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Abstract. Knowledge graphs (KG) have become an important data organization paradigm. The 

available textual query languages for information retrieval from KGs, as SPARQL for RDF-

structured data, do not provide means for involving non-technical experts in the data access 

process. Visual query formalisms, alongside form-based and natural language-based ones, offer 

means for easing user involvement in the data querying process. ViziQuer is a visual query 

notation and tool offering visual diagrammatic means for describing rich data queries, involving 

optional and negation constructs, as well as aggregation and subqueries. In this paper we review 

the visual ViziQuer notation from the end-user point of view and describe the conceptual and 

technical solutions (including abstract syntax model, followed by a generation model for textual 

queries) that allow mapping of the visual diagrammatic query notation into the textual SPARQL 

language, thus enabling the execution of rich visual queries over the actual knowledge graphs. The 

described solutions demonstrate the viability of the model-based approach in translating complex 

visual notation into a complex textual one; they serve as “semantics by implementation” 

description of the ViziQuer language and provide building blocks for further services in the 

ViziQuer tool context. 
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1. Introduction 
 

Knowledge graphs (Hogan et al., 2021), a data structuring paradigm, based on the graph 

data model of labelled nodes and edges, have become important for storing, aggregating, 

and linking information coming from various domains. Knowledge graphs are used on 

the web scale to support search engines. They are the way of information organization 

for Linked Open Data (WEB, d), where DBPedia (Auer et al., 2007) and Wikidata 

(Vrandečić and Krötzsch, 2014) are major data set examples. By describing the data on 

the level of semantic entities and relationships the knowledge graphs provide a higher 

and more user-friendly view of the data than, for instance, the relational databases (that 

describe the entities and their relations via primary and foreign keys). 
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Regarding knowledge graphs stored in the W3C standard RDF data format (Hayes 

and Patel-Schneider, 2014), the textual SPARQL language (WEB, b), also a W3C 

standard, is the common language for data querying. Besides the options for basic data 

pattern specification, SPARQL includes ways for rich query creation, involving, e.g., 

optional and negated fragments, aggregation, subqueries, and advanced property value 

conditions (way more than just equality and value intervals). The textual form of the 

SPARQL queries, however, complicates its use by various domain experts, and may not 

be the most convenient also for IT professionals. 

There are a variety of tools and methods that can assist users in SPARQL query 

creation. There are tools such as YASGUI (Rietveld and Hoekstra, 2013) that provide 

help to the user in the creation of the textual form of the SPARQL query via syntax 

highlighting and text auto-completion facilities. Their strength is support for full 

SPARQL query functionality. Still, the range of users of the textual editors is limited to 

the SPARQL specialists, because to work with the textual SPARQL editor it is necessary 

to know both the SPARQL language and the data schema that is being queried.  

The tools like PepeSearch (Vega-Gorgojo et al., 2016) and WYSIWYQ (Khalili and 

Meroño-Peñuela, 2017) offer means of SPARQL query construction via interaction with 

forms, where the values from the drop-down menus or radio buttons are chosen and text 

is entered in input fields. Their clear strength is ease to use for different user groups, 

how-ever, they are much more limited with respect to the kinds of supported SPARQL 

queries. 

An interesting SPARQL query creation assistant is SPARKLIS (Ferré, 2017) that is 

based on the user interaction with the text snippets in controlled natural language, 

placing them together to obtain a textual description of the query. SPARKLIS can be 

praised for supporting most of the full SPARQL constructs, still, the used text snippets 

and the created controlled textual query formulations may seem to be somewhat 

artificial, and they may not always be the best way of describing and presenting the 

query structure. 

Visual diagrammatic environments form another group of SPARQL query creation 

assistants, some of them (distantly) similar in style to the visual query builders for 

relational databases. Some of the visual diagram tools follow the UML-style (class-

attribute-link) presentation of the data query backbone, such as Optique VQs (Soylu et 

al., 2018), LinDA Query Designer (WEB, c), SPARQLGraph (Schweigerr et al., 2014) 

and ViziQuer (cf. (Zviedris and Barzdins, 2011; Čerāns et al., 2018b)). Others use a 

more detailed graphical presentation with attribute variables placed in separate graph 

nodes, such as e.g., QueryVOWL (Haag et al., 2015), RDF Explorer (Vargas et al., 

2019), GRUFF (Aasman, 2017), and early works on SEWASIE (Catarci et al., 2003) and 

NITELIGHT (Russell and Smart, 2008). 

While most of the visual diagrammatic query tools have such features as SPARQL 

endpoint querying, drag-and-drop, search, and auto-completion functionality, along with 

tool-specific features, the majority of the SPARQL query tools support only simple 

conjunctive queries and do not support the constructs such as sub-queries, aggregation, 

and advanced expressions. There is outer level aggregation possibility in Optique VQs 

and LinDA Query Designer, however. 

The ViziQuer tool (Čerāns et al., 2018b) with its initial notation presented in (Čerāns 

et al., 2017) and (Čerāns et al., 2018a) allows using the visual diagrammatic method for 

creating rich visual queries with optional and negated blocks, aggregation, subqueries, 

and advanced expressions, covering most of SPARQL 1.1 SELECT query constructs. 
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This notation would allow a user that has started exploiting the visual query notation for 

simple query creation not to get stuck also when more complex tasks to be solved come 

at hand. There are also interesting options (cf. (Čerāns et al., 2021a, 2022a, 2022b)) for 

generating a visual query from a given SPARQL query text (also with the rich query 

constructs supported) and usage examples of the notation (cf. (Čerāns et al., 2019, 

2021b)) reported. 

The experience with the visual query creation in ViziQuer has shown, however, some 

necessary improvements and extensions of the notation, if compared to (Čerāns et al., 

2017) and (Čerāns et al., 2018a), including, e.g., (i) explicit existence-checking edges, 

(ii) compartment-related filters, (iii) explicit grouping compartments, (iv) distinction 

among simple and non-duplicated condition implementation and (v) explicit support for 

Wikidata (Vrandečić and Krötzsch, 2014) language services.  

This paper is the first one to provide an integrated account of the ViziQuer visual 

language with the extended features. The principal point of the paper, however, is to 

explain the principles and solutions behind the implementation of the ViziQuer visual 

query language, including the structures, techniques and algorithms used for the actual 

mapping of its complex visual structures into text-based ones of the SPARQL language. 

The query translation uses the query abstract syntax tree (AST) that presents the 

query structure in accordance with the conceptual visual query components as nodes, 

links, data fields and conditions, as well as parsed textual expressions and resolved 

names of the data schema elements. When the AST is built from the technical query 

format natively supported by the diagramming engine, it is further on transformed into a 

scaffolding model for SPARQL query generation, from which the textual SPARQL 

query form is obtained. 

The presented visual query implementation can be viewed as an experience story of 

applying a model-based conceptualization to a complex transformation task among 

radically different notations (a visual diagrammatic and a textual one) describing the 

same computational artefact (a query to retrieve the data from a knowledge graph). 

Regarding the visual query notation itself, the provided query translation account can 

be seen as a “semantics by implementation” description that is provided here for the first 

time and includes details as visibility scope for introduced names and the order of blocks 

in the generated SPARQL query that, while being important for a wide range of queries, 

except the simplest ones, also has not been described before. 

The ViziQuer software described in this paper is available online both as a 

playground environment
1
 and an open-source project repository

2
. 

In what follows, Section 2 provides an overview of the ViziQuer visual query 

notation (what are queries that need to be translated into SPARQL). Section 3 outlines 

the query translation process and develops its basic structures of AST and the symbol 

table. Section 4 then describes the SPARQL query generation, including the SPARQL 

query generation model structure and the process of its construction, as well as the 

generation of the textual form of the SPARQL query. Section 5 concludes the paper. 

 

  

                                                           
1 https://viziquer.app 
2 https://github.com/LUMII-Syslab/viziquer 
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2. ViziQuer Notation Overview 
 

A visual query is created in the context of a data model that provides the vocabulary of 

entities, mapping an entity’s local name and optional name prefix to the full entity URI, 

as well as stating the applicability, ordering and cardinalities of properties in the context 

of the model classes. In what follows, we shall demonstrate queries over a simple mini-

hospital data schema, shown in Figure 1. The names of properties connecting the classes, 

if not specified, coincide with the target class name with a lowercase first letter. There is 

the default minimum and maximum cardinality 1 assumption for properties. 

 

 
Figure 1. Example hospital schema (domain ontology) fragment (cf. (Barzdins et al., 2016; 

Čerāns et al., 2018a)) 

2.1. Basic Visual Queries 
 

A basic visual query (cf. (Zviedris and Barzdins, 2011; Čerāns et al., 2017)) is a UML 

class diagram style graph with nodes describing data instances, edges describing their 

connections and fields forming the query selection list from the node instance model 

attributes and their expressions; every node can also specify the instance class and 

additional conditions on the instance. One of the graph nodes is the main query node 

(shown as an orange round rectangle in the concrete syntax); the structural edges (all 

edges except the reference ones, cf. Section 2.4) within the graph form its spanning tree 

with the main query node being its root.  

