
Baltic J. Modern Computing, Vol. 11 (2023), No. 2, 317-350

https://doi.org/10.22364/bjmc.2023.11.2.07

Visual Diagrammatic Queries in ViziQuer:

Overview and Implementation

Jūlija OVČIŅŅIKOVA, Agris ŠOSTAKS, Kārlis ČERĀNS

Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga, LV-1459, Latvia

julija.ovcinnikova@lumii.lv, agris.sostaks@lumii.lv,

karlis.cerans@lumii.lv

ORCID 0000-0002-5884-763X, ORCID 0009-0003-5987-1644, ORCID 0000-0002-0154-5294

Abstract. Knowledge graphs (KG) have become an important data organization paradigm. The

available textual query languages for information retrieval from KGs, as SPARQL for RDF-

structured data, do not provide means for involving non-technical experts in the data access

process. Visual query formalisms, alongside form-based and natural language-based ones, offer

means for easing user involvement in the data querying process. ViziQuer is a visual query

notation and tool offering visual diagrammatic means for describing rich data queries, involving

optional and negation constructs, as well as aggregation and subqueries. In this paper we review

the visual ViziQuer notation from the end-user point of view and describe the conceptual and

technical solutions (including abstract syntax model, followed by a generation model for textual

queries) that allow mapping of the visual diagrammatic query notation into the textual SPARQL

language, thus enabling the execution of rich visual queries over the actual knowledge graphs. The

described solutions demonstrate the viability of the model-based approach in translating complex

visual notation into a complex textual one; they serve as “semantics by implementation”

description of the ViziQuer language and provide building blocks for further services in the

ViziQuer tool context.

Keywords: Knowledge graphs, RDF, SPARQL, Visual queries, ViziQuer

1. Introduction

Knowledge graphs (Hogan et al., 2021), a data structuring paradigm, based on the graph

data model of labelled nodes and edges, have become important for storing, aggregating,

and linking information coming from various domains. Knowledge graphs are used on

the web scale to support search engines. They are the way of information organization

for Linked Open Data (WEB, d), where DBPedia (Auer et al., 2007) and Wikidata

(Vrandečić and Krötzsch, 2014) are major data set examples. By describing the data on

the level of semantic entities and relationships the knowledge graphs provide a higher

and more user-friendly view of the data than, for instance, the relational databases (that

describe the entities and their relations via primary and foreign keys).

https://doi.org/10.22364/bjmc.2023.11.2.07
mailto:julija.ovcinnikova
mailto:julija.ovcinnikova
mailto:karlis.cerans@lumii.lv

318 Ovčiņņikova et.al.

Regarding knowledge graphs stored in the W3C standard RDF data format (Hayes

and Patel-Schneider, 2014), the textual SPARQL language (WEB, b), also a W3C

standard, is the common language for data querying. Besides the options for basic data

pattern specification, SPARQL includes ways for rich query creation, involving, e.g.,

optional and negated fragments, aggregation, subqueries, and advanced property value

conditions (way more than just equality and value intervals). The textual form of the

SPARQL queries, however, complicates its use by various domain experts, and may not

be the most convenient also for IT professionals.

There are a variety of tools and methods that can assist users in SPARQL query

creation. There are tools such as YASGUI (Rietveld and Hoekstra, 2013) that provide

help to the user in the creation of the textual form of the SPARQL query via syntax

highlighting and text auto-completion facilities. Their strength is support for full

SPARQL query functionality. Still, the range of users of the textual editors is limited to

the SPARQL specialists, because to work with the textual SPARQL editor it is necessary

to know both the SPARQL language and the data schema that is being queried.

The tools like PepeSearch (Vega-Gorgojo et al., 2016) and WYSIWYQ (Khalili and

Meroño-Peñuela, 2017) offer means of SPARQL query construction via interaction with

forms, where the values from the drop-down menus or radio buttons are chosen and text

is entered in input fields. Their clear strength is ease to use for different user groups,

how-ever, they are much more limited with respect to the kinds of supported SPARQL

queries.

