
Baltic J. Modern Computing, Vol. 11 (2023), No. 1, 15-33

https://doi.org/10.22364/bjmc.2023.11.1.02

Towards Topological Functioning Model as a

Source Model for Event-Driven Solutions

Sai Teja DEHARAM
1
, Gundars ALKSNIS

2

1 Self-employed, Nellore, Andhra Pradesh, India
2 Riga Technical University, Riga, Latvia

tejasai6601@gmail.com, gundars.alksnis@rtu.lv

Abstract. Activities an organization performs can be viewed as a sequence of events and

responses to them. Event-driven solutions have emerged for event management to help capture

events and respond by triggering other events. Nevertheless, designing solutions which conforms

with a problem domain is not trivial task. Therefore, holistic understanding of the problem domain

is essential. To understand the problem domain, we use formalism of Topological Functioning

Model which analyses an organization as a system from computation independent viewpoint and

helps to represent holistically both structural and functional aspects of an organization. By

applying case study analysis research method, the article discusses how the use of Topological

Functioning Model can help to derive an event-driven solution which conforms with the problem

domain of an organization.

Keywords: Event-Driven Solution, Event-Driven Architecture, Problem Domain Analysis,

Topological Functioning Model.

1. Introduction

Organizational and enterprise systems can be viewed from an event-driven and a real-

time perspective. An information technology system that supports the business processes

and automation of an organization can be perceived as a sequence of events and

responses to them. An event is a change of state of an object in the system. When an

event occurs, it triggers other components or events in the system. As modern IT systems

are increasingly using real-time analysis, the notations, and methods for producing

effective event-driven solutions are in demand (Stopford, 2018; Tiempo Development,

2020).

Although numerous methods were developed for software design using various

modeling languages, the Unified Modeling Language (UML) is considered as one of

finest to design, document, visualize and specify artifacts of a software intensive system

(Platt and Thompson, 2015). However, UML lacks in representing a problem domain

from a computation independent viewpoint (Osis and Donins, 2017). This was one of the

reasons for the development of Topological UML – an extension of UML with the

formalism of Topological Functioning Model. The Topological Functioning Model

(TFM) helps to analyze the problem domain (e.g., an organization, an enterprise, a

system in general) holistically from the computation independent viewpoint. It specifies

https://doi.org/10.22364/bjmc.2023.11.1.02

16 Deharam and Alksnis

the functionality of a system in the form of topological space, where functional features

of the system are shown in the form of a directed graph with cause-and-effect relations

among these functional features (Osis and Asnina, 2010). The goal of the present

research is to determine the scope and the extent of event-driven solution generation

from TFM. By applying case study analysis research method, the article discusses how

the knowledge about system’s functioning represented with TFM can help to derive an

event-driven solution which conforms with the problem domain of an organization

(enterprise) thus fostering its digital transformation.

This article is an extended version of the (Deharam and Alksnis, 2022) with different

case study, extended related works and validation. It is organized as follows. Section 2

recaps the principles of TFM. Section 3 highlights the principles of event-driven

solutions. Section 4 introduces a case study in a library problem domain and discusses

proposed mappings between elements of TFM and elements of event-driven solution.

Section 5 discusses the validation results while Section 6 discusses related works of

TFM transformations to and from other models. Finally, Section 7 concludes the article

summarizing main contributions.

2. Topological functioning model

Understanding of the problem domain and developing conforming solution is a primary

goal for any software intensive system developer (Osis and Donins, 2017). However,

often accurate analysis of the problem domain is not performed carefully enough during

software development. The goal of the analysis is to describe the solution complying

with to the problem domain, while the design specified, for example, by UML models

show how the artifacts of the solution should be implemented. As identified in (Osis and

Donins, 2017) and (Osis and Asnina, 2010), UML diagrams are not tailored for

analyzing the problem domain from computation independent viewpoint (i.e., the system

As-Is). To overcome this, a profile to the UML was introduced in which Topological

Functioning Model was integrated and it was called Topological UML (Osis and Donins,

2017).

Originally, TFM was introduced in 1969 by Jānis Osis with the goal to represent

system’s functionality in a holistic manner by emphasizing topological (connectedness,

closure, neighborhood, and continuous mapping) and functional (cause-and-effect

relations, cycle structure, inputs, and outputs) characteristics of the system. Over the

years, due to its fundamental principles, TFM also has been applied to complex systems

diagnostics, mechatronics and embedded systems, model-driven software engineering

and problem domain modeling. Few sources where the research in those directions is

discussed are (Osis and Donins, 2017; Osis and Asnina, 2010; Osis, 2003). In the rest of

this section, we recap the principles behind TFM formalism.