Figure 2 shows an example basic visual query: find 10 most expensive hospital 

episodes that last for at least 10 days, have a discharge reason specified and have a 

patient without any outpatient episode; list episode case record number, total cost and -

discharge reason, the patient’s name and birth year, and the name of the referring 

physician if specified.  

The links in the query have ascribed the property names (property paths are possible) 

from the data schema (property variables are allowed, as well). A link can be required 

(e.g., patient in Figure 2), optional (e.g., referringPhysician) and negated (e.g., 

outpatientEpisode). The query part behind an optional or a negation edge construction is 

seen as included in the optional or negation query block, respectively. 

Each node in the query may (but is not required to) contain a class specification (e.g., 

HospitalEpisode, CPhysician, etc. in Figure 2).  

 

HospitalEpisode
admissionTime:dateTime

dischargeTime:dateTime[0..1]

dischargeReason:{"cured", "

deceased", "other"}[0..1]

lengthInDays:integer

totalCost:decimal

caseRecordNo:integer

responsiblePhysician:CPhysician

referringPhysician:CPhysician[0..1]

admissionDiagnosis:CDiagnosis[*]

dischargeDiagnosis:CDiagnosis[*]

<<EnumClass>>

CDiagnosis
code:string

name:string

<<EnumClass>>

CPhysician
personCode:string

name:string

surname:string

OutpatientEpisode
visitDate:date

visitDuration:decimal

visitCost:decimal

physician:CPhysician

outpatientDiagnosis:CDiagnosis[*]

Patient
personCode:string

name:string

surname:string

gender:{"male", "female"}

birthDate:date

familyDoctor:CPhysician[0..1]

TreatmentInWard
ward:string

arrivalTime:dateTime

transferTime:dateTime

orderNo:integer

attendingPhysician:CPhysician

*

**
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Figure 2. An example basic visual query and its translation into SPARQL 

 

For a node, it is possible to specify data fields, each holding a property or an 

expression to be selected in the query (together with an optional alias, e.g., Y or DName 

in Figure 2). By default, all selection fields in the query nodes are optional; a mark {+} 

marks the field to require values (as in {+}dischargeReason). There is also an option to 

mark an attribute as a helper (using mark {h}); that would mean finding the attribute but 

not including it in the selection list (such an attribute can still be referred to from other 

parts of the query).  

Additionally, conditions over values of fields and other instance properties can be 

introduced (e.g., lengthInDays >= 10); they work as conditions over the selected data. 

There can also be data ordering expressions and slicing (limit, offset) specifications.  

A query node can also have a data instance specification, either as a constant data 

resource (URI) or, more typically, as an instance name (e.g., E in Figure 2) that can be 

referred to from expressions in other parts of the query. 

2.2. Aggregation and Grouping 
 

The aggregated fields in the query can be placed in the main node of the query (and in 

the main nodes of “subqueries”, introduced in Section 2.3) visually placed above the 

compartment for the class name (cf. H_count and T_avg in Figure 3). The body of such a 

field involves an aggregation function and its body expression – the aggregation subject 

that is typically the node instance itself (denoted by (.), as in count(.)), or some its 

property value (as in avg(totalCost)), or even a more complex expression.  

If a query has non-aggregated attributes (selection fields), such as dischargeReason 

and gender in Figure 3, along with the aggregated ones, an implicit grouping over all 

non-aggregated selection fields is assumed (other grouping fields can be specified in 

explicit “group by” area, if necessary). Multiple aggregations are allowed within one 
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node (as H_count and T_avg in Figure 3) if the aggregate expressions do not refer to 

“multi-valued” properties (the property totalCost in the hospital model has maximum 

cardinality 1), where that could distort the scope of other aggregations (if the “other 

aggregation” uses min() or max() function, the distortion does not happen, as it could for 

e.g., count() or sum()). 

 

 
Figure 3. An aggregate query example: find count and average total cost for hospital episodes, 

grouped by their discharge reason and the patient’s gender. 

2.3. Subqueries 
 

An important query construct in SPARQL 1.1, expanding substantially the query 

language capabilities, is that of a subquery, allowing to compute results that are further 

“injected” into the “outer”/“hosting” query. The visual query notation provides a concept 

of a subquery edge between a “host node” and a “linked node”, allowing the fragment of 

the query that is behind the linked node to compute, within a subquery, some 

characteristics of the host node, that can be further referred to from the outer query. 

Technically, a subquery consists of the subquery edge (including its end element at the 

host node) and the entire query structure fragment behind the subquery edge.  

A subquery would typically include an aggregation (possibly even as the sole explicit 

selection item). Figure 4 shows a simple query with subqueries. 
 

 
Figure 4. Visual subquery example 
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In the simplest case, the subquery edge can be ascribed a property (as 

treatmentInWard and admissionDiagnosis in Figure 4) linking the host and linked nodes. 

The unconstrained (labelled by ++) and same-data (labelled by ==) edges (cf. Section 

2.5) give further flexibility in the subquery construction.  

A subquery link can be required, optional and negated (corresponding to SPARQL 

MINUS construct). A specific form of subquery is checking for the existence of a related 

resource, where the subquery would have no explicit selection fields, still the “existence 

checking” mode of the subquery needs to be asserted explicitly (to avoid the result set 

duplication in the case if the subquery pattern can be matched in multiple ways for a 

single host instance)
3
. Figure 5 provides an example. Note that the existence checking in 

simple cases can also be done by a textual condition, in the Figure 5 example situation 

such a condition would be exists(hospitalEpisode.lengthInDays >= 5) in the sole Patient 

node. 

 

 
Figure 5. Checking for the existence of a related resource in a subquery 

The order by, limit and offset constructs are not allowed in the most typical subquery 

form of “local subqueries” meant for instance context property analysis
4
. There is a form 

of a “global subquery” in the visual notation, lifting these restrictions and making it clear 

that these queries cannot be used for context computation.  

2.4. Reference Links 
 

The visual notation allows creation of queries that have a richer than a tree-shaped 

structure. For this sake the reference
5
 links are introduced that can add extra connections 

between the nodes of the query spanning tree defined by the query structure links, such 

as e.g., the join links and subquery links. A reference link can be required or negated, 

thus placing an extra assertion or its negation on the data to be selected (the optional 

                                                           
3 This is different from the initial notation presentation in (Čerāns et al., 2017)), where the 

subqueries had the “existence checking” semantics by default. The change does not affect the 

most common case of aggregated subqueries, where the duplication of the subquery result rows 

is not possible, however, the new option allows introducing also non-aggregated subqueries 

without implicit enforcing of the existence checking or distinct value selection mode. 
4 This is due to the subquery semantics in SPARQL, where the visual queries are translated into. It 

requires a subquery to be computed globally before embedding its results into the outer query. 
5 This type of link is called “condition” in (Čerāns et al., 2017)) to reflect the intuition that these 

are added as triple conditions on top of an existing query structure. 



324  Ovčiņņikova et.al. 

 

reference links are not foreseen in the notation, as they would have logically void 

contents). Figure 6 shows an example of a negated reference link. In queries with nested 

block structure (due to e.g., subqueries or optional/negated structure links) a reference 

link can be allowed from a structurally deeper query block to a higher one. 

 
 

 
 

Figure 6. Example of a negated reference link: count the treatments in ward that have the 

attending physician that is not the responsible physician for the wards’ hospital episode6. 

2.5. Query Structure Extensions 
 

The constructs introduced so far allow the creation of a wide range of visual queries, 

where the query structure matches the class and property structure of the data model. To 

expand the capabilities of the visual notation, the free edges (labelled by ++) and same-

data edges (labelled by ==) are provided. A free edge just connects the nodes in the 

query structure without creating a data connection between them (typically, such a 

connection shall be created by reference links or cross-references to the node names in 

condition expressions). The same-instance edge, labelled by “==”, provides a way of 

having the same data instance, represented by more than one node (this might be useful 

e.g., when more than one class name is to be specified for an instance, or when an 

instance node needs to be present both within a hosting query and a subquery). An 

alternative to using the “==” notation would be using the free “++” edge between the 

nodes while additionally using the same name of an instance in both examples. Figure 7 

shows an example of using a negated free edge together with the subquery and reference 

link constructs (the OutpatientEpisode O needs to be brought into the subquery together 

with the HospitalEpisode H to have the name H visible at O). 

Besides the free and same-data edges, there are also control (non-data) nodes, the 

unit node [ ] and the union node [ + ] that can be used for further query structuring. 

These nodes do not themselves describe any data instance, however, they can specify the 

fields, conditions, aggregations and orderings with the expressions referring to the data 

computed at other nodes (typical for [ ]). If a control node is directly under a data node 

in the query structure tree (typically for [ + ]), the data node properties and links can be 

used in the context of the control node, as well. Figure 8 and Figure 9 show examples of 

the usage of the unit and union nodes, respectively. 

 

                                                           
6 The definite articles are used in the query formulation since the maximum cardinality of the 

involved properties is 1. 
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Figure 7. Example of a free link (++): Count the patients that have at least 3 hospital episodes 

and do not have any earlier outpatient episodes. 