An interesting SPARQL query creation assistant is SPARKLIS (Ferré, 2017) that is

based on the user interaction with the text snippets in controlled natural language,

placing them together to obtain a textual description of the query. SPARKLIS can be

praised for supporting most of the full SPARQL constructs, still, the used text snippets

and the created controlled textual query formulations may seem to be somewhat

artificial, and they may not always be the best way of describing and presenting the

query structure.

Visual diagrammatic environments form another group of SPARQL query creation

assistants, some of them (distantly) similar in style to the visual query builders for

relational databases. Some of the visual diagram tools follow the UML-style (class-

attribute-link) presentation of the data query backbone, such as Optique VQs (Soylu et

al., 2018), LinDA Query Designer (WEB, c), SPARQLGraph (Schweigerr et al., 2014)

and ViziQuer (cf. (Zviedris and Barzdins, 2011; Čerāns et al., 2018b)). Others use a

more detailed graphical presentation with attribute variables placed in separate graph

nodes, such as e.g., QueryVOWL (Haag et al., 2015), RDF Explorer (Vargas et al.,

2019), GRUFF (Aasman, 2017), and early works on SEWASIE (Catarci et al., 2003) and

NITELIGHT (Russell and Smart, 2008).

While most of the visual diagrammatic query tools have such features as SPARQL

endpoint querying, drag-and-drop, search, and auto-completion functionality, along with

tool-specific features, the majority of the SPARQL query tools support only simple

conjunctive queries and do not support the constructs such as sub-queries, aggregation,

and advanced expressions. There is outer level aggregation possibility in Optique VQs

and LinDA Query Designer, however.

The ViziQuer tool (Čerāns et al., 2018b) with its initial notation presented in (Čerāns

et al., 2017) and (Čerāns et al., 2018a) allows using the visual diagrammatic method for

creating rich visual queries with optional and negated blocks, aggregation, subqueries,

and advanced expressions, covering most of SPARQL 1.1 SELECT query constructs.

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 319

This notation would allow a user that has started exploiting the visual query notation for

simple query creation not to get stuck also when more complex tasks to be solved come

at hand. There are also interesting options (cf. (Čerāns et al., 2021a, 2022a, 2022b)) for

generating a visual query from a given SPARQL query text (also with the rich query

constructs supported) and usage examples of the notation (cf. (Čerāns et al., 2019,

2021b)) reported.

The experience with the visual query creation in ViziQuer has shown, however, some

necessary improvements and extensions of the notation, if compared to (Čerāns et al.,

2017) and (Čerāns et al., 2018a), including, e.g., (i) explicit existence-checking edges,

(ii) compartment-related filters, (iii) explicit grouping compartments, (iv) distinction

among simple and non-duplicated condition implementation and (v) explicit support for

Wikidata (Vrandečić and Krötzsch, 2014) language services.

This paper is the first one to provide an integrated account of the ViziQuer visual

language with the extended features. The principal point of the paper, however, is to

explain the principles and solutions behind the implementation of the ViziQuer visual

query language, including the structures, techniques and algorithms used for the actual

mapping of its complex visual structures into text-based ones of the SPARQL language.

The query translation uses the query abstract syntax tree (AST) that presents the

query structure in accordance with the conceptual visual query components as nodes,

links, data fields and conditions, as well as parsed textual expressions and resolved

names of the data schema elements. When the AST is built from the technical query

format natively supported by the diagramming engine, it is further on transformed into a

scaffolding model for SPARQL query generation, from which the textual SPARQL

query form is obtained.

The presented visual query implementation can be viewed as an experience story of

applying a model-based conceptualization to a complex transformation task among

radically different notations (a visual diagrammatic and a textual one) describing the

same computational artefact (a query to retrieve the data from a knowledge graph).

Regarding the visual query notation itself, the provided query translation account can

be seen as a “semantics by implementation” description that is provided here for the first

time and includes details as visibility scope for introduced names and the order of blocks

in the generated SPARQL query that, while being important for a wide range of queries,

except the simplest ones, also has not been described before.

The ViziQuer software described in this paper is available online both as a

playground environment
1
 and an open-source project repository

2
.

