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Abstract. Knödel graphs of even order n and degree 1 ≤ δ ≤ log2(n), Wδ,n, are regular graphs
that have an underlying topology that is time optimal for algorithms gossiping among n nodes.
Because of their distinctive properties, Knödel graphs act as a time-optimal topology for broad-
casting and gossiping, thus arising in many settings, including social and communication net-
works or agent-based modeling simulations. Experimentation, often based on the extensive gen-
eration and analysis of complex networks, relies on high-performance computational resources to
efficiently simulate the flow of information. The efficacy of such processing commonly depends
on parallel processing and proper provisioning of distributed resources. This article aims to intro-
duce a runtime in the partitioned global address space model that is optimized for performance
and designed to improve the processing of Knödel graphs. The sequential and parallel generation
of synthetic datasets, and simulation of push-based, and broadcast-based gossiping algorithms
with detailed analysis of resource usage and runtime have been studied.
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1 Introduction

Network science is a rapidly growing field that analyzes and models complex networks,
such as social networks, biological networks, and communication networks. To perform
these analyses, efficient algorithms and network topologies are essential. Gossiping and
broadcasting algorithms are crucial in many applications of network science (Hedet-
niemi et al., 1988), like simulating epidemic spread, constructing failure-tolerant com-
munication networks, and achieving effective communication in swarms of unmanned
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aerial vehicles. These applications require the exchange of information among nodes in
the network, and efficient procedures ensure that information is disseminated quickly
and effectively.

One promising network topology for achieving efficient gossiping and broadcasting
algorithms is Knödel graphs (Fertin and Raspaud, 2004) which are regular graphs of
even order n and degree 1 <= δ <= log2(n). These regular graphs with unique
properties are optimal for broadcasting and gossiping. However, processing Knödel
graphs can be computationally intensive, and their analysis requires high-performance
computational (HPC) resources.

Researchers commonly use parallel algorithms and HPC systems to overcome these
challenges (Li et al., 2015; Liang and McKay, 1995; Chen et al., 1994). The Message
Passing Interface (MPI) is a popular tool for distributed memory and hybrid parallel
programming simulations (Gropp et al., 1996). However, distributed programming can
be complex and challenging due to the diversity of HPC systems. One solution is Par-
titioned Global Address Space (PGAS), a new paradigm that offers high development
productivity and runtime performance (De Wael et al., 2015). PGAS-based frameworks,
such as UPCXX (Bachan et al., 2019, 2017), hide communication details and provide
a global view of memory, which is beneficial for working with graphs with irregular
access patterns and provides a straightforward abstraction for one-sided memory oper-
ations.

This article aims to introduce a runtime in the PGAS model that is optimized for per-
formance and designed to improve the processing of Knödel graphs (Sala et al., 2021;
Hargrove and Bonachea, 2022). Our approach, which builds upon our previous studies
(Bejanyan and Astsatryan, 2021, 2022), aims to enhance computational efficiency and
enable faster and more effective graph processing (Bejanyan, n.d.). The study includes
sequential and parallel generation of synthetic datasets, push-based and broadcast-based
gossiping (Manitara et al., 2022; Ghosh and Ghosh, 2023) algorithms simulation, and a
detailed resource usage and runtime analysis. The study provides new insights into the
efficient computation of Knödel graphs by evaluating memory usage patterns based on
a global memory address space abstraction.

2 Runtime

The proposed runtime architecture consists of three layers: a service layer, a process
manager layer, and a resource manager layer. These layers are composed of both soft-
ware and infrastructure components, as illustrated in Figure 1.

2.1 Service

The service layer is a critical component in the design of microservice-based runtimes.
Its primary role is to provide a consistent and reliable interface for the communication
between microservices (Richardson, 2018), ensuring that they can work together effi-
ciently, securely, and at scale. This layer establishes a standardized way for microser-
vices to interact with each other, enabling seamless communication and collaboration
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Fig. 1: Runtime architecture layers.

within the cluster. The service layer of a runtime system is accessed through the Rep-
resentational State Transfer (REST) Application Programming Interface (API) due to
its simplicity, scalability, and flexibility. The users rely on standard HTTP GET, POST,
PUT, and DELETE methods to initiate computations, access a list of ongoing com-
putations, interrupt or delete them, among other functions. The service layer acts as a
gateway to the ”Process Manager” layer, serving a critical function in coordinating the
workflow of the cluster.