An important way of extending the query structure is also possible by the names 

defined in one place of the query (e.g., node or field aliases) and referring to them from 

other parts of the query. If the same name is used as an explicit alias in different query 

parts, the name would in all places refer to the same resource. 

 

 
Figure 8. Unit node as a “wrapper” query: Count all wards (attribute ward values) that have more 

than 1000 treatments in ward instances. The wrapper queries can be used to emulate SPARQL 

HAVING construct, as well as to add further functionality (e.g., counting the matching values). 

 

 
Figure 9. Union node example: Find the codes of diagnoses that are made for a given patient 

either as hospital episode admission diagnoses or as outpatient episode diagnoses. 
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2.6. Expression Notation 
 

The visual query notation allows using textual expressions both in conditions (as e.g., 

lengthInDays >= 10 in Figure 2) and in field value computation descriptions (e.g., 

YEAR(birthDate) in Figure 2). In the case of simple queries, the expressions are mostly a 

comparison of an attribute value with a constant or applying a function to an attribute 

value. Still, for the sake of the query notation completeness, more complex expressions 

are permitted, as well; a user can use those, as his/her query building skills permit.  

Generally, all expression constructs that are available in SPARQL are supported also 

by the ViziQuer visual query notation, with an important modification that instead of 

SPARQL variables formed by the prefix ‘?’ the expressions in visual notation use 

explicit names defined in the query (as instance or field names/aliases) or the names of 

the properties (property paths allowed, as well). A property name in an expression at a 

node stands for a resource or a literal linked to the node instance (i.e., the “value” of the 

property). If a property name needs to be referenced as a resource in an expression, 

prefix its name with the inverse apostrophe (e.g., as in `rdf:type). 

In addition to the basic “modified SPARQL” expressions there are several custom 

shorthands introduced, e.g.: 

- notations ‘~’ and ‘~*’ as options for infix REGEX specification (use a ~ b for 

REGEX(a,b) and a ~* b for REGEX(a,b,’i’) (case insensitive matching), 

- abc[i] for the initial part of abc of length i (as e.g., in condition abc[1]=’A’), 

- abc@en for selecting the attribute abc only if its language tag is en (use 

abc@(en,de) for selecting attributes according to multiple language tags), and 

- UML-style notation ‘.’ for navigation expressions (SPARQL style property 

paths, built by ‘/’, are available, as well). 

There is a further constraint on using arithmetic operators +, -, * and / in expressions: 

they need to be surrounded by spaces (to avoid conflicts with their use in forming URIs 

and property path expressions). The expression grammar is considered in Section 3.3. 

2.7. Exploratory Queries 

There are options to place explicit variables in the positions of a class and a property 

within the visual notation; in this case, the notation with an explicit ‘?’ prefix is to be 

used. Some examples of exploratory queries are displayed in Figure 10. 

 

 
 

Figure 10. Exploratory Queries: (a) Find all class and property pairs (C,p) such that a link by p 

from some C instance goes to a patient, and (b) find all (property,value) pairs for a given person. 



 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation  327 

 

If the class or property name to be found in the selection is not to be included in the 

query output, the corresponding variable name is to be preceded by ‘??’ (can be used, 

e.g., for finding all resources connected to the given initial resource by any property, if 

the property name is not relevant). 

The names for class and property variables can be referred to from other expressions 

within the query (to make a reference use the variable name without the ‘?’ or ‘??’ 

mark). 

3. Visual Query Implementation 
 

The implementation of the visual queries is provided within the frame of the ViziQuer 

visual query tool (cf. (Čerāns et al., 2018b)) that offers means for visual query editing 

(VQEditor), translating the queries into SPARQL (VQTranslator) and executing the 

queries over given SPARQL endpoint (VQExecutor), as outlined in Figure 11. 

The ViziQuer tool is implemented in the ajoo visual tool building platform (Sprogis, 

2016) which allows the creation of visual domain-specific languages by offering means 

for rapid development of concrete syntax and visual editor for the language. Still, the 

implementation of the visual language semantics (translation of the visual queries into 

SPARQL in the case of the ViziQuer tool) lies outside the scope of the platform; for the 

ViziQuer tool it is presented in this paper. 

 
 

Figure 11. Architecture of ViziQuer and data flow of query editing and execution 
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Figure 12. Metamodel of diagram presentation in ajoo tool 

 

The ajoo platform provides the representation of a visual diagram in the form of a 

graph of connected elements (boxes and lines), possibly with certain textual 

compartments (cf. Presentation model in Figure 12, left). There is also the Type model 

information available during the diagram runtime that allows discriminating among the 

roles that the different elements and compartments play in a diagram (cf. Figure 12) (cf. 

(Bārzdiņš et al., 2007) for the explanation of the concept of runtime management of 

visual diagrams and their elements through their linked type/configuration elements). 

The visual query implementation starts with creating for it an abstract syntactic 

structure (Abstract Syntax Tree) that is based on semantic concepts of query composition 

as Node, (Attribute) Field, Condition, etc. (cf. Section 3.1) and that is used further on 

(instead of the raw ajoo-structured representation) in the SPARQL query generation: 

building the symbol table (Section 3.2), resolving the expression types (Sections 3.3 and 

3.4), as well as generating the abstract internal model of the SPARQL query (Section 4), 

further on used to generate the textual SPARQL query form. 

We note that the projects in the visual tool environment also have options for setting 

the parameters (described in Section 3.5) that can influence the query implementation. 

 

Type model

Tool
name:string

DiagramType
name:string
style:string

ElementType
name:string

BoxType
style:string

LineType
style:stringCompartnemtType

name:string
defaultValue:string
prefix:string
sufix:string
tab:string
rowType:string
style:string

Presentation model

Project
name:string

Diagram
name:sting

Element
location:string
style:string

Box

Line

Compartnent
input:string
value:string
style:string

*

*

start

1

*

end

1

*

*

*

*

*

start

1

*

end

1

*

* type 1

 * type 1

 * type 1

tool 1 *

*

*
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Figure 13. ViziQuer Graphical Query Abstract Syntax Tree Model 

 

3.1. Abstract Syntax Tree Core Structure 
 

The principal structure of the visual query implementation is that of the query Abstract 

Syntax Tree (AST) that encodes the query information in accordance with the conceptual 

visual query components as nodes, links, data fields and conditions, as well as parsed 

textual expressions and resolved names of the (background) data schema elements (the 

data schema lists the defined namespaces (one of them is the default namespace), as well 

as the data model entities – the classes and the properties, listing their full entity iri, as 

well as the namespace, local name, and display name; in the case of properties also their 

cardinality information can be made available (as it can influence the query generation)). 

The AST structure is summarized in Figure 13. The central item of the AST structure 

is Node. Every node except the query root node (RootNode) belongs to the LinkedNode 

class, where both the node properties and the node attachment link to its parent node in 

the query structure spanning tree are specified. According to the incoming structure link 

RootNode

NodeInfo
_id:string[1]

parsed_exp:ParsedExp[0..1]

_

display_name:string[1]

local_name:string[1]

iri:s tring[1]

is_local:boolean[1]

_

text_prefix:string[1]

Field
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

alias:string[0..1]

text_prefixes:string[0..1]

requireValues:boolean[1]

isHelper:boolean[1]

order:integer[1]

_

addLabel:string[0..1]

addAltLabel:string[0..1]

addDescription:string[0..1]

Aggregation
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

alias:string[0..1]

requireValues:boolean[1]

Condition
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

allowResultMultiplication:boolean[1]

Ordering
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

isDescending:boolean[1]

Grouping
_id:string[1]

fulltext:string[1]

exp:string[1]

Node
isUnit:boolean[1]

isUnion:boolean[1]

_

isBlankNode:boolean[1]

instanceAlias:string[0..1]

instanceIsConstant:boolean[1]

instanceIsVariable:boolean[1]

_

classIsVariable:boolean[1]

classVariableName:string[0..1]

_

distinct:boolean[1]

groupByThis:boolean[1]

lim it:string[0..1]

offset:string[0..1]

fullSPARQL:string[0..1]

comment:string[0..1]

_

indirectClassMembership:boolean[1]

labelServiceLanguages:string[0..1]

LinkedNode
is Inverse:boolean[1]

linkMode:LinkMode[1]

isSubQuery:boolean[1]

isGlobalSubQuery:boolean[1]

{dis joint} {complete}

SubqueryNode JoinNode

{dis joint} {complete}

ReferenceLink
is Inverse:boolean[1]

isNot:boolean[1]

_

target_node_id:string[1]

<<DataType>>

LinkMode

{"Plain", "Optional", "

Negation", "Filter Exists"}

AttributeCondition
exp:string[1]

parsed_exp:ParsedExp[0..1]

LinkInfo
_id:string[1]

parsed_exp:ParsedExp[0..1]

local_name:string[1]

nodeInfo 1

field *

aggregation *

condition *

ordering *

grouping *

linkInfo

1

aggregation *

ordering *

grouping

*

child *

linkInfo

1

referenceLink *

attributeCondition

0..1
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type, the linked nodes are split into the JoinNode and SubqueryNode classes, where the 

subquery nodes can have further information items (e.g., aggregations, groupings, and 

orderings). The reference links (cf. Section 2.4) go into a separate class ReferenceLink, 

such a link is attached to its source node and describes the target node in textual form. 

