that
state that the messages will be transmitted in encrypted blocks and the server shall
disconnect when a block is invalid in terms of content and structure. These requirements
are modelled and verified in both empirical and view models using model-checking. As
a general observation we concluded that the contracts in the view models produce better
modular structure and de-coupled form in comparison with the empirical model. This
has clear manifestation regarding the security requirements that are tighly coupled with
the rest of the behaviour in the empirical model.

7.1 Test model construction effort

The advantages of the contract-based approach expose most clearly in model develop-
ment effort. Although the empirical MBT approach proves to be useful (defects in de-
sign were found), incorporating large fragments of system behaviour in one monolithic
test model increases the effort needed for model construction, comprehension and vali-
dation that may easily lead to the loss of model readability and each next development
step requires exponentially more effort. In terms of test model construction effort, the
CBD approach incorporates an intermediate structuring step to facilitate the creation of
models by strictly following the view contracts that systematically guide selecting and
representing model behaviours. In case of the incremental multi-view test model con-
struction, the model development starts with a simple model that is enriched thereafter
incrementally with design view specific information. Thus, the modelling is closely
driven by the requirements via contracts unlike the relatively loose textual specification
of the first approach.

In case of the orthogonal multi-view test model construction the view models can
be developed similarly to incremental ones based on view contracts but there is a cru-
cial difference, i.e., there is no direct need to superimpose the view models on top of
some other already existing view model. Parallel model development has its produc-
tivity advantage. In addition, it enables more scalable correctness verification. As for
integrating orthogonal view models there is freedom to choose by the test developer
when the models will be conjoined in the process. However, the large size of conjoined
models could complicate verification and test case definition. Therefore, one could pre-
fer having more of feasible size view models instead of developing few of intractable
size and keeping the conjoining operation to very last step.

Temporal Multi-View Contracts Help Developing Efficient Test Models 733

7.2 Test model correctness verification effort

The test model correctness verification effort is determined by two factors: if only lim-
ited amount of information is added in the view model then this requires verifying only
the effects introduced by the model increments. On the other hand, since newly intro-
duced features are extending existing ones, the correctness queries of new features are
strengthened each time, meaning satisfiability of later query implies also satisfiability
of earlier ones, as exemplified in subsection 6.6. But rerunning all verification condi-
tions on all increments may hit the complexity barrier before the complete model is
composed from increments.

In contrast to limitations of incremental model verification, in case the model in-
cludes orthogonal views, like the security view in our case study, the correctness check-
ing can be performed by applying model-checking on the conjunction of view models
in a pairwise manner for better scalability (Aichernig et al., 2016).

Experience with climate control system case study confirmed that the CBD model
verification effort was in average 93% and 98% more efficient (regarding model-checking
time and memory consumed respectively) for the incremental timing view conjoined
with the orthogonal security view compared to the empirical model development. In
comparison the model-checking queries in both cases corresponded to the same system
requirements. Moreover, the model verification effort was in average 99% more effi-
cient for the behavioural view conjoined with the orthogonal security view compared
to the empirical model verification time and memory consumed.

7.3 Test deployment effort

Test deployment effort considers primarily the development of test adapter to assist run-
ning the model againt the SUT. The simplicity of the model in the contract-based ap-
proach has benefits not only regarding test model development but also in reducing the
size of test I/O-alphabet to be implemented in test case specific adapters. Our experience
has shown that the multi-view contract-driven model development and related adapter
building improves the overall testing efficiency by shortening the adapter development
time almost exponentially in the size of symbolic test I/O-alphabet. Reduction of the in-
put/output alphabets comes from the fact that view models that define the test cases have
considerably smaller sets of input/output symbols than full monolithic test models. As
for the testing tool set up adjustment to test cases, the tool DTRON (Anier et al., 2017)
used in this approach requires only minor changes in time scaling parameter settings to
adjust the test execution to physical latency conditions.

7.4 Test execution effort

In terms of the test execution effort, the traces generated by checking the Uppaal model
properties show that the view model properties generate 23% shorter traces in average
than the empirical model for the same set of coverage requirements. This has promising
implication on the regression test efficiency and testing effort for large set of tests. Espe-
cially, the incremental building of test cases has shown added value for bug traceability
because the incrementing resultant model incorporates also the tests of the earlier tested

734 Guin et al.

views. Beside the validity checking of view implementation correctness, this allows de-
tecting if any of earlier tested features gets corrupted due to newly introduced view
features (feature interaction testing). Such feature interaction bugs are usually most dif-
ficult to find. Similar effect has been exposed in running orthogonal view models as test
cases and their conjunction for detecting view interference effects. Again, these tests
have shown considerable effect regarding test length compared to that of tests of the
same bug detection power ran on monolithic model.