TFM of a system formally is defined in the form of a topological space (Osis and

Donins, 2017, Section 4.3.1.1):

 G = (X, Θ) (1)

In the equation (1), X represents a finite set of functional features Xid, whereas Θ

represents a topology that satisfies topological characteristics between functional

features of a problem domain (e.g., an enterprise, an organization, a system in general).

A functional feature represents system’s functional characteristic, e.g., a process, a

 Towards Topological Functioning Model 17

function, a task, an action, or an activity. Visually, TFM of the system can be

represented as a graph where nodes represent the functional features, while arcs

correspond to the cause-and-effect relations among them.

The topological space Z represents functioning of the system which is split into a set

N to represent the system’s inner functional features and a set M to represent external

functional features that the system interacts with, or which affect system’s environment

(Osis and Donins, 2017, Section 4.3.1.1):

 Z = N M (2)

To construct the topological space Z, the information is obtained from various

documents, interviews, use cases, ontology and other sources that are related to the

problem domain. The separation of the system from the topological space Z is done by

performing a closure operation which is done on a set of inner functional features N

(Osis and Donins, 2017, Section 4.3.1.1):

 X = [N] = ⋃ 𝑋𝜌
𝑛
𝜌=1 (3)

In the equation (3), X is the adherence point of set N and capacity of X is the number of

adherence points of N. An adherence point of the set N is a point, each neighborhood of

which includes at least one point from the set N.

Every functional feature Xid is defined as a tuple containing the necessary elements

needed during construction of TFM (Osis and Donins, 2017, Section 4.3.1.2):

 Xid = <Id, A, Op, R, O, Cl, St, PreCond, PostCond, E, Es, S> (4)

where:

 Id – Unique identifier

 A – Action of the object O

 Op – Operation that provides functionality defined by action A

 R – Result of action A

 O – Object that receives the result or that is used in action A

 Cl – Class who represents the object O in static viewpoint of the system

 St – State of the object O after the action A

 PreCond – Set of preconditions

 PostCond – Set of postconditions

 E – Entity responsible for performing action A

 Es – Indicates if execution of action A can be automated by software

 S – Subordination (i.e., inner or external functional feature)

However, it is not required that all these fields are used in a particular case.

3. Event-driven solutions

An event is considered as a change of state of an object or in a system. In the

surrounding world everything can be related to events and their consequences (Stopford,

2018; Tiempo Development, 2020). To gain competitive value enterprises are

transforming their IT systems to event-driven and real-time. We are all surrounded by

18 Deharam and Alksnis

events. Everything we do or plan is connected to events around us. For example, in an

elevator one presses destination floor number, and the elevator takes to the selected

floor. Pressing the desired floor number is an event, and the rest happens without

intervention or knowledge about functioning of the elevator. When an event occurs, it

brings changes or triggers other components or events in the system to react accordingly.

Events are things/processes/steps that trigger a change in the system (Solace PubSub+,

2022).

Events can be processed in several styles; however, the question is how to understand

exactly which processing style should be used. Event-driven architecture systems are

often a combination of more than one processing styles, so that the solution performs

accordingly to the requirements and restrictions set by the problem domain (i.e., it

should conform to it). Event processing styles are following (Stopford, 2018; Tiempo

Development, 2020):

Simple event processing: A simple event occurs when a significant change occurs in

the system. Simple event processing starts the action further down the application stream

which makes it ideal for real-time workflow. This processing style is cost effective and

reduces latency.

Complex event processing: Complex event processing uses more advanced patterns

and techniques to identify and to evaluate large volumes of data occurring from different

sources and to respond accordingly. This processing style is used in security systems.

Stream event processing: Stream event processing helps in making in-time

decisions. When an event occurs, it brings a significant change in the system, this

processing style processes a continuous stream of events and performs fast computations

against high-speed streaming data.

Event-driven architecture is among the popular and a go-to architectural approaches

used by software developers. From real-time analysis, business process monitoring and

online shopping etc., the event-driven architecture has been successfully used in

effective IT solutions. (Narkhede, 2018) As it is a software architecture, event-driven

architecture has mainly four different flow layers with each of them having respective

flow components (Tiempo Development, 2020):

Event channels: Event channels can be compared to a bridge which connects one

point to the other. An event channel sends events in the required format to the event

producers, event consumers and event subscribers.

Event processing: Events can be processed in several styles. Event processing

actions are carried out by evaluating the event against the processing rules. Actions

might be storing the event, generating an event.

Event-driven downstream activity: Any event will cause a sequence of

downstream activities which are responses to the event. The occurred event can be a

push notification by the event processing engines, pull notifications by subscribers, etc.