 

 
Figure 14. ViziQuer graphical query and its abstract syntax tree 

Each graphical element (nodes, links, and node/link compartments: fields, conditions, 

aggregations, groupings, and ordering) has an _id attribute that technically identifies the 

element; for nodes, the _id attribute is stored in the related NodeInfo instance, and for 

links – in the LinkInfo instance (so, for a LinkedNode instance there shall be both the 

node and its incoming structure link identifications available). 

The references from the AST structure to the data model with the class and property 

information are limited to local_name, iri, prefix and is_local information in the 

NodeInfo class and local_name information in the LinkInfo class. There is, however, a 

parsed_exp attribute for all diagram elements that contains a parsed form of the textual 

expression placed in the element and the references to the data schema are provided from 

therein.  
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The AST is built from the diagram presentation model provided by the platform (cf. 

Figure 12) and the associated data schema information in two stages:  

(i) Initial structure creation, builds all model information, except the parsed_exp 

attribute and the explicit references to the data model, and 

(ii) Full AST creation based on the initial AST structure, involving expression 

parsing, name resolution (based on the data model information and on the 

names defined within the query) and creation of the symbol table (ST). 

Figure 14 outlines an example of the ViziQuer graphical query in the initial AST 

notation, with expression parsing and schema element identification yet to be done. 

3.2. The Symbol Table 
 

The role of the symbol table is to identify names (identifiers) defined in a query, hold 

information on their typing and kind, as well as scope – accessibility in different nodes 

in the query (apart from the names described in the symbol table, the expressions at 

nodes can also use property and class names from the data model; these are introduced 

into the symbol table only if they make the entire expression field that can be further on 

referred to from other places in the query). 

The symbol table is built initially based on the initial AST structure (not involving 

the schema information and parsed expressions) and is further enriched in parallel with 

the process of resolving the names appearing in the AST expressions (cf. Section 3.4). 

 

 
Figure 15. Structure of the Symbol Table 

The structure of the symbol table is outlined in Figure 15. For each node the set of 

the names visible in its context is maintained, each name can have one or several 

descriptions denoting the possible different meanings of the name (the case with one 

description of a name is typical, however, several descriptions are possible, as well).  

In the name description, the kind of the name shall have one of the following values: 

 PROPERTY_NAME – the name is introduced in the query as a data model 

property. 

 CLASS_NAME – the name is introduced in the query as a data model class. 

SymbolTable

Node
id:string[1]

Description
kind:KIND[0..1]

type:Type[0..1]

context:string[1]

upBySubQuery:integer[0..1]

downBySubQuery:boolean[0..1]

upByOptional:boolean[0..1]

distanceFromClass:integer[0..1]

Type
iri:string[1]

prefix:string[1]

local_name:string[1]

display_name:string[1]

is_local:bolean[1]

object_cnt:integer[0..1]

data_cnt:integer[0..1]

max_cardinality:integer[0..1]

inverse_max_cardinality:integer[0..1]

property_type:string[0..1]

data_type:string[0..1]

<<DataType>>

KIND

{"PROPERTY_NAME",

"PROPERTY_ALIAS",

"CLASS_NAME",

"CLASS_ALIAS",

"AGGREGATE_ALIAS",

"BIND_ALIAS",

"REFERENCE_TO_ALIAS"}

Name
nameText:s tring[1]

type 0..1

node

*

name

*

description

*
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 PROPERTY_ALIAS – the name is defined in the query as an alias of a field 

holding a single property name or property path expression (can be implemented 

as a variable appearing in a SPARQL Basic Graph Pattern).  

 BIND_ALIAS – the name is defined in the query as an alias of a field holding a 

more complex expression (requires BIND construct for implementation in 

SPARQL). 

 CLASS_ALIAS – the name is defined in the query as a name of an instance 

described by a node. 

 AGGREGATE_ALIAS – the name is defined in the query as an alias of an 

aggregated field (typically defined in some aggregated subquery). 

 REFERENCE_TO_ALIAS – the name is defined in the query via a field 

expression that refers itself to an alias described elsewhere (such a reference can 

be used to extend the scoping of the alias also to places where the original alias 

definition would not be accessible (typically used with deeply nested 

subqueries)). 

The accessibility of the names introduced in the query is summarized in Table 1. The 

contents of the symbol table reflect the availability of the names according to these rules.  

 

Table 1. Summary of name scoping/visibility rules in visual queries 

 
 

 This 
node 

Other 
nodes in 
the 
fragment 

Down by 
optional, 
negation, 
union, or 
sub-union 

Up by 
optional, 
union, or 
sub-union 

Down by 
subquery 

Up 1 level 
through a 
subquery 
link 

Instance name 
(Class alias)   

Yes Yes Yes Yes (3)  Yes (4) No (select 
as a field 
to export) 

Property name 
(implicit alias) 

Yes (1)  Yes (2) No Yes (3) No Yes (5) 

Explicit alias 
(Property, Bind 
Reference to 
alias) 

Yes (1) Yes (2) No Yes (3) No Yes (5) 

Aggregate alias No No No No No Yes (5) 
Legend:  

(1) can be used in conditions and aggregations; usage in instance field expressions is possible 

after the field introducing the name. 

(2) can be used in field expressions in nodes that are structurally above the node that 

introduces the name, as well as in conditions anywhere in the fragment. 

(3) can be used as a value, not as a starting point of a navigation expression; (2) applies, as 

well. 

(4) except in aggregate fields. 

(5) the field must be selected from the subquery; after the move up through the subquery link 

to the host node, the field is visible by default within the current fragment only.  

 

During the initial phase of construction (before the name resolution), the kind 

information for name descriptions shall have values CLASS_ALIAS and 
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AGGREGATE_ALIAS (these are known from the initial AST structure) and shall use 

temporary markers UNRESOLVED_FIELD_ALIAS (in the case, if the field has an 

alias) and UNRESOLVED_NAME (all other cases). 

Within the full symbol table (as constructed in Section 3.4) the name descriptions 

referring to the data model entities (i.e., being of the kind PROPERTY_NAME or 

CLASS_NAME) shall have type information describing the denoted entity (including 

e.g., the entity iri and display_name, as well as further data model information to be used 

in the user interface or the SPARQL query generation). 

The context attribute of a description holds the AST id of the node where the name 

has been defined (where the definition of the alias appears; for names from the data 

model the current node id is stored here). 

The remaining description attributes upBySubquery, downBySubquery, upByOptional 

and distanceFromClass assist in the symbol table building. 

Figure 16 shows a fragment of the symbol table for the query of Figure 14. 

 
Figure 16. A Symbol Table Fragment example 
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3.3. Expression Structure and Parsing 
 

Essentially, an expression is built by operations from constants (literals or IRIs), node 

and field references and path expressions that can be property paths (in the most 

common case – a single property from the data schema) or explicit query variables. To 

specify the expressions in textual form, a concrete expression syntax is needed. Since the 

expressions to be specified need to offer the constructs that are to be mapped into the 

SPARQL language (WEB, b), the SPARQL 1.1 syntax (its part, starting from the 

“Expression” rule) is used as the basis of the ViziQuer expression syntax. 

The ViziQuer expression grammar is provided in Appendix 1. If compared to the 

original SPARQL expression grammar, it has the following modifications: 

 There are no explicit SPARQL variable terms, built using the ‘?’ notation, in the 

ViziQuer expressions (except for standalone property and class variables not 

included in richer expression structures). 

In the places where the SPARQL grammar admits a variable (within a wrapping 

expression), the ViziQuer grammar permits using:  

o a reference to a node, a field, or an explicit query variable
7
 (to be 

translated into the corresponding SPARQL variable); such references 

can, for the sake of disambiguation, optionally include the @ prefix, or  

o a path expression (e.g., a property name), to be translated into: 

 a SPARQL triple relating the path expression (initial) 

reference item via the path expression to a new SPARQL 

variable, and 

 the use of the created SPARQL variable within the wrapping 

expression. 

 The class and property names, as well as individual resources can be specified 

using their unique display name form (syntactically, a text in [ and ] brackets, 

possibly prefixed by a namespace prefix), cf. Section 3.4. 

 If a URI in an expression has to be interpreted as a constant URI and not as a 

property URI denoting its value, ` needs to be used before the URI (as in 

`rdf:type). 

 A restriction on arithmetics: the operators +, -, * and / in the expressions need to 

be surrounded with spaces to distinguish their arithmetic operation meaning 

from their symbol usage in URIs or property path constructions. 

 There are custom shorthand notations introduced to support easier expression 

creation in different envisioned use cases (cf. also Section 2.6): 

o The property names can be suffixed by a language tag or their group, as 

in abc@en or abc@(en,de), for specifying property value selection in 

the designated languages only. 

o The path expressions can be specified using the point notation 

(H.admissionTime, patient.outpatientEpisode) following a UML-style 

convention for navigation expressions (the SPARQL-like syntax of 

using / as the path item separator is allowed, as well). 

                                                           
7 Note that even in the case of an explicit query variable (that has been introduced using the ? 

notation), the references to it from the expressions elsewhere are made without the ? prefix. 