In what follows, Section 2 provides an overview of the ViziQuer visual query

notation (what are queries that need to be translated into SPARQL). Section 3 outlines

the query translation process and develops its basic structures of AST and the symbol

table. Section 4 then describes the SPARQL query generation, including the SPARQL

query generation model structure and the process of its construction, as well as the

generation of the textual form of the SPARQL query. Section 5 concludes the paper.

1 https://viziquer.app
2 https://github.com/LUMII-Syslab/viziquer

320 Ovčiņņikova et.al.

2. ViziQuer Notation Overview

A visual query is created in the context of a data model that provides the vocabulary of

entities, mapping an entity’s local name and optional name prefix to the full entity URI,

as well as stating the applicability, ordering and cardinalities of properties in the context

of the model classes. In what follows, we shall demonstrate queries over a simple mini-

hospital data schema, shown in Figure 1. The names of properties connecting the classes,

if not specified, coincide with the target class name with a lowercase first letter. There is

the default minimum and maximum cardinality 1 assumption for properties.

Figure 1. Example hospital schema (domain ontology) fragment (cf. (Barzdins et al., 2016;

Čerāns et al., 2018a))

2.1. Basic Visual Queries

A basic visual query (cf. (Zviedris and Barzdins, 2011; Čerāns et al., 2017)) is a UML

class diagram style graph with nodes describing data instances, edges describing their

connections and fields forming the query selection list from the node instance model

attributes and their expressions; every node can also specify the instance class and

additional conditions on the instance. One of the graph nodes is the main query node

(shown as an orange round rectangle in the concrete syntax); the structural edges (all

edges except the reference ones, cf. Section 2.4) within the graph form its spanning tree

with the main query node being its root.

Figure 2 shows an example basic visual query: find 10 most expensive hospital

episodes that last for at least 10 days, have a discharge reason specified and have a

patient without any outpatient episode; list episode case record number, total cost and -

discharge reason, the patient’s name and birth year, and the name of the referring

physician if specified.

The links in the query have ascribed the property names (property paths are possible)

from the data schema (property variables are allowed, as well). A link can be required

(e.g., patient in Figure 2), optional (e.g., referringPhysician) and negated (e.g.,

outpatientEpisode). The query part behind an optional or a negation edge construction is

seen as included in the optional or negation query block, respectively.

Each node in the query may (but is not required to) contain a class specification (e.g.,

HospitalEpisode, CPhysician, etc. in Figure 2).

HospitalEpisode
admissionTime:dateTime

dischargeTime:dateTime[0..1]

dischargeReason:{"cured", "

deceased", "other"}[0..1]

lengthInDays:integer

totalCost:decimal

caseRecordNo:integer

responsiblePhysician:CPhysician

referringPhysician:CPhysician[0..1]

admissionDiagnosis:CDiagnosis[*]

dischargeDiagnosis:CDiagnosis[*]

<<EnumClass>>

CDiagnosis
code:string

name:string

<<EnumClass>>

CPhysician
personCode:string

name:string

surname:string

OutpatientEpisode
visitDate:date

visitDuration:decimal

visitCost:decimal

physician:CPhysician

outpatientDiagnosis:CDiagnosis[*]

Patient
personCode:string

name:string

surname:string

gender:{"male", "female"}

birthDate:date

familyDoctor:CPhysician[0..1]

TreatmentInWard
ward:string

arrivalTime:dateTime

transferTime:dateTime

orderNo:integer

attendingPhysician:CPhysician

*

**

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 321

Figure 2. An example basic visual query and its translation into SPARQL

For a node, it is possible to specify data fields, each holding a property or an

expression to be selected in the query (together with an optional alias, e.g., Y or DName

in Figure 2). By default, all selection fields in the query nodes are optional; a mark {+}

marks the field to require values (as in {+}dischargeReason). There is also an option to

mark an attribute as a helper (using mark {h}); that would mean finding the attribute but

not including it in the selection list (such an attribute can still be referred to from other

parts of the query).

Additionally, conditions over values of fields and other instance properties can be

introduced (e.g., lengthInDays >= 10); they work as conditions over the selected data.

There can also be data ordering expressions and slicing (limit, offset) specifications.