Event-driven architecture flow components are (Tiempo Development, 2020):

1 Event notification: In this flow, events are only meant to notify that some state

change has occurred. In this flow, senders usually have no intention of expecting

responses from the consumers. There will be clear boundaries between senders and

consumers.

2 Event carried state transfer: In this flow, events eventually carry a whole state

instead of just notifying about the state change.

3 Event sourcing: All events happening in the system will be recorded in this flow.

Responding to the events accordingly, the state of the system can be re-designed. In this

flow, one can recreate historic states.

 Towards Topological Functioning Model 19

4 Event producer: As the name suggests, it is the original source of an event. It can

be anything for example a business process, electronic object, etc.

5 Event consumer: Event consumers are the subscribers who consume or who will

subscribe to the events.

6 Event queue: When an event is sent to a queue, a flow of events begins, and this

queue is used to send the events further to an event mediator.

7 Event handler: As the name suggests, all the occurrence of the events will be

handled by event handler.

8 Event store: A database which contains all the events stored for the future use if

necessary

9 Publish/subscribe messaging: Publish/subscribe messaging technique uses a topic

between client and server interaction as an intermediator instead of a queue (see Fig. 1).

It is flexible messaging pattern which allows system components to communicate or

interact asynchronously. For example, take an online shopping website where a

consumer from their online shopping mobile application orders any product. Here the

consumer’s information is captured by the service and the order placement event is

published. Once this event is published, product manufacturer and delivery partner

subscribe to the event and interacts with each other until the product is delivered. All the

services are linked by an event broker that delivers events from publishers to subscribers

and vice versa.

Figure 1. Example of a publish/subscribe message pattern in the event-driven architecture.

In this technique consumers have access to multiple subscriptions to topics and can

access the information from their subscribed topics. Subscribers who want to subscribe

to the information are classified by the producer. This is a good way of finding out the

information being loosely coupled. It is loosely coupled because one can have a

subscription once the application is developed or later without changing the course of

action or things happening from the producer's side.

We have selected the Solace PubSub+ Platform to demonstrate possible event-driven

solution design, how events flow within the solution, how they are visualized, what

events need to be published, what events should be subscribed to and how events are

managed (Solace PubSub+, 2022). This platform can be used to manage event streams

and technologies to design and visualize event-driven solutions. An event mesh which

supports their respective cloud then is built. After mapping events to applications, one

can analyze the IT architecture, the events which are most used, and which are rarely

used, and model them. One can import and export application domain files that define

Publisher 1 Publisher 3

Event Broker

Publish event 1 Publish event 3

Event 1

Publisher 2

Publish event 2

Event 1 Event 3 Event 2 Event 3

Subscriber Subscriber SubscriberSubscriber

20 Deharam and Alksnis

business areas of the system into the platform. The JSON format is used for writing

payload schema along with the source file and can be understood and easily written by

software developer or non-technical user.

4. Case study

We have already applied the case study analysis research method to analyze the

transformation from TFM to event-driven solution in the context of state traffic

department (Deharam and Alksnis, 2022). Here we are using the case study analysis

research method in the context of a library problem domain which has been used as

example domain in several related research, e.g. (Osis et al., 2008; Nazaruka and

Osis, 2018).

4.1. The As-Is problem domain description of a library

Let’s assume the following current (As-Is) situation description:

“When an unregistered person arrives at the library, the librarian creates a

new reader account and a reader card. The librarian gives out the card to the

reader. When the reader completes the request for a book, they give it to the

librarian. If the book copy is available in a book fund, the librarian checks out

the requested book from a book fund to the reader. When the reader returns the

book copy, the librarian takes it back and returns the book to the book fund.

They impose the fine if the term of the loan is exceeded or the book copy is

damaged. When the reader pays the fine, the librarian closes the fine. If the book

copy is badly damaged, the librarian completes the statement of utilization, and

sends the book copy to the utilizer.”

According to this description and functional features adopted from (Osis et al.,

2008), Fig. 2 shows corresponding As-Is Topological Functioning Model.

4.2. The To-Be problem domain description of a library

As we have seen in the As-Is description, how takes place the procedure starting from

the registration of the person until completing the statement of utilization, keeping this

procedure in mind, the To-Be description is designed in such a way that most of the

process activities is done digitally. So that it is more comfortable free for a reader. In the

As-Is case, we see that a person must visit a library in-person to get registered, to get a

reader account and to submit a book request form. In the To-Be case, one can register,

get a reader account created and submit a book request form online:

“A person visiting a library website is asked if they are already registered or a

new reader. If the person is already a registered reader, they can use their login

credentials and enter the library website. If the person is not registered, to

become a library reader they are asked to register. On a click, the person opens

the registration page, where they fill in their details in the registration form,

which also includes a checkbox option that one should check to receive

notifications like updates about new arrivals, featured author talks, information

about due dates and payments.