The requests transmitted to the Service layer are internally redirected to activate the
API provided by GraphFlow. When submitting a request to the Service layer, users pro-
vide a JSON payload that includes a range of parameters detailing the characteristics of
the graph, the selected algorithm, and the necessary computational resources. Section
3 provides a comprehensive overview of the available algorithms, including details on
their specific functionalities and requirements. The runtime system can be customized
to meet each user’s or application’s particular needs by providing a flexible and exten-
sible set of algorithms. This enables users to select the most appropriate algorithm for
their use case, ensuring the computation is performed accurately and efficiently.

2.2 Process manager

The ”Process manager” layer of the proposed runtime system manages the system’s
runtime operations (see fig. 2). Its primary function is to launch, monitor, and stop pro-
cesses as needed to ensure that the cluster operates reliably and efficiently. The layer
is composed of both hardware and software components that work together to manage
the lifecycle of processes running within the cluster. The software component utilizes
PGAS model primitives to manage the execution of processes within the cluster. To im-
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plement the PGAS model primitives, our library leverages UPCXX, a C++ library that
provides an efficient and scalable implementation of the PGAS programming model.

a library of parallel graph algorithms and data structuresGraphFlow

PGAS

API
Algorithms Storage Analysis

Asynchronous RPC

Distributed objects One-sided Put/Get

Fast serialization

Global pointers

RDMA

High-performance communication primitives

Fig. 2: Architectural diagram of the Process Manager.

The PGAS programming model uses local memories of Virtual Machines (VMs) in
an Infrastructure-as-a-Service (IaaS) cloud infrastructure. The Single Program Multiple
Data execution model launches a fixed number of program instances at each API call,
assigning a unique rank to each instance. The instances communicate asynchronously
via Remote Procedure Calls (RPCs), which return futures for explicit blocking or re-
trieving a return value.

UPCXX integrates PGAS programming primitives, including distributed objects
with fast serialization via different network protocols, enabling parallel communica-
tion. High-performance communication GASNet-EX (Bonachea and Hargrove, 2018)
middleware is integrated into UPCXX to achieve asynchronous communication, such
as gossip propagation within the neighborhood of active vertices.

A core component of the proposed runtime, GraphFlow offers parallel graph algo-
rithms and data structures using PGAS programming model and UPCXX library as a
foundation. Because the underlying library supports static graphs, fixed-size arrays can
be pre-allocated on participating computation nodes, avoiding the high cost incurred
by other pointer access or distribution of the hash table. Although this solution is effi-
cient, mapping graph nodes to memory locations on computation nodes requires further
optimization.

GraphFlow introduces the concept of Vertex policy, inspired by policy-based design
(Alexandrescu, 2001), to enable this mapping. Vertex policy imposes several require-
ments on a data structure to qualify as a Vertex in GraphFlow. One of these requirements
is the presence of a universalId, a globally unique identifier that encapsulates suffi-
cient information to support conversion to a node-aware local identifier, enabling O(1)
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access to a graph partition. Both network models studied in this work provide their
implementation to satisfy this requirement.

2.3 Resource manager

The resource manager layer is responsible for managing the allocation and utilization of
the available computational resources within the cluster, such as the allocation of VMs,
memory reservation, and monitoring. The nano, micro, small, medium, and large type
instances of the Armenian hybrid research computing platform have been used for the
experiments (Astsatryan et al., 2015).

3 Models and algorithms

In a GraphFlow, a graph G = (V,E) with a vertex set V and an edge set E is generated
based on several parameters. The graph is generated in the uniform model, which means
that all possible graphs with the same number of vertices and edges are equally likely
to be generated. The parameters to generate the graph include the number of vertices
|V |, the partition density d, and the probability p of two vertices having an edge.Based
on this parametrization, GraphFlow estimates an approximate number of edges |En| for
each partition and populates each using probability p.

Algorithm 1 furnishes a comprehensive account of the generation algorithm em-
ployed. The algorithm establishes a connected component on each computational node
to construct a graph from a uniform model, laying the foundation for subsequent opera-
tions. This initial step is fundamental in achieving the objective of generating a coherent
graph in a uniform model and represents a critical aspect of the generation process.

In the next stage, the algorithm augments the density of each connected component
by adding edges per the specified requirements (see algorithm 2). This critical stage
represents a fundamental aspect of the algorithmic process, as it increases the graph’s
structural complexity and facilitates the emergence of a more comprehensive network.