 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation  335 

 

o A REGEX expression can be written in an infix form, using SQL-style 

~, and ~* (for case insensitive matching) or LIKE operators (so, 

REGEX(?ward, "1-2$"), ward ~ '1-2$' and ward LIKE '%1-2' all denote 

equivalent expressions).  

o BETWEEN notation: the expression lengthInDays BETWEEN (10, 30) 

is a shorthand for lengthInDays>= 10 && lengthInDays<= 30. 

o The initial substring, e.g., SUBSTRING(ward,1,3), can be specified by 

its length in the brackets (e.g., ward[3]).  

o The inverse property specification ^outpatientEpisode can be written 

also as INV(outpatientEpisode). 

o There is a shorthand notation for data differences that can be used for 

queries over OpenLink Virtuoso backed data endpoints: days(x-y) 

expresses the same, as bif:datediff("day", x, y); there are functions years 

and months, as well. 

The provided grammar is used to build a JSON-encoded parse tree for a given 

expression. The parsing in ViziQuer is done by PEG.js library (WEB, a). There are rules 

added to the grammar terms that identify the name entities within the expression text (in 

accordance with the places where the SPARQL grammar would have allowed a 

SPARQL variable, as described above), the parsing shall place each such entity under 

the var key in the created JSON representation (also covering the mark for a node/field 

reference (@), property as value mark (`) or property path modifier (?, * or +), if there is 

one coming with the name). These name entities are then further subjected to name 

resolution and kind/type enrichment, as described in Section 3.4, before storing the 

entire expression parse tree in the parse_exp attribute in the AST.  

3.4. Name Resolution and Expression Enrichment 
 

To enable the interpretation of expressions and their use in SPARQL query generation, 

the names used therein must be resolved as references to their definition in the query 

text, or as direct references to the entities (properties, classes) of the data model (data 

schema). 

The names to be resolved can be of the following forms: 

 @name – a plain string, prefixed by @, denoting a reference to a name, defined 

in the query, 

 prefix:name – a prefixed name, denoting a reference to an element (a class or a 

property) of the data model, or an unknown URI (if the reference cannot be 

found, and the prefix is known in the data model), 

 <iri> - a full iri, put in braces, denoting an element of the data model, or an 

unknown URI, 

 name – a plain string that can be interpreted either as a reference to a name or as 

a reference to a data model element that belongs to the default namespace, 

 [text] or prefix:[text] – text in square brackets, with or without the prefix part, 

denoting a designated display name (stored in the data model) for a data model 

entity, 

 `prefix:name – a prefixed name (with a known prefix), prefixed by `, denoting a 

property as value and not to be referenced as an element (a class or a property) of 

the data model. 
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The resolution of a name in an expression within AST involves setting the kind and 

type attributes for the name in the expression. If the name to be resolved is a plain 

string, then we distinguish two cases
8
: 

- if the name coincides with the whole expression, then it is checked, if it matches 

an available property from the default namespace within the data model; if so, the 

name is resolved as the found property name; otherwise, it is looked up in the 

symbol table, if the name is available in the context of this node (avoiding 

circular references of the name to itself, of course), and 

- if the name is a proper part of the expression, it is looked up first in the symbol 

table; if it is not found there, then it is looked up as a property from the local 

namespace within the data model. 

 

Figure 17. parse_exp content examples: caseRecordNo (a) and T_Count (b) from Figure 16. 

For a name resolved as a property from the data model (in the described cases of the 

plain string format, and the prefixed name, iri and bracketed text formats), its kind is set 

in the AST as DIRECT_PROPERTY (a kind distinct from any symbol table kinds) and 

the supplementary context information from the data model is retrieved and placed in its 

type attribute (cf. an example in Figure 17, a). 

                                                           
8 To avoid ambiguity, @ prefix can be used for the references to names defined in the query and 

prefix:name notation for references to the model properties; the plain string option has been 

offered for convenience. There are further restrictions not allowing the plain string option, if it 

is viewed as causing too much ambiguity (e.g., when the name matches both an alias defined in 

the query and a property in the default namespace). 
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For a name resolved as a name defined in the query, its kind and type are looked up 

in the symbol table for the node, filling it beforehand, if necessary.  

The records for the name in the symbol table (at different nodes) are filled with the 

kind and type at the point of processing the definition of the name within AST (note that 

a definition of the name occurs through an alias or through a reference to a property that 

constitutes the entire field expression). At this point the properties of the name in ST 

including kind (PROPERTY_NAME, PROPERTY_ALIAS, BIND_ALIAS or 

REFERENCE_TO_ALIAS), model type (for simple expressions) and max cardinality 

(possibly also for more complex expressions)) are retrieved from its defining expression, 

and they are also propagated to all places in ST that refer to the name definition.  

If a name in an expression cannot be resolved either as coming from the data model 

or as a name defined in the query (e.g., when a name in prefix:name form does not match 

the names known in the data model), its kind and type in AST are both set to null, 

however, it still can be used in the generated SPARQL query. If such an unresolved 

name is to be reflected in the symbol table, its kind attribute is still set to 

PROPERTY_ALIAS or PROPERTY_NAME, depending on whether the field with the 

unresolved expression has an alias or not (its type information is null also in the symbol 

table). 

Figure 17, b has a simple example of a parse tree involving a name whose kind is 

AGGREGATE_ALIAS. 

3.5. Query Environment Parameters 
 

The query diagrams (the projects consisting of the diagrams) in ViziQuer are provided 

with a set of parameters whose values can be set by the user and that can influence the 

way SPARQL queries are generated from the visual queries (different settings of 

parameters can lead to different query SPARQL queries and different results). It is 

possible to customize SPARQL generation in ViziQuer through the following 

parameters: 

DSS schema – the name of the schema that holds the data model and will be used for 

name resolution and for querying (used for accessing the appropriate data model). 

Use String Literal Conversion (the default value is “SIMPLE”):  

 SIMPLE – if in a comparison expression one side is a data property with type 

xsd:string and the other side is a string expression, the data property is embedded 

in STR function (gender="male" is considered to be str(gender)="male"). 

 TYPED – if in a comparison expression one side is a data property with type 

xsd:string and the other side is a string expression, the suffix ^^xsd:string is 

attached to the string expression (gender="male" is considered to be 

gender="male"^^xsd:string). 

 OFF – no transformations are done (this may result in overlooking literal 

equalities SPARQL query execution, as "male" and "male"^^xsd:string are 

different values). 

Query Engine Type – the type GENERAL invokes no expression transformation, 

while the value VIRTUOSO implies: 

 The shorthand expression days(a-b) is enabled for date value differences to 

denote bif:datediff("day",a,b), similar functions months and years are available, 
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as well; the expressions a and b are surrounded by xsd:dateTime(..), if they are of 

the data type xsd:date. 

 The substrings are implemented using bif:substring function. 

Use Default Grouping Separator – specify the separator used in the aggregation 

function GROUP_CONCAT. The default value is “, ”. 

Direct Class Membership Role –direct class membership role used as a predicate 

value in the instance class triple (shall use rdf:type, if not specified). 

Indirect Class Membership Role – indirect class membership role used as a 

predicate value in the instance class triple when it is specified in the class to use the 

indirect role.  

Enable Wikibase Label Services – specifies whether to enable Wikibase Label 

Services for selecting labels and descriptions along with attributes in queries over 

Wikidata. 

 

4. SPARQL Query Generation 
 

In the next step, the ViziQuer graphical query abstract syntax is translated into a 

dedicated model for generating SPARQL queries. This translation also considers the 

symbol table and the parameters that are set by the user. The process starts with 

SPARQL variable name assignment to the names created and used in the query AST. 

4.1. SPARQL Variable Names 
 

The principal rule for the SPARQL variable name creation in the case of an explicitly 

provided name (alias) in the visual query is to prefix the explicit name by ? (so, the name 

X becomes the SPARQL variable ?X). This implies that if different items in the query 

are marked by the same explicit variable, they shall correspond also to the same 

SPARQL variable. In the case if no explicit name is provided for a query item, the name 

is auto-generated from the context information, if available (class name for node 

instances, property name for data model references within the fields (using the last 

property in the case of a property path)). The auto-generated names, however, are kept 

distinct (except in the case of alternate UNION branches) by the means of adding 

appropriate suffixes (so, two uses of a property :abc would result in variables ?abc and 

?abc_1).  

Regarding the use of a name in an expression, the name kind in AST distinguishes 

among the reference to an alias and a used property / data model element (cf. Section 

3.4). If the name denotes a data model element (or an unknown property), it introduces a 

new (locally used) auto-generated name. If the name is an alias, the symbol table is used 

to find the corresponding SPARQL variable name: each name description in ST at the 

node where the name is used shall have a corresponding introduction context 

information (in the case of multiple available contexts, if their SPARQL variable names 

coincide (this would correspond e.g., to the case of an explicit name introduced in 

multiple places), take this name; otherwise choose any of names and flag an error). 
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4.2. SPARQL Query Generation Model 
 

The structure of the SPARQL query generation model is outlined in Figure 18. The 

model is structured along the node, link, and field structure of the visual query, however, 

the data filled in are collected for the needs of the SPARQL query generation. 