Considering the direct practical gain in our case study, both testing approaches show
qualitatively equal bug detection capability. Both approaches detected that the climate
control server fails to comply with requirements R1-R3 (stated in Section 2). The results
show: (i) As opposed to R1, the server remains connected even if client_hello message
is received later than ITO seconds after TCP connection is established. (ii) The server
fails to disconnect after receiving a client_hello message with an incorrect value in one
of its field in contrary to R2. (iii) In a scenario where the client_hello is sent in parts,
the server disconnects the controller before receiving the complete message as opposed
to R3. Though the error detection capabilities of applied techniques have shown to be
equivalent on the case study, the view contract-based test cases address the violated
requirements more clearly. This enlightens the back tracing to what requirements and
how they have been violated based on the views, and thus, improving the Root cause
analysis effort. Error debugging in the code becomes even more straightforward when
the code is implemented by strictly following the same design view contracts like the
test model.

8 Related work

The integration of assume/guarantee-based reasoning with automata-based formalisms
has aimed at efficient verification through compositional reasoning. Compared to some
influential works in the field (David, Larsen, Legay, Nyman and Wasowski, 2010;
David, Larsen, Nyman, Legay and Wasowski, 2010; Larsen et al., 2006), we use an
existing and widely accepted automata-based formalism for verification of real-time
systems without conceptually extending it. Rather, we elaborate on how the contract
meta-theory (Benveniste et al., 2015) corresponds to Uppaal TA via the mapping of
system requirements to informal A/G contract patterns and then to TCTL properties
that formalize these patterns as temporal saturated contracts. As a new contribution,
we also elaborate on temporal multi-view contracts and show how our design multi-
view approach covers the two main operators, composition and conjunction. Further,
we adopt a more natural contract-based encoding of assumptions and guarantees, while
the above works encode the assumptions and guarantees on the models directly without
introducing view contracts as an intermediate model construction step.

The idea of A/G-based testing of software was proposed in (Blundell et al., 2005)
where testing was performed on code generated from LTS models. The main difference
compared to our work is that we use more expressive Uppaal TA formalism for repre-
senting SUT and verifying it against multi-view contracts. More recently, Boudhiba et
al. applied MBT with contracts on program call level (Boudhiba et al., 2015). Instead,
our approach can be applied at any system development phase provided the test inter-

Temporal Multi-View Contracts Help Developing Efficient Test Models 735

face is well-defined and accessible to test adapters. A MBT approach similar to ours is
presented in (Aichernig et al., 2016). The authors proposed the requirement interfaces
formalism to represent different views of synchronous data-flow systems. Similar to our
approach, they apply an incremental test generation procedure targeting a single system
view at a time. Main differences compared to our approach are: 1) Direct encoding
of contract assumptions and guarantees on the model, like in (David, Larsen, Legay,
Nyman and Wasowski, 2010; David, Larsen, Nyman, Legay and Wasowski, 2010); 2)
usage of different formalisms targeting different system domains while we apply only
Uppaal TA relying on its relevant expressive power regarding CPS; and 3) the use of
single modelling formalism instead of multiple domain specific languages allows us to
limit to a single tool set, namely UPPAAL, that provides support to almost all required
test development steps.

This article is an extended version of our paper from the proceedings of the 15th
International Baltic Conference on Digital Business and Intelligent Systems (DB&IS)
(Guin et al., 2022). In this extended version we provided a more thorough elaboration
of the modelling process with explicit description of the multi-view model develop-
ment scenarios, namely the incremental and orthogonal model construction operation
applications. We then extended the case study by developing the test model of an or-
thogonal design view and integrating it with the previously developed test model with
incremental model views. Finally, we updated accordingly the comparison of empirical
and multi-view contract-based approach to developing test models.

9 Conclusion

The work compares two approaches used in system verification by MBT. In the em-
pirical approach the model is created directly from unstructured requirements specifi-
cation. The alternative method proposed in this paper exploits design view contracts
as an intermediate step from requirements to models. The merits of the contract-based
approach are evident as it makes the model creation and its verification process more
structured and reduces the debugging effort due to the modular and incremental nature
and provides explicit correctness conditions of view contracts that guide test model con-
struction by intuitive and manageable with testing tools steps. The usability of proposed
approach has been validated on an industrial climate control system testing case study
where Uppaal tool family has been used for test model construction, model correctness
verification, test deployment with adapters and test execution. The result of the case
study shows the feasibility of this approach in practically all test development phases.
One challenge however is the creation of contracts themselves from the weakly orga-
nized requirements specifications. As a future work a solution can be explored to reduce
this effort by using structured language analysis for requirements extraction and speci-
fication patterns (Autili et al., 2015) for formulating the contract from requirements.

Acknowledgement

This work has been supported by EXCITE (2014-2020.4.01.15-0018) grant.

736 Guin et al.

References

Aichernig, B. K., Hörmaier, K., Lorber, F. L., Nickovic, D., Tiran, S. (2016). Require, test, and
trace it, International journal on software tools for technology transfer .

Anier, A., Vain, J., Tsiopoulos, L. (2017). DTRON: a tool for distributed model-based testing of
time critical applications, Proceedings of the Estonian Academy of Sciences 66, 75–88.

Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A. (2015). Aligning qualitative, real-
time, and probabilistic property specification patterns using a structured english grammar,
IEEE Transactions on Software Engineering 41(7), 620–638.

Baier, C., Katoen, J.-P. (2008). Principles of Model Checking, The MIT Press.
Behrmann, G., David, A., Larsen, K. G. (2004). A turorial on uppaal, in Bernardo, M., Corradini,

F. (eds), Proceedings of Formal Methods for the Design of Real-Time Systems, SFM-RT, Vol.
3185 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 200–236.

Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinkemeier, P.,
Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K. G. (2015). Contracts
for Systems Design: Theory, Research Report RR-8759, Inria Rennes Bretagne Atlantique ;
INRIA.
https://hal.inria.fr/hal-01178467

Blundell, C., Giannakopoulou, D., Pǎsǎreanu, C. (2005). Assume-guarantee testing, Proceed-
ings of the 2005 Conference on Specification and Verification of Component-Based Systems,
SAVCBS ’05, Association for Computing Machinery, New York, NY, USA, pp. 1–5.

Boudhiba, I., Gaston, C., Gall, P. L., Prévosto, V. (2015). Model-based testing from input output
symbolic transition systems enriched by program calls and contracts, in El-Fakih, K., Barlas,
G. (eds), Proceedings of the 27th IFIP WG 6.1 International Conference on Testing Software
and Systems - Volume 9447, ICTSS 2015, Springer-Verlag, Berlin, Heidelberg, pp. 35–51.

David, A., Larsen, K. G., Legay, A., Nyman, U., Wasowski, A. (2010). ECDAR: An environment
for compositional design and analysis of real time systems, in Bouajjani, A., Chin, W.-N.
(eds), Proceedings of Automated Technology for Verification and Analysis, ATVA, Vol. 6252
of LNCS, Springer, Berlin, Heidelberg, pp. 365–370.

David, A., Larsen, K. G., Nyman, U., Legay, A., Wasowski, A. (2010). Timed i/o automata: a
complete specification theory for real-time systems, Proceedings of the 13th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC ’10, Association for
Computing Machinery, New York, NY, USA, pp. 91–100.

Dias-Neto, A. C., Matalonga, S., Solari, M., Robiolo, G., Travassos, G. H. (2017). Toward the
characterization of software testing practices in south america: looking at brazil and uruguay,
Software Quality Journal 25(4), 1145–1183.

Guin, J., Vain, J., Tsiopoulos, L., Valdek, G. (2022). Temporal multi-view contracts for efficient
test models, in Ivanovic, M., Kirikova, M., Niedrite, L. (eds), Digital Business and Intelligent
Systems, Springer International Publishing, Cham, pp. 136–151.

Larsen, K. G., Mikucionis, M., Nielsen, B. (2004). Online testing of real-time systems using
uppaal, in Grabowski, J., Nielsen, B. (eds), Formal Approaches to Software Testing, FATES,
Vol. 3395 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg.

Larsen, K. G., Nyman, U., Wasowski, A. (2006). An interface theory for input/output automata,
BRICS Report Series 13(11).
https://tidsskrift.dk/brics/article/view/21916

PractiTest: The 2022 State of Testing Report (n.d.). https://www.practitest.com/
state-of-testing/.

Törngren, M., Sellgren, U. (2018). Complexity challenges in development of cyber-physical sys-
tems, in Lohstroh, M., Derler, P., Sirjani, M. (eds), Principles of Modeling: Essays Dedicated
to Edward A. Lee on the Occasion of His 60th Birthday, Springer International Publishing,
Cham, pp. 478–503.

https://hal.inria.fr/hal-01178467
https://tidsskrift.dk/brics/article/view/21916
https://www.practitest.com/state-of-testing/
https://www.practitest.com/state-of-testing/

Temporal Multi-View Contracts Help Developing Efficient Test Models 737

Utting, M., Pretschner, A., Legeard, B. (n.d.). A taxonomy of model-based testing approaches,
Software Testing, Verification and Reliability 22(5), 297–312.

Received November 6, 2022 , accepted November 29, 2022

	Temporal Multi-View Contracts Help Developing Efficient Test Models
	Introduction
	Climate control system
	Preliminaries
	Model-Based Testing
	Uppaal Timed Automata
	Uppaal TA Requirement Specification Language.

	Contract-based Design

	Temporal multi-view contracts
	Empirical approach to model-based test generation
	Test model modularization by multi-view design contracts
	Operations of composing view models
	From multi-view contracts to view model composition operations
	Behavioural view
	Behavioural view model.
	Behavioural view model verification.

	Fault-tolerance view
	Fault-tolerance view model.
	Fault-tolerance view model verification.

	Timing view
	Timing view model.
	Timing view model verification.

	Consistency of incremental multi-view contracts
	Security view
	Security view model.
	Security view model verification.

	Composition of incremental and orthogonal views
	Verification of the composition consistency.

	Comparison of empirical and multi-view contract-based testing
	Test model construction effort
	Test model correctness verification effort
	Test deployment effort
	Test execution effort

	Related work
	Conclusion