In the final stage (see algorithm 3), the algorithm entails the connection of various
ranks to the connected components they own. This process further enhances the graph’s
connectivity and consolidates its constituent nodes’ interdependence. Such a step rep-
resents a crucial aspect of the algorithmic process, as it promotes the emergence of a
more cohesive network capable of facilitating efficient data transfer and analysis.

Figure 3 presents the visualization of one of the possible results of the proposed
algorithm.

Contrary to the uniform model, Knödel graphs expose a highly regular structure
defined on even n ≥ 2 nodes with 1 ≤ δ ≤ log2(n) edges with vertices labeled (i, j)
where i ∈ {1, 2} and 0 ≤ j ≤ n/2 − 1 and an edge between (1, j) and (2, k) where
∀k ≡ j + 2p − 1 (mod n/2), p ∈ {0, . . . , δ − 1}.

The Knödel graph is subjected to virtual partitioning among N computational nodes,
as demonstrated in algorithm 4. The graph’s inherent strictly regular structure permits
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Algorithm 1: Core generation algorithm for a uniform graph
Data: vertexCount ≥ 0, percentage ≥ 0
Result: GUniform = (V,E)

1 GUniform = (V,E) ; /* Init distributed, empty graph */

2 rankMe← upcxx :: rankme();
3 rankN ← upcxx :: rankn();
4 minId← rankMe ∗ vertexCount;
5 maxId← (rankMe+ 1) ∗ vertexCount− 1;
6 edges← 0;
7 unconnected← [minId];
8 connected← [minId+ 1, . . . ,maxId];
9 rndGen← std :: mt19937(std :: randomdevice());

10 weight← 1 ; /* Distributed variable */

11 while unconnected.length() ̸= 0 do
12 connectedV ertexIdx← connected.peek(rndGen());
13 unconnectedV ertexIdx← unconnected.peek(rndGen());
14 if unconnectedV ertexIdx ̸= connectedV ertexIdx then
15 if GUniform.addEdge(unconnectedV ertexIdx, connectedV ertexIdx)

then
16 edges← edges+ 1;

17 unconnected.erase(unconnectedV ertexIdx);
18 connected.append(connectedV ertexIdx);

Algorithm 2: Augmentation of a connected component
1 extraEdges← (vertexCount2/2 ∗ percentage)/100;
2 copyExtraEdges← extraEdges;
3 edgesInsideCurrentComponent← 0;
4 while copyExtraEdges ̸= 0 do
5 startV ertexId← uniformInteger(minId,maxId);
6 endV ertexId← uniformInteger(minId,maxId);
7 if startV ertexId ̸= endV ertexId then
8 if GUniform.addEdge(startV ertexId, endV ertexId) then
9 edgesInsideCurrentComponent←

edgesInsideCurrentComponent+ 1;
10 edges← edges+ 1;

11 copyExtraEdges← copyExtraEdges− 1;
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Algorithm 3: Connection of different components
1 edgesWithOtherComponents← 0;
2 for firstRank ← 0 to rankN by 1 do
3 for secondRank ← firstRank + 1 to rankN by 1 do
4 firstId← generateIdForRank(firstRank, vertexCount);
5 secondId← generateIdForRank(secondRank, vertexCount);
6 if firstId ̸= secondId then
7 if GUniform.addEdge(firstId, secondId) then
8 edgesWithOtherComponents←

edgesWithOtherComponents+ 1;
9 edges← edges+ 1;

Fig. 3: Demo graph generated from uniform model.

a seamless mapping onto computational nodes, thereby enabling parallel processing of
subsets of vertices and edges. The parallelization significantly reduces the algorithm
runtime.

Figure 4 presents the visualization of the proposed algorithm.
GraphFlow is a generic framework for gossiping algorithms that frees users from

concerns about the underlying data structure. Gossiping algorithms disseminate infor-
mation across a network by having nodes randomly select and communicate with other
nodes. The algorithm is iterative, and at each iteration, nodes randomly select other
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Algorithm 4: Generation of Knödel graph
Data: vertexCount ≥ 0, percentage ≥ 0, delta ≥ 0
Result: GKnodel = (V,E)