 Towards Topological Functioning Model 21

Figure 2. The As-Is TFM of the library problem domain. Nodes represent functional features

while arrows represent cause-and-effect relations. The loop consisting of bold arrows represents

the main functioning cycle of the system, while dashed arrows relate input or output functional

features (greyed) with the functional features of the system.

Once the unregistered person submits the form, the person becomes

registered, the library system automatically creates a reader account and a reader

ID (scannable QR code) available for downloading and future use. Once the

reader account is activated, the reader can browse for the books available in the

book fund. On the library website readers also see different panes like new

arrivals, featured author talks, and information about book fairs. The reader can

also filter their favorite categories (science, detective comics, action &

adventure, etc.). The reader also can select and check the number of copies left

for an interested book. If no book copy is available, there is an option where the

reader can choose to get an alert notification once the book copy becomes

available. If the reader agrees to it, they will be put in the book request queue for

the requested book.

If the book is available and the reader chooses to loan it, they fill in the book

request form available online. Before filling in the book request form, the library

system checks reader account for pending fines imposed on the reader. If there is

any, the reader is not allowed to loan the book copy until they clear their dues.

Once the reader submits the book request form, they are automatically redirected

to a page where they can schedule a pick-up time. This must be done in two days

from submitting the book request form. Once the reader arrives at the library, the

librarian asks for the reader ID. As the librarian scans the reader ID, all the

details of the requests are shown, and the librarian gives the book copy from the

book fund to the reader. The librarian then updates the status in the library

1 Arriving

of a

person

3 Creating

a reader

card

2 Creating a

reader

account

4 Giving out

the reader

card

5 Checking a

person status

6 Completing a

request for a

book

7 Giving the

request for a

book

8 Checking out the

book copy from a

book fund

9 Checking out the

book copy to a

reader

10 Giving out a

book copy to a

reader

11 Getting

a book

copy

13 Taking

back a book

copy

14 Checking the loan

term of a book copy

15 Evaluating the

condition of a book

copy

16

Imposing a

fine

17 Returning the

book copy to a book

fund

19 Closing

a fine

20 Completing a

statement of

utilization

22 Utilizing

the book

copy

18 Paying

a fine

12 Returning

a book copy

21 Sending the

book copy to

utilizer

22 Deharam and Alksnis

system that the book copy has been checked out and the term for the book loan is

also mentioned. For every reader, five days before the term, the library system

sends an automatic notification about the due date and at the same time an

automatic notification also is sent to the immediate reader in the book request

queue whether they are still interested in that book copy. There is a retention

time of 24 hours to decide. If the next interested reader is still interested, that

reader is asked to fill in the book request form and is given a list of dates to pick-

up the requested book copy.

Once the reader returns the book copy to the librarian, they check for the due

date of the book loan and evaluates the condition of the book. If there is any

damage or torn pages, the librarian calculates and imposes the fine to the reader.

When the reader pays the fine, the librarian closes the fine. If the book copy is

badly damaged, the librarian updates the statement of utilization, and sends the

book copy to the utilizer.”

Based on this description, the Table 1 lists identified functional features while Fig. 3

shows the corresponding To-Be Topological Functioning Model.

Table 1. The functional features of the To-Be Library System.