The central class Node represents the node of the ViziQuer graphical query, with its 

child node structure and most of the node attributes inherited from the query AST 

(Figure 13). The node instance variable name (classInstance attribute) is generated, as 

explained in Section 4.1. The classDefinition attribute shall contain a textual SPARQL 

triple, asserting the class name of the node instance. Furthermore, the linkDefinition 

attribute is generated to contain the textual SPARQL form of the link triple connecting 

the node to its parent node.  

The blocks subordinated to the Node class contain further information relevant to the 

SPARQL query generation.  

 

 
Figure 18. SPARQL query generation model 

 

Node
classInstance:string
classDefinition:string
variableName:string
groupByThis:boolean
distinct:boolean
fullSPARQL:string
labelServiceLanguages:string
isUnion:boolean
isUnit:boolean
offset:integer
limit:integer
linkDefinition:string
linkMode:string
linkVariableName:string
isSubQuery:boolean
isGlobalSubQuery:boolean

AttributeDefinition
bound:string
bind:string
requireValues:boolean

AggregationBaseDefinition
requireValues:boolean

LocalAggregateSubQuery
subQueryText:string

FilterAsTripleDefinition

FilterExpression
expression:string

ReferenceLink
linkTripleText:string

Select

SimpleVariable
name:string

AggregateVariable
name:string
expression:string

Triple
triple:string

OrderBy Order
expression:string

OrderGroupBy
expression:string

DirectGroupBy Group
expression:string

ValuesDefinition
variables:string
dataBlock:string

LabelVariable
name:string

FilterBaseDefinition

Prefix
prefix:string
value:string

ImplicitGroupBy
expression:string

select 0..1

simpleVariable *

aggregateVariable *

childNode

*

attributeDefinition *

aggregationDefinition *

filterDefinition *

filter *

localAggregate *

referenceLink *

orderBy 0..1
order 1..*

groupBy *

triple *

groupBy 0..1

triple *

triple

*

triple

1..*

group 1..*

triple *

values *

labelVariable *

triple

*

filterAsTripleDefinition *

implicitGroupBy *
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Select contains the variables coming from the node (for nodes not inside negation 

blocks) that go into the select clause of the query (or the subquery involving the node 

fragment). The list consists of simple variables, label variables and aggregated variables. 

 Simple variables are created for distinct items in the following list:  

o variables from node attribute fields that are not marked in AST as helpers,  

o target node instances of reference links starting at the node if the node is 

within a subquery and the link goes out of the subquery scope, and  

o explicit references to nodes that are outside the subquery scope, made from 

attribute definitions (both triple and expression forms) and filters at the 

node. 

 Aggregate variable – a variable from a node aggregation field (for the main node of 

the query or a subquery). Each variable has a name and an expression to be 

computed. 

 Label variables are created for attributes marked by add Label, add AltLabel or add 

Description if the parameter Enable Wikibase Label Services is set. The label 

variable name has Label/AltLabel/Description suffix added to the base variable 

name. 

AttributeDefinition contains the SPARQL clauses describing simple non-aggregated 

attribute fields of the node (the instance fields whose expressions involve aggregate 

functions are reflected in LocalAggregateSubquery class instead). It consists of: 

- triple patterns for all properties included in the field expression, connecting their 

values to the node instance variable or another explicit navigation starting point, 

- bind clauses (formed if the attribute field contains an expression that is more 

than a property name/property path), 

- bound clause (formed if the field has required values, is implemented by a bind 

clause, and contains an expression not known to necessarily produce a value), 

- the requireValues mark for required attribute values (the triple patterns for an 

attribute without the mark are to be included in an OPTIONAL block). 

For instance, at a node n, the field with the expression totalCost - 3 and alias t creates 

a triple pattern ?n :totalCost ?totalCost and a bind clause BIND(?totalCost-3 AS ?t).  

AggregationBaseDefinition contains triple patterns for evaluating the properties 

within the aggregated function argument expression at an aggregation field of the node. 

For instance, the expression avg(totalCost / lengthInDays) at a node H shall lead to 

triples ?H :totalCost ?totalCost and ?H :lengthInDays ?lengthInDays. (Note: computing 

the expression itself and applying the aggregate function is recorded at Select class). 

FilterAsTripleDefinition is created when a condition can be expressed in the form of 

a triple connecting the node instance variable (or another reference point) by a property 

or a property path to a value (a literal or URI), or a fully introduced (non-optional) name. 

For instance, if the node H has a condition id = 12345, the triple shall be ?H :id 12345. 

The conditions that do not fit the triple form are expressed using FilterBaseDefinition 

and FilterExpression elements. The FilterExpression alone is used for conditions that 

fit into a single FILTER clause (as e.g., FILTER(?T >= 4) for the before defined variable 

?T) or FILTER EXISTS block (as e.g., FILTER EXISTS{?H :lengthInDays 

?lengthInDays. FILTER(?lengthInDays >= 10)} for expression lengthInDays >= 10). 

The FilterBaseDefinition is used to record the triples to be added to the query 

outside the FILTER expression, as e.g., ?H :lengthInDays ?lengthInDays outside 

FILTER(?lengthInDays >= 10); the FILTER part is still included in the 
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FilterExpression. The decision on whether to use the FILTER EXISTS or a simple 

FILTER form (with additional triples) depends on the multiplicity of the property 

(:lengthInDays in the example); either of the options can be enforced manually, as well. 

LocalAggregateSubQuery deals with the situation when there is an aggregate 

expression specified in an ordinary attribute field, invoking an aggregate subquery 

computation in the context of the node instance. The subQueryText attribute of the 

instance shall contain the entire subquery text, including the select, where and group by 

clauses. For instance, the field expression count(id) at a node H shall lead to the 

subquery text {SELECT ?H (COUNT(?id) AS ?id_COUNT)  WHERE{?H :id ?id.} 

GROUP BY ?H}.  

ReferenceLink contains the triple pattern reflecting a positive reference link from the 

current node to a referred node, cf. e.g., Figure 7, the link hospitalEpisode between 

HospitalEpisode and CPhysician classes. 

DirectGroupBy contains grouping expressions. It consists of: 

- variable names to be grouped by (the Group class), and 

- triple patterns for the property names in the group by expression (for instance, 

{?H :id ?id}, for id a model property (not a field alias) in the group by field of 

node H). 

The GROUP BY section of the generated SPARQL text (cf. Section 4.4) for 

aggregated queries, in addition to explicit grouping fields, shall contain references to all 

non-aggregated elements of the SELECT list (gathered in ImplicitGroupBy class). 

OrderBy describes the ordering expression. It consists of: 

- ORDER BY clause consisting of variables to be ordered, each with the DESC 

label, if specified, 

- triple patterns for the properties included in the order by an expression that does 

not match the fields defined in the query, and 

- names of variables introduced in the order by expression; to be included also in 

the GROUP BY clause (needs to contain also the non-aggregated ordering 

variables).  

4.3. SPARQL Query Model Creation Example 
 

To build the SPARQL generation model tree from the ViziQuer abstract query syntax 

tree from the AST example in Figure 14, the following steps are taken:  

Starting from the model tree root node: 

1. A node instance name ?H is generated from the root node instance name H. 

2. A triple pattern ?H a :HospitalEpisode. describing the class assertion of the node is 

generated from the root node identification information. 

3. The query simple select clause variables and the triple patterns describing properties 

are formed from attribute fields: 

a. The attribute field caseRecordNo is a data property from the schema, so a 

simple variable ?caseRecordNo is added to the Select section of the model 

into the SimpleVariable section, and the attribute definition triple pattern 

?H :caseRecordNo ?caseRecordNo is added to the AttributeDefinition 

section. 
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b. The attribute field T_Count is a reference to a subquery selection field, so, 

only a simple variable ?T_Count is added to the Select block of the model 

into the SimpleVariable section. 

4. A subquery clause is generated: 

a. A node instance name ?TreatmentInWard is generated from the node 

identification information (the class name, since no alias has been 

specified). 

b. A triple pattern ?TreatmentInWard a :TreatmentInWard. for the class 

assertion of the node is generated from the node identification information. 

c. An incoming link linkMode = REQUIRED and isSubQuery = TRUE 

properties are set. 

 

 

 
Figure 19. ViziQuer query abstract syntax tree and SPARQL query generation model tree 
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d. A triple pattern ?H :treatmentInWard ?TreatmentInWard. describing the 

link definition is generated from the current and the parent nodes’ 

information. 

e. The query aggregated select clause variables are formed from aggregation 

fields. (the notation count(.) is interpreted as the 

COUNT(TreatmentInWard) expression, so an aggregated variable 

COUNT(?TreatmentInWard) is added to the Select section of the model 

into AggregateVariable section. Since the triple pattern describing the class 

assertion of the node was already defined, no triple patterns are added to 

the model).  

5. A condition T_Count >= 4 is transformed into a filter expression 

FILTER(?T_Count >= 4) and is added to the FilterExpression section of the model. 

Since variable T_Count is a reference from the subquery, no triple pattern is added 

to the model. 