1 GKnodel = (V,E) ; /* Init distributed, empty graph */

2 vertexCountPerRank ← (vertexCount/2 + rankn()− 1)/rankn();
3 deltaPerRank ← log2(vertexCountPerRank);
4 for j ← minId to maxId (mod vertexCount) by 1 do
5 from← (0, j, vertexCount/2);
6 for d← 0 to delta by 1 do
7 to← (1, j + 2d − 1 (mod vertexCount/2), vertexCount/2);
8 if GKnodel.addEdge(from, to) then
9 edges← edges+ 1;

Fig. 4: A Knödel graph with 16 vertices and a degree equal to 4 generated by the sug-
gested algorithm.
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nodes to communicate with. GraphFlow’s generic nature enables developers to im-
plement gossiping algorithms using any data structure that can act as a graph vertex.
GraphFlow imposes minimal restrictions on the data structure, requiring only the im-
plementation of methods for sending and receiving messages, updating the state, and
computing the next set of neighbors to communicate with. The gossiping algorithms
discussed in this work are generic and follow the same steps regardless of the underly-
ing data structure used to represent the graph vertices. This flexible approach enhances
the algorithms’ reusability and ease of implementation, enabling testing and application
in diverse contexts.

The push-randomized gossip algorithm operates in parallel across multiple compu-
tation nodes, as described in algorithm 5. Initially, each rank selects a random vertex
from the partition it owns, initiating the gossiping process. The rank of the identified
vertex is then computed, and an asynchronous RPC is launched to transmit the gossip to
the node where the vertex resides, considering the vertex’s affinity to the computational
node. After updating the vertex with the new information, a random neighbor is selected
and returned. The algorithm converges when the number of visited vertices equals the
partition size of the graph owned by the current rank.

Algorithm 5: Push-randomized gossiping algorithm
Data: G = (V,E), data
Result: G = (V,E)
/* Distributed container of visited vertex ids */

1 visited← []
/* Gossiping starts from a random vertex */

2 randomV ertex← getRandomV ertex(G)
/* Waiting for all ranks to agree on initial random vertices */

3 upcxx :: barrier()
4 nextV eretxId← randomV ertex.id
5 while visited.size() ̸= G.localStorage().size() do
6 vertexIdRank ← G.getV ertexRank(nextV ertexId)

/* Executing gossiping algorithm on a rank owning the vertex */

7 nextV ertexId← upcxx ::
rpc(vertexIdRank, pushRandomizedGossip, nextV ertexId, data, visited).wait()

The lambda function (see algorithm 6) executes whenever a vertex is visited to
update the current state of the gossip and select a random neighbor.

The broadcast-based approach (see algorithm 7) is similar in structure to the previ-
ous method but operates on frontlines, a set of neighbors, instead of a single neighbor
on each computation node. This technique enhances data transmission and process-
ing efficiency on parallel computing platforms and mitigates load imbalances. It also
improves performance for algorithms requiring message-passing among neighboring
nodes, such as network analysis and graph partitioning. However, its effectiveness may
vary depending on factors like the graph structure and number of neighbors per node.
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Algorithm 6: A lambda asynchronously executed when visiting next node
Data: G = (V,E), data
Result: nextV ertexId

1 vertex← getV ertex(vertexId)
2 vertex.data← data
3 randomNeighbourId← uniformInteger(0, vertex.neighbourhood.size())
4 return randomNeighbourId

Using frontlines in the broadcast-based approach offers an efficient, load-balanced, and
improved-performance alternative to the single-neighbor process.

Algorithm 7: Broadcast-based gossiping algorithm
Data: G = (V,E), data
Result: G = (V,E)
/* Distributed container of visited vertex ids */

1 visited← []
/* Gossiping starts from a random vertex */

2 randomV ertex← getRandomV ertex(G)
/* Waiting for all ranks to agree on initial random vertices */

3 upcxx :: barrier()
4 nextV eretxId← randomV ertex.id
5 while visited.size() ̸= G.localStorage().size() do
6 vertexIdRank ← G.getV ertexRank(nextV ertexId)

/* Executing gossiping algorithm on a rank owning the vertex */

7 nextV ertexIds← upcxx ::
rpc(vertexIdRank, broadcastGossip, nextV ertexId, data, visited).wait()

/* Wait for each rank to transfer gossip to its neighbours and

calculate ids for the frontline */

8 upcxx::barrier(); frontline← []
9 for j ← 0 to nextV ertexIds.size() by 1 do

10 frontline.append(transferGossip
11 (G.GetGraphStorage(), nextV ertexIds[j], data))