Id
Functional

feature
Action Result Object Precondition Executor Sub.*

1 Opening a

library
website

Open Person Person I

2 Clicking on
the

registration

page

Click Registration
page

Registration
page

The person is
not registered

Person I

3 Filling in the
registration

form

Fill in Registration
form

Registration The person is
not registered

Person I

4 Checking the
notification

checkbox

Checked Notifications Registration
form

The person
has not

checked
during

registration

Person I

5 Creating

reader
account

Create Reader

account

Reader

account

Registered

successfully

Library

System

I

6 Creating
reader ID for

the reader

Create Reader ID Reader ID The reader
account is

created

Library
System

I

7 Activating

reader

account

Activate Reader

account

Reader

account

Registration is

successful and

received a

reader ID

Library

System

I

8 Logging in

with reader
credentials

Login Reader

account

Reader

account

The reader

account is
activated

Reader I

 Towards Topological Functioning Model 23

Id
Functional

feature
Action Result Object Precondition Executor Sub.*

9 Browsing
categories

Browse Categories
of books

Book copy The reader
logs in to their

account

Reader I

10 Selecting
interested

book copy

Select Book copy Book copy The reader is
interested in a

book copy

Reader I

11 Checking for
the book

copy

availability

Check Book Book
request

form

The reader is
interested in

loaning the

book copy

Reader I

12 Choosing

alert

notification

Choose Notification Alert

Notification

The book

copy is not

available

Book

Request

Queue

I

13 Checking
reader

account for
pending fines

Check Pending fine Pending
fine

Before filling
in book

request form

Library
System

I

14 Filling in the
book request

form

Fill in Book Book
request

form

The book is
available

Reader I

15 Scheduling a

pick-up time

Schedule Book copy Book copy The reader

submitted
book request

form

Reader I

16 Arriving at

the library

Arrive Reader Reader The date and

time to pick
up the book

copy are

booked

Reader E

17 Asking for

the reader ID

Ask Reader ID Reader ID The reader

arrives at the
selected time

Librarian I

18 Taking
selected book

copy from the
book fund

Take Book copy Book copy The reader ID
is checked

Librarian I

19 Checking out
the book

copy to the
reader

Check Book copy Book copy The book
copy is taken

Librarian I

20 Updating
status in the

library

system

Update Status Status The book
copy is given

to the reader

Librarian I

21 Sending

notification

to the reader

about due
date

Notify Due date Book loan The end date

to book loan is

in five days

Librarian I

24 Deharam and Alksnis

Id
Functional

feature
Action Result Object Precondition Executor Sub.*

22 Sending

notification
to the next

interested

reader in the
book request

queue

Notify Reader

account

Reader

account

Another

reader has
requested for

the same book

Book

Request
Queue

I

23 Returning the

book copy

Return Book Copy Book copy The book’s

loan term is
exceeded

Reader E

24 Taking back
the book

copy

Take Book copy Book copy After reader
returned book

copy

Librarian I

25 Evaluating

the condition
of the book

copy

Evaluate Book copy Book copy The reader

returned the
book copy

Librarian I

26 Calculating

fine

Calculate Fine Fine The book is

lost, there is
any damage or

torn pages, or

exceeded the
due date of the

book loan

Librarian I

27 Imposing fine
to the reader

Impose Fine Fine The fine is
calculated

Librarian I

28 Paying fine Pay Fine Fine The fine is

imposed

Reader E

29 Closing the

fine

Close Fine Fine The fine is

paid

Library

System

I

30 Returning the
book copy to

the book fund

Return Book copy Book copy The fine is
paid

Librarian I

31 Updating the
statement of
utilization in

the library

system

Update Statement Statement The fine is
paid

Librarian I

32 Sending the

book copy to
the utilizer

Send Book Book The statement

of use is
completed

Librarian I

 Towards Topological Functioning Model 25

Figure 3. The To-Be Topological Functioning Model of the Library System.

Nodes represent functional features while arrows represent cause-and-effect relations.

1 Opening a

library website

3 Filling in the

registration form

2 Clicking on

the registration page

4 Checking the

notif ication checkbox

5 Creating

reader account

6 Creating a reader

ID for the reader

7 Activating

reader account

8 Logging in with the

reader credentials

9 Browsing

categories

10 Selecting

interested book copy

11 Checking for the

book copy availability

14 Filling in the

book request form

15 Scheduling a

pick-up time

16 Arriving at

the library

17 Asking for the

reader ID

18 Taking selected book

copy from book fund

20 Updating status in

the library system

21 Sending notif ication to

the reader about due date

23 Returning the

book copy

25 Evaluating condition of

the book copy

26 Calculating

f ine

27 Imposing the

f ine to the reader

28 Paying

f ine

31 Updating the statement of the

utilization in the library system

32 Sending the book

copy to utilizer

19 Checking out the

book copy to the reader

30 Returning the book

copy to the book fund

12 Choosing alert

notif ication

22 Sending notif ication to the

next interested reader in queue

29 Closing

the f ine

24 Taking back

the book copy

13 Checking reader’s

account for pending

f ines

26 Deharam and Alksnis

Functional features in TFM specify functionality that exists in the problem domain, but

functional requirements of software specify the functionality that must be implemented

in the solution. (Nazaruka and Osis, 2018; Osis and Donins, 2017, Section 6.5)

The functional requirements which specify the functionality that should be

implemented in the library’s IT solution are:

FR1 – The system should perform registration of a new reader.

FR2 – The system should create a new reader ID for the registered reader.

FR3 – The system should handle all the requests by the reader while browsing

website.

FR4 – The system should send alert notifications, notifications about book loan

terms, information about new arrivals and other featured events to the reader.

FR5 – The system should allow to check out the book copy.

FR6 – The system should allow to impose fine to the reader and handle payments.

FR7 – The system should allow to check reader account for pending fines.

For each functional requirement Fig. 4 shows the mappings to corresponding

functional features of the problem domain. Mappings are described with arrow

predicates and enable validation of the completeness of functional requirements and their

conformance with the constructed TFM.