6. The Order by expression DESC(?T_Count) is added to the OrderBy section. 

Figure 19 outlines the described creation of the SPARQL query generation model. 

 

4.4. SPARQL Query Text Generation 

The last thing to be done is to generate the SPARQL textual query from the SPARQL 

Query Generation Model. 

The SPARQL text is generated in a certain order. First, the definition of all prefixes 

used in expressions in the query are retrieved from the data model and are placed in the 

SPARQL text. The SPARQL query SELECT clause is then generated to include: 

 Simple variables from all nodes that are not under negation or subquery links. 

 Aggregated variables from all nodes that are not under negation or subquery 

links. 

 Label variables from all nodes that are not under negation or subquery links. 

The query WHERE clause is built by collecting its textual form via traversing the 

SPARQL query abstract syntax tree, starting from the root node, collecting for each 

query fragment (set of nodes connected by required join links) the SPARQL code in the 

following order, split over the three phases: 
 

 Phase 1. Initial Structure: 

o Incoming links into fragment nodes, node class assertions and positive 

reference links and filters as triples among the fragment nodes and to 

nodes above the fragment. 

o The first required attribute of any data node in the fragment, not 

introduced so far (to have the node variable defined). 

o Grounding: re-introduction of names defined in the query above the 

fragment, used in the fragment and not defined in the fragment. 
 

 Phase 2. Required and optional subqueries attached to the fragment nodes, as 

well as Direct SPARQL texts of the subquery form, ascribed to the fragment 

nodes. 

 

 Phase 3. Main Traversal: For each fragment node, starting from the fragment 

head node, in a depth-first search manner: 
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o Processing of child nodes with required join links (in-fragment nodes),  

o Processing of UNION group fragments behind the node,  

o Processing of fragments behind optional join links from the node,  

o Attribute definitions (including triples and BIND/BOUND expressions) 

and VALUES clauses, in the order of their visual appearance, 

o Full SPARQL texts without subquery, attached to the node (the 

introduced names can be used e.g., in filters), 

o Filters as triple expressions (the ones not processed in Phase 1), 

o Filter base triple definitions,  

o At the fragment head node: filter expressions (including filter exists and 

filter not exists expressions) for all nodes from the fragment,  

o Negated subqueries (MINUS queries) attached to the node, 

o Aggregation base triple definitions (for fragment head node only). 

 

At the end of processing the main query or a subquery, the triple pattern definitions 

from the ORDER BY and the GROUP BY expressions are added to the SPARQL text 

and the GROUP BY, ORDER BY, OFFSET and LIMIT clauses themselves are added. 

We note that the order of collecting the SPARQL code fragments is important for the 

correct placement of place sensitive SPARQL constructs (e.g., MINUS or BIND), as 

well as a reasonable order of patterns in the query may enhance the readability of the 

created SPARQL queries and help the query execution engines to build a reasonable 

plan for query execution. The proposed and implemented SPARQL query generation 

order creates a particular SPARQL order; the possibilities of the visual query notation to 

encode a different pattern order in the SPARQL query may be limited. Ways of relaxing 

these limitations are a subject of future work and are beyond the scope of this paper. 

Figure 20 shows an example of the textual SPARQL query generated from the used 

SPARQL abstract syntax structure of the query of Figure 19. 

 

 
 

Figure 20. Textual SPARQL query corresponding to Figure 19 abstract structure. 

5. Conclusions 
 

We have demonstrated the feasibility of implementation of a rich visual query language 

over RDF data via its translation into the standard textual SPARQL query language. The 

source of the translation is an encoding of visual diagrams in the form of boxes, lines, 

and compartments, as provided by the generic visual DSL platform ajoo (Sprogis, 2016) 

and the translation target is the rich textual structure of SPARQL. The principal 
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milestones of the translation involve creation of an abstract query model, followed by a 

dedicated model for generating the textual SPARQL code out of the abstract query 

model structure.  

The identified query translation structures and steps separate the translation into 

self-standing blocks that can allow for being reused within other tasks of serving the 

visual query diagrams, as, e.g., using the abstract syntactic structure and the symbol table 

for context-based query completion, or reversely generating the visual presentation of an 

existing SPARQL query (the prototype functionality corresponding to both these use 

cases is available in the existing ViziQuer visual tool environment). There would also be 

a re-use possibility in creating other implementations of the visual query language (for 

instance, by translating the visual queries directly into SQL for execution over data back-

ends that are supported by relational databases). 

The described implementation solution can support a rich set of visual queries that 

involve optional and negated links, as well as aggregation and subqueries, and advanced 

expressions for the data selection and conditions. The visual notation permits reverse 

visualization of a rich set of SPARQL queries, as well. To be able to fine-tune the 

reverse translation SPARQL queries back into the visual notation, the visual notation 

still needs to be further enriched to include means for query clause ordering 

specification; we expect that a natural extension of the provided notation would be able 

to cope with the task. Another work in progress item relates to the named graph 

specification options that would require the expansion of the provided notation.  
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Appendix 1 – ViziQuer Expression Grammar
9
 

 

Expression = "[ ]" / "[ + ]" / "(no_class)" / ValueScope / ConditionalOrExpression / 

ClassExpr /"*" 

ValueScope = "{" (ValueScopeA / ValueScopeB / ValueScopeC) "}" 

ValueScopeA = INTEGER ".." INTEGER 

ValueScopeB = Scope ("," Scope)* 

ValueScopeC = (UNDEF / PrimaryExpression) ("," (UNDEF / PrimaryExpression))* 

Scope = "(" ((UNDEF / PrimaryExpression) ("," (UNDEF / PrimaryExpression))*) ")" 

ClassExpr = "(.)" / "." / "(select this)" / "(this)" 

ConditionalOrExpression = ConditionalAndExpression (("||"/ "OR") ConditionalAndExpression )* 

ConditionalAndExpression = RelationalExpression (("&&" / "AND") RelationalExpression )* 

RelationalExpression = RelationalExpressionA / RelationalExpressionB / RelationalExpressionC  

/ RelationalExpressionD 

RelationalExpressionA = NumericExpression ("IN" / "NOT" "IN") (ExpressionListA / 

ExpressionListB / ExpressionListC) 

RelationalExpressionB = ClassExpr Relation NumericExpression 

RelationalExpressionC = NumericExpression Relation ClassExpr) 

RelationalExpressionD = NumericExpression (Relation NumericExpression)? 

NumericExpression = AdditiveExpression 

AdditiveExpression = MultiplicativeExpression MultiplicativeExpressionList* 

MultiplicativeExpressionList = Concat / Additive / NumericLiteralPositive /  

NumericLiteralNegative 

Concat = "++"  MultiplicativeExpression 

Additive = ("+" / "-") MultiplicativeExpression 

MultiplicativeExpression = UnaryExpression UnaryExpressionList* 

UnaryExpression = ("!" / "-" )? PrimaryExpression 

UnaryExpressionList = ("*" / "/") UnaryExpression 

PrimaryExpression = BooleanLiteral / BuiltInCall / QName / iriOrFunction / RDFLiteral /  

BrackettedExpression / NumericLiteral / Var / DoubleSquareBracketName / LN 

PrimaryExpressionCOALESCE = BooleanLiteral / iriOrFunction / BuiltInCallNoFunction /  

RDFLiteral / BrackettedExpression / NumericLiteral / Var / DoubleSquareBracketName 

/ QName / LN 

BooleanLiteral = "true" / "false" 

RDFLiteral = StringQuotes (LANGTAG / ("^^" iri))? 

BrackettedExpression = "(" Expression ")" 

BuiltInCall = Aggregate / FunctionExpression / RegexExpression / SubstringExpression /  

SubstringBifExpression / StrReplaceExpression / ExistsFunc / NotExistsFunc 

BuiltInCallNoFunction = Aggregate / RegexExpression / SubstringExpression /  

SubstringBifExpression / StrReplaceExpression / ExistsFunc / NotExistsFunc 

Aggregate = AggregateA / AggregateB / AggregateC 

AggregateA = "COUNT_DISTINCT" "(" Expression ")" 

AggregateB = ("COUNT"/ "SUM"/ "MIN"/ "MAX"/ "AVG"/ "SAMPLE") "(" "DISTINCT"? Expression ")" 

AggregateC = "GROUP_CONCAT" "(" "DISTINCT"? Expression SEPARATOR? ")" 

SEPARATOR = (";" "SEPARATOR" "=" StringQuotes ) / ("," (StringQuotes)) 

FunctionExpression = FunctionExpressionC / FunctionExpressionA / FunctionExpressionB /  

IFFunction / FunctionExpressionD / FunctionExpressionLANGMATCHES / FunctionCOALESCE 

/ BOUNDFunction / NilFunction / BNODEFunction 

FunctionExpressionA = ("LANG" / "DATATYPE" / "IRI" / "URI" / "ABS" / "CEIL" / "FLOOR" /  

"ROUND" / "STRLEN" / "STR" / "UCASE" / "LCASE" / "ENCODE_FOR_URI" / "YEAR" / 

"MONTH" / "DAY" / "HOURS" / "MINUTES" / "SECONDS" / "TIMEZONE" / "TZ" / "MD5" / 

"SHA1" / "SHA256" / "SHA384" / "SHA512" / "isIRI" / "isURI" / "isBLANK" / 

"dateTime" / "date" / "isLITERAL" / "isNUMERIC") "(" Expression ")" 

FunctionExpressionB = ("LANGMATCHES" / "CONTAINS" / "STRSTARTS" / "STRENDS" / "STRBEFORE" /  

"STRAFTER" / "STRLANG" / "STRDT" / "sameTerm") "(" Expression "," Expression ")" 

FunctionExpressionC = ("days" / "years" / "months" / "hours" / "minutes" / "seconds" ) "("  

PrimaryExpression "-" PrimaryExpression ")" 

                                                           
9 The actual implementation uses a wider range of characters for literals and variable names, 

allowing Unicode in delimited string constants, as well as variable names, surrounded by [ and 

]. 