12 for j ← 0 to frontline.size() by 1 do
13 frontline[j].wait()

14 upcxx :: barrier()

The lambda function in algorithm 8 is executed asynchronously during broadcast-
ing. It has a structure similar to that of algorithm 6, but with one primary difference.
Instead of selecting the next node randomly, the algorithm constructs a frontline for
concurrent traversal in the next gossip iteration. This approach improves processing
and communication efficiency among computational nodes during graph-based compu-
tations.
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Algorithm 8: A lambda asynchronously executed to construct frontline
Data: G = (V,E), data
Result: nextV ertexId

1 vertex← getV ertex(vertexId)
2 vertex.data← data
3 neighbourhood← collectNeighbourhood(vertex)
4 return neighbourhood

Algorithm 9: A lambda concurrently executed to update frontline
Data: G = (V,E), data
Result: nextV ertexId

1 vertex← getV ertex(vertexId)
2 vertex.data← data
3 return neighbourhood

Algorithm 9 describes a parallel procedure executed after collecting IDs for the cur-
rent step. The separation of ID collection and the actual update process provides greater
control over data flow and facilitates finer-grained synchronization. This is particularly
valuable in distributed memory systems, where synchronization can be costly and time-
consuming.

4 Evaluation

This section presents the experimental findings of the algorithms discussed in Section
2.

Figure 5 shows the benchmark results for uniform and Knödel graphs generation.
The plot suggests a weak correlation between the number of vCPUs and the number

of edges (see fig. 5a), resulting in a negative impact on the runtime of uniform graph
generation. Unlike the uniform model, the benchmark results of parallel Knödel graph
generation (see fig. 5b) exhibit near-linear scalability, which can be attributed to the
inherent properties of the Knödel graph and the algorithm presented in algorithm 4.

Uniform graphs typically have irregular and random structures. Therefore, Figure
6a, which shows the benchmark results of executing push-randomized gossip algo-
rithms, does not display any significant correlation.

In Figure 6b, a strong negative correlation between the number of vCPUs and graph
edges is evident, especially when the number of vCPUs is two. This trend is due to the
synchronization required for reliable communication between graph partitions. How-
ever, for vCPU numbers of 4, 8, and 16, the runtime for execution decreases by almost
50% due to the parallelism.

In Figure 7a, the number of vCPUs has a significant positive impact on the execution
time within each simulation batch.
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(a) Uniform graph generation.

(b) Knödel graph generation.

Fig. 5: Benchmark results for uniform and Knödel graphs generations.
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(a) Uniform graphs.

(b) Knödel graphs.

Fig. 6: Benchmark results for push-randomized gossiping in uniform and Knödel graphs
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(a) Uniform graphs.

(b) Knödel graphs.

Fig. 7: Benchmark results for broadcast-based gossiping in uniform and Knödel graphs.
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Figure 7b shows the benchmark results for broadcast-based gossiping in the Knödel
graph. Similar to the push-randomized gossip algorithm on Knödel graphs, there is a
communication overhead for the benchmarks with a vCPU number of two. However,
for four or more vCPUs, the execution time decreases by over 50% compared to the two
vCPU cases and over 90% compared to the push-randomized scenario, with a runtime
of approximately 10ms instead of 100ms.

5 Conclusion

In conclusion, this study has provided valuable insights into the performance of ran-
domized push-first and broadcast-based algorithms on uniform and Knödel graphs. Our
results demonstrate the significant impact of graph structure on broadcasting scalability,
with Knödel graphs exhibiting high scalability in a parallel setting, while broadcasting
over uniform graphs may have unpredictable runtime due to the lack of structure.

The study also highlights the potential for nearly linear scalability in parallel Knödel
graph generation due to the regular structure of the graph. Based on these findings, fu-
ture research will focus on developing effective partitioning strategies for graph genera-
tion and exploring caching mechanisms to minimize communication between processes
and network nodes.

The study also aims to extend existing and new algorithms for accelerated comput-
ing, which could improve performance. Finally, exploring generally distributed algo-
rithms such as clocks, consensus, consistency, and replication in the PGAS model may
provide insights into designing more efficient and scalable parallel algorithms.

Overall, the findings of this study provide valuable insights for researchers and prac-
titioners in the field of parallel and distributed computing, highlighting the importance
of graph structure in achieving scalability and suggesting new avenues for future re-
search.
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