Figure 4. The mappings from functional requirements to functional features.

Functional requirements FR1-FR4 and FR6 have one to many mappings,

while FR5 and FR7 have one to one mapping.

4.3. Transformation from topological functioning model to event-driven

solution

Table 2 summarizes proposed mappings as introduced in (Deharam and Alksnis, 2022)

between elements in TFM and elements in event-driven solution. A functional feature in

TFM forms an event in an event-driven solution. It is because the event, which is

19

FR5

13

FR7

28

FR6

26

27

29

31

[1-1]

22

FR4

21

[1-1]

FR1

1

2 3

4

[1-1]

65

FR2

[1-1]

11

FR3

9

10 12

15

14

[1-1]

 Towards Topological Functioning Model 27

referenced by the application, triggers components and events in other applications. The

functional feature also triggers related functional features in TFM. The name of the

functional feature forms the name of the event. The event description is the most

important element as it represents the main reason (the cause) that provides necessary

condition to trigger the event. The event description is formed by a physical or business

functional feature specification in TFM.

Table 2. Mappings between elements of event-driven solution and TFM

 (Deharam and Alksnis, 2022).

TFM element Event-driven solution element

Functional feature Event

Name of the functional feature Event name

A physical or business functional feature specification Event description

An executor of the functional feature Application

A cause functional feature in cause-and-effect relation where

functional features with different executors take part.

Publish event (producer)

An effect functional feature in cause-and-effect relation where
functional features with different executors take part.

Subscribe event (consumer)

An object or a result of a functional feature Schema

Cause-and-effect relation between functional features Event flow between applications

A topological space where functional features are logically
joined

Logical event mesh

An indicator to which functional feature an object belongs Event topic address

Other mappings can be substantiated with the following arguments. An application in the

event-driven solution comes from an executor in functional feature. The executor in

TFM performs (executes) the necessary action on the object. The application in the

event-driven solution contains required events which trigger the required action to bring

the necessary changes in the system. The cause-and-effect relation in TFM forms publish

and subscribe event where one application subscribes or publishes events.

Event flow forms a relationship between the functional features. Logical event mesh

is an event mesh where all the events are joined logically and are associated in an event-

driven solution. A topological space where all the functional features in TFM are

logically joined corresponds to the logical event mesh in the event-driven solution.

Event schema comes from an object of a functional feature performing the action.

Event schema is a specification inside the object which flows internally to trigger the

event. The event schema can be written in plain text, JSON, or binary. For example, after

selecting a book copy, the reader checks for the availability and if the interested book

copy is available, to loan the book copy, the reader needs to fill in a book request form.

The corresponding functional features of this scenario are shown in Fig. 5 while the

payload JSON schema with objects and properties involving for the book request form is

listed in Fig. 6.

Figure 5. The functional features of TFM involved in the book request schema.

10 Selecting

interested

book copy

11 Checking for

the book copy

availability

14 Filling in

the book

request form

13 Checking reader

account for pending

fines

8 Logging in

with the reader

credentials

28 Deharam and Alksnis

{

 "definitions": {},

 "$schema": "http://json-schema.org/draft-07/schema#",

 "$id": "http://example.com/root.json",

 "type": "object",

 "title": "The Book Request Schema",

 "properties": {

 "Login to reader account": {

 "$id": "#/properties/Book request",

 "type": "string",

 "title": "The Book Request Schema",

 "default": "",

 "examples": [

 "xyz"

],

 "pattern": "User name & Password"

 },

 "Select book copy": {

 "$id": "#/properties/Book request",

 "type": "string",

 "title": "The Book Request Schema",

 "default": "",

 "examples": [

 "xyz"

],

 "pattern": "Think & Grow Rich"

 },

 "Check for available book copies": {

 "$id": "#/properties/Book request",

 "type": "integer",

 "title": "The Book Request Schema",

 "default": "",

 "examples": [

 "xyz”

],

 “pattern”: “4”

 },

 "pattern": "Think & Grow Rich"

 },

 "Check reader account for pending fine": {

 "$id": "#/properties/Book request",

 "type": "boolean",

 "title": "The Book Request Schema",

 "default": "",

 "examples": [

 "x”

],

 “pattern”: “No”

 },

 Towards Topological Functioning Model 29

 "Fill in book request form": {

 "$id": "#/properties/Reader",

 "type": "string",

 "title": "The Book Request Schema",

 "default": "",

 "examples": [

 "Reader info"

],

 "pattern": "ID & Book copy"

 }

 }

}

Figure 6. The payload schema related to the book request form.