 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation  349 

 
FunctionExpressionD = ("COALESCE" / "CONCAT") ExpressionListA 

FunctionCOALESCE = PrimaryExpressionCOALESCE "??" PrimaryExpressionCOALESCE  

FunctionExpressionLANGMATCHES = (PNAME_LN / QName / LN) (LANGTAG_MUL / LANGTAG) 

BOUNDFunction = "BOUND" "(" PrimaryExpression")" 

NilFunction = ("RAND" / "NOW" / "UUID" / "STRUUID") NIL 

BNODEFunction = "BNODE" (("(" Expression ")") / NIL) 

IFFunction = "IF" "(" Expression "," Expression "," Expression ")"  

RegexExpression = "REGEX" "(" Expression  "," Expression ("," Expression)? ")" 

SubstringExpression = ("SUBSTRING"/"SUBSTR" ) "(" Expression "," Expression (","  

Expression)? ")" 

SubstringBifExpression = ("bif:SUBSTRING" / "bif:SUBSTR" ) "(" Expression  "," Expression  

("," Expression)? ")" 

StrReplaceExpression = "REPLACE" "(" Expression  "," Expression ("," Expression)? ")" 

ExistsFunc = ExistsFuncA / ExistsFuncB 

ExistsFuncA = "EXISTS" ("(" Expression ")") / Expression 

ExistsFuncB = "{" Expression "}" 

NotExistsFunc = NotExistsFuncA / NotExistsFuncB 

NotExistsFuncA = "NOT" "{" Expression "}" 

NotExistsFuncB = "NOT" "EXISTS"? ("(" Expression ")") / Expression 

ExpressionListA = NIL / "(" Expression  ( "," Expression )* ")"  

ExpressionListB = "{" Expression  ( "," Expression )* "}" 

ExpressionListC = "{" INTEGER ".." INTEGER "}" 

LANGTAG = "@" StringLang 

LANGTAG_MUL = "@" "(" (StringLang ("," StringLang)*) ")" 

iri = IRIREF / PNAME_LN 

IRIREF = "<" ([A-Za-z_0-9:.#/-()%,] / "\\")* ">" 

PNAME_NS = (PN_PREFIX? ":") 

PNAME_LN = "@"? "`"? PNAME_NS (CharsStringVarname / BasicCharStringNum)  

SubstringBetweenLikeExpression 

PN_PREFIX = BasicCharString 

iriOrFunction = iri ArgList? 

ArgList = ("(" "DISTINCT"? ArgListExpression ")" ) / NIL 

NIL = "(" ")"  

ArgListExpression = Expression ( "," Expression )* 

NumericLiteral = NumericLiteralUnsigned / NumericLiteralPositive / NumericLiteralNegative 

NumericLiteralUnsigned = DOUBLE / DECIMAL / INTEGER 

NumericLiteralPositive = DECIMAL_POSITIVE / DOUBLE_POSITIVE / INTEGER_POSITIVE 

NumericLiteralNegative = DECIMAL_NEGATIVE / DOUBLE_NEGATIVE / INTEGER_NEGATIVE 

DECIMAL = [0-9]* "." [0-9]+ 

DOUBLE = ([0-9]+"."[0-9]*[eE][+-]?[0-9]+)/("."([0-9])+[eE][+-]?[0-9]+)/(([0-9])+ [eE] [+-]?  

[0-9]+) 

INTEGER = [0-9]+  

INTEGER_POSITIVE = ("+" INTEGER) 

DECIMAL_POSITIVE = ("+" DECIMAL) 

DOUBLE_POSITIVE = ("-" DOUBLE) 

INTEGER_NEGATIVE = ("-" INTEGER) 

DECIMAL_NEGATIVE = ("-" DECIMAL) 

DOUBLE_NEGATIVE = ("-" DOUBLE) 

Var = ("??" VARNAME?) / ("?" VARNAME) / ("$" VARNAME) 

StringQuotes = STRING_LITERAL1 / STRING_LITERAL2 

STRING_LITERAL1 = "'" QuotedString "'" 

STRING_LITERAL2 = doubleQuotes QuotedString doubleQuotes 

QName = Path / PathBrRound /PathBr 

Path = PathAlternative SubstringBetweenLikeExpression 

PathBrRound = "[[(" PathAlternativeBr SubstringSpec? ")]]" BetweenExpression? 

LikeExpression? 

PathBr = "[[" PathAlternativeBr SubstringSpec? "]]" BetweenExpression? LikeExpression? 

PathAlternative = PathSequence ("|" PathSequence)* 

PathAlternativeBr = PathSequenceBr ("|" PathSequenceBr)* 

PathSequence = PathEltOrInverse (("." / "/") PathEltOrInverse)+  

PathSequenceBr = PathEltOrInverse (("." / "/") PathEltOrInverse)*  

PathEltOrInverse = PathEltA / PathEltB 
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PathEltB = "^"? PathElt 

PathEltA = "inv" "(" PathElt ")" 

PathElt = PathPrimary PathMod? 

PathPrimary = ("!" PathNegatedPropertySet) / iriP / ("(" Path ")") / LNameP/ "a" 

PathNegatedPropertySet = PathNegatedPropertySetBracketted / PathOneInPropertySet 

PathNegatedPropertySetBracketted = "("(PathOneInPropertySet("|" PathOneInPropertySet)*)? ")" 

PathOneInPropertySet = PathOneInPropertySet2 / PathOneInPropertySet1 

PathOneInPropertySet1 = "^"? (iriP / LNameP/ 'a') 

PathOneInPropertySet2 = "inv" "(" (iriP / LNameP/ 'a' ) ")" 

iriP = IRIREF / PNAME_LNP / PNAME_NSP 

PNAME_NSP = PN_PREFIX? ':' 

PNAME_NSPSQ = BasicCharString ":" 

PNAME_LNP = "@"? PNAME_NSP (BracketedCharString / BasicCharString) 

LNameP = "@"? (BracketedCharString / BasicCharString) 

LN = LNameINV / LNameINV2 / LName 

LNameSimple = CharsStringVarname / BasicCharString 

LName = "@"? "`"? LNameSimple PathMod? SubstringBetweenLikeExpression  

LNameINV = "@"? "`"? "INV" "(" PNAME_NS? LNameSimple ")" SubstringBetweenLikeExpression 

LNameINV2 = "@"? "`"? "^" LNameSimple SubstringBetweenLikeExpression 

DoubleSquareBracketName = "`"? PNAME_NSPSQ? BracketedCharString 

CharsStringVarname = "[[" BasicCharString "]]" 

SubstringBetweenLikeExpression = SubstringSpec? BetweenExpression? LikeExpression? 

SubstringSpec = "[" (INTEGER ("," INTEGER)?) "]" 

BetweenExpression = "BETWEEN" "(" NumericExpression "," NumericExpression ")" 

LikeExpression = LikeExpressionA / LikeExpressionB 

LikeExpressionA = ("LIKE" / "~*" / "~") (likeStringA / likeStringB) 

LikeExpressionB = ('~*' / '~') (likeStringC / likeStringD) 

likeStringA = doubleQuotes "%"? ([A-Za-z0-9_])+ "%"? doubleQuotes 

likeStringB = "'" "%"? ([A-Za-z0-9_])+ "%"? "'" 

likeStringC = doubleQuotes ([A-Za-z0-9_^* .])+ doubleQuotes 

likeStringD = "'" ([A-Za-z0-9_^* .])+ "'" 

doubleQuotes = '"'/ '“' / '”' 

BasicCharString = [A-Za-z_-] [A-Za-z0-9_-]* (("..") [0-9]*)? 

BasicCharStringNum = [A-Za-z0-9_-] [A-Za-z0-9_-]* (("..") [0-9]*)? 

BracketedCharString = "[" [A-Za-z0-9_ ] ([A-Za-z0-9_., -()/] / "'")* "]" 

StringLang = [A-Za-z]+ 

QuotedString = ([A-Za-z0-9] / "\\" / "[" / "]" / [-_.:, ^$()!@#%&*+?|/])* 

VARNAME = [A-Za-z_] [A-Za-z0-9_]* 

Relation = "=" / "!=" / "<>" / "<=" / ">=" /"<" / ">" 

PathMod = "?" / "*" / "+" 
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