5. Validation of transformations

After applying the transformations to TFM shown in Fig. 3, the resulting event-driven

solution with applications, events, and event flows is shown in Fig. 7. In the Solace

PubSub+ Platform larger circled nodes represent applications, while smaller green nodes

represent events. Event path shows the direction of event flows from one application to

another and are shown as directed arcs.

Figure 7. Event-driven solution with applications, events,

and their interactions for the library system.

Fig. 8 shows the fragment of TFM how the reader, after logging in to their account,

selects an interested book copy. After selecting an interested book copy, the reader

1. Library website
opened

Library System

Person Registration

2. Registration page clicked

3. Registration form filled

8. Logged in using reader
credentials

6. Reader ID created

5. Reader account created

Reader

15. Pick up time scheduled

11. Book copy availability is checked

10. Selected an interested book copy

Book Request Queue

12. Alert notification chosen
22. Notified next
interested reader

Librarian

14. Book request form filled

25. Condition of the
book is evaluated

17. Asked for reader ID

28. Fine Paid

27. Fine imposed to
The reader

23. Book copy returned
by reader

19. Checked out book
copy to reader

21. Notified reader about due date

13. Reader’s account for pending
fines is checked

29. Fine closed

9. Browsing different categories

30 Deharam and Alksnis

checks for the availability of book copy in the book fund. Once it is available, reader fills

in the book request form available online.

In Fig. 8 the mapping A traces to the executor of the functional feature, the mapping

B refers to the event in the event-driven solution tracing to the functional feature.

Finally, the mapping C represents the flow of the events in the event-driven solution

tracing to the cause-and-effect relation between two functional features.

Figure 8. Mappings from the TFM elements to event-driven solution elements.

In the functional features the executors are shown in bold.

As we chose the Solace PubSub+ Platform to demonstrate event-driven solution design,

the Fig. 9 shows a fragment of events in the library system event-driven solution as seen

in the PubSub+. In Fig. 9, the name column refers to the name of the event and shared

columns refers if the event is shared across other applications in the application domain.

Figure 9. Fragment of list of events in the library system application domain.

10 Selecting interested
book copy
(Reader)

11 Checking for the
book copy availability
(Reader)

Reader
Account

An interested book
copy selected Library

System

Book copy
availability checked

Book request
form filled

Reader’s account for
pending fines checked

14 Filling in the
book request form
(Reader)

A

B C

13 Checking reader
account for pending fines
(Library System)

Fragment of Topological
Functioning Model

Fragment of event-driven
solution

 Towards Topological Functioning Model 31

Fig. 10 shows corresponding payload schemas used in the library system’s event-driven

solution. In Fig. 10, the name column refers to the name of the schema, schema type is

JSON Schema, and the content type is JSON.

Fig. 11 shows the details of the book request form where the reader, after selecting an

interested book copy, fills in the book request form (see Fig. 6).

Figure 10. Fragment of list of schemas in the library system application domain.

Figure 11. Details of the book request form schema in the library system application domain.

6. Related works

There are various approaches proposed in the context of event modelling and event-

driven IT systems (e.g., Stopford, 2018) However, the goal of our research and thus the

scope is to contribute to this knowledge area from a new perspective by investigating

suitability of TFM in obtaining event-driven solution from the problem domain.

Therefore, the related work to consider must involve the use of TFM as a source or

target model for mapping, traceability or transformation into/from other abstractions or

models. Due to a formal nature of TFM and ability to holistically represent a system both

32 Deharam and Alksnis

from topological and functional aspect, there has been several research performed which

involve the use of TFM as a source or destination to other models. There are two related

works to mention matching these criteria.

In (Donins et al., 2012) the UML state transitions are analyzed by the functional

characteristics of TFM and mappings from TFM elements to the UML state machine

elements are proposed. In their approach the state of an object used in functional feature

is mapped to the UML state element while the cause-and-effect relation is mapped to the

transition of the state machine. Action of the functional feature is mapped to the event,

entry or exit action of the state machine. Pre- and postconditions are mapped to guard

conditions. Finally, logical relationship between functional features is mapped to fork

and join element of the state machine. Later this has been integrated in Topological

UML (Osis and Donins, 2017).

In (Nazaruka et al., 2016) the authors verify the functional completeness of a BPMN

model. To do this, the BPMN model is transformed to TFM for further analysis. An

example is taken and mappings from BPMN elements to TFM elements are introduced,

and the completeness of the BPMN model is discussed. The mapping of BPMN

elements to other formal notations is not new concept and has been mapped to such

formal notations like Petri nets, Prolog, Communicating sequential processes, etc. It is

concluded that those mappings were limited to deadlocks, thread correctness and data

flows. By using TFM, the system’s functionality and completeness can be determined

holistically. They explain how the functional feature is executed after a trigger. If the

trigger is successful, then its termination leads to a successful trigger of the effect

functional feature. In contrast to BPMN, TFM contains just a few but fundamental

modeling constructs (Nazaruka et. al., 2016). BPMN elements are elicited and TFM

elements are identified, and mappings between TFM elements and BPMN elements are

listed. For example, tasks, events, and data come from a functional feature tuple. All

elements which have corresponding notion in TFM are mapped, and those which don’t

have them are ignored. For example, elements like text annotation and conversation link

doesn’t have corresponding mapping element in TFM. Results of transformation are

observed for verification whether the elements follow TFM properties as it is checked

for the presence of topological and functional properties. TFM is considered valid if it

has no isolated vertices and has a functioning cycle in addition to inputs and outputs,

continuous mapping, and all cause-and-effect relations are necessary and sufficient to

trigger subsequent functional features (Osis and Asnina, 2010). The functioning cycle

must contain functional aspects with respect to problem domain. All transformations

were done manually, and functioning cycle identification were considered the hardest

part as it was not evident how to identify and when to use output and input events.

7. Conclusions

As many organizations are considering event-driven solutions to support their

digitalization, the article provided contribution with and approach that facilitates

solution’s conformance with the problem domain.

TFM was chosen as it can represent the functioning of the problem domain (e.g., an

enterprise as a system) holistically by emphasizing computation independent viewpoint.

TFM allows to capture and emphasize cause-and-effect relations between functional

characteristics of the problem domain.

 Towards Topological Functioning Model 33

To propose an event-driven solution, the case study analysis research method was

conducted for a library problem domain. Functional features were identified, and cause-

and-effect relations were identified. TFM was constructed and the event-driven solution

was designed in the Solace PubSub+ Platform.

Proposed mappings between TFM elements and event-driven solution elements

demonstrate that they can contribute to obtaining an event-driven solution which

conforms with the problem domain. The scope for future research includes development

of automated transformations of proposed mappings and to investigate the possibilities

of this approach in iterative development processes.

References

Deharam, S.T., Alksnis, G. (2022). Using Topological Functioning Model to Support Event-

Driven Solutions, in Ivanovic et al. (Eds.), Proceedings of the 15th International Baltic

Conference, Baltic DB&IS 2022, CCIS 1598, Springer.

Doniņš, U., Osis, J., Nazaruka, E., Jansone, A. (2012). Using Functional Characteristics to

Analyze State Changes of Objects, in Databases and Information Systems, pp. 94-106.

Narkhede, N. (2018). SpringOne Platform. Event Driven Systems, VMware.

Nazaruka, E., Ovchinnikova, V., Alksnis, G., Sukovskis, U. (2016). Verification of BPMN Model

Functional Completeness by using the Topological Functioning Model, in Proceedings of the

11th International Conference on Evaluation of Novel Software Approaches to Software

Engineering, SciTePress.

Nazaruka, Ē., Osis, J. (2018). The Topological Functioning Model as a Reference Model for

Software Functional and Non-functional Requirements, in: Proceedings of the 13th

International Conference on Evaluation of Novel Approaches to Software Engineering,

SciTePress.

Osis, J. (2003). Extension of Software Development Process for Mechatronic and Embedded

Systems, in Proceedings of the 32nd International Conference on Computers and Industrial

Engineering, pp. 305-310.

Osis, J., Asnina, E. (2010). Topological modeling for model-driven domain analysis and software

development: Functions and Architectures, in Model-Driven Domain Analysis and Software

Development: Architectures and Functions, pp. 15-39. Hershey, New York: IGI Global.

Osis, J., Asnina, E., Grave, A. (2008). Computation Independent Representation of the Problem

Domain in MDA, in e-Informatica Software Engineering Journal, Volume 2, Issue 1.

Osis, J., Donins, U. (2017). Topological UML Modeling: An Improved Approach for Do-main

Modeling and Software Development, Elsevier.

Platt, R., Thompson, N. (2015). The evolution of UML, in Encyclopedia of Information Science

and Technology, 3rd ed., IGI Global.

Solace PubSub+ Platform (2022). https://docs.solace.com/Solace-PubSub-Platform.htm, last

accessed 29 December 2022.

Stopford, B. (2018). Designing Event-Driven Systems, O’Reilly.

Tiempo Development. (2020). A Business Leaders Guide to Event-Driven Architecture,

https://vdocuments.net/a-business-leaders-guide-to-event-driven-architecture-event-driven-

architecture.html, last accessed 29 December 2022.

Received October 31, 2022, revised January 21, 2023, accepted January 27, 2023