A query node can also have a data instance specification, either as a constant data

resource (URI) or, more typically, as an instance name (e.g., E in Figure 2) that can be

referred to from expressions in other parts of the query.

2.2. Aggregation and Grouping

The aggregated fields in the query can be placed in the main node of the query (and in

the main nodes of “subqueries”, introduced in Section 2.3) visually placed above the

compartment for the class name (cf. H_count and T_avg in Figure 3). The body of such a

field involves an aggregation function and its body expression – the aggregation subject

that is typically the node instance itself (denoted by (.), as in count(.)), or some its

property value (as in avg(totalCost)), or even a more complex expression.

If a query has non-aggregated attributes (selection fields), such as dischargeReason

and gender in Figure 3, along with the aggregated ones, an implicit grouping over all

non-aggregated selection fields is assumed (other grouping fields can be specified in

explicit “group by” area, if necessary). Multiple aggregations are allowed within one

322 Ovčiņņikova et.al.

node (as H_count and T_avg in Figure 3) if the aggregate expressions do not refer to

“multi-valued” properties (the property totalCost in the hospital model has maximum

cardinality 1), where that could distort the scope of other aggregations (if the “other

aggregation” uses min() or max() function, the distortion does not happen, as it could for

e.g., count() or sum()).

Figure 3. An aggregate query example: find count and average total cost for hospital episodes,

grouped by their discharge reason and the patient’s gender.

2.3. Subqueries

An important query construct in SPARQL 1.1, expanding substantially the query

language capabilities, is that of a subquery, allowing to compute results that are further

“injected” into the “outer”/“hosting” query. The visual query notation provides a concept

of a subquery edge between a “host node” and a “linked node”, allowing the fragment of

the query that is behind the linked node to compute, within a subquery, some

characteristics of the host node, that can be further referred to from the outer query.

Technically, a subquery consists of the subquery edge (including its end element at the

host node) and the entire query structure fragment behind the subquery edge.

A subquery would typically include an aggregation (possibly even as the sole explicit

selection item). Figure 4 shows a simple query with subqueries.

Figure 4. Visual subquery example

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 323

In the simplest case, the subquery edge can be ascribed a property (as

treatmentInWard and admissionDiagnosis in Figure 4) linking the host and linked nodes.

The unconstrained (labelled by ++) and same-data (labelled by ==) edges (cf. Section

2.5) give further flexibility in the subquery construction.

A subquery link can be required, optional and negated (corresponding to SPARQL

MINUS construct). A specific form of subquery is checking for the existence of a related

resource, where the subquery would have no explicit selection fields, still the “existence

checking” mode of the subquery needs to be asserted explicitly (to avoid the result set

duplication in the case if the subquery pattern can be matched in multiple ways for a

single host instance)
3
. Figure 5 provides an example. Note that the existence checking in

simple cases can also be done by a textual condition, in the Figure 5 example situation

such a condition would be exists(hospitalEpisode.lengthInDays >= 5) in the sole Patient

node.

Figure 5. Checking for the existence of a related resource in a subquery

The order by, limit and offset constructs are not allowed in the most typical subquery

form of “local subqueries” meant for instance context property analysis
4
. There is a form

of a “global subquery” in the visual notation, lifting these restrictions and making it clear

that these queries cannot be used for context computation.

2.4. Reference Links

The visual notation allows creation of queries that have a richer than a tree-shaped

structure. For this sake the reference
5
 links are introduced that can add extra connections

between the nodes of the query spanning tree defined by the query structure links, such

as e.g., the join links and subquery links. A reference link can be required or negated,

thus placing an extra assertion or its negation on the data to be selected (the optional

3 This is different from the initial notation presentation in (Čerāns et al., 2017)), where the

subqueries had the “existence checking” semantics by default. The change does not affect the

most common case of aggregated subqueries, where the duplication of the subquery result rows

is not possible, however, the new option allows introducing also non-aggregated subqueries

without implicit enforcing of the existence checking or distinct value selection mode.
4 This is due to the subquery semantics in SPARQL, where the visual queries are translated into. It

requires a subquery to be computed globally before embedding its results into the outer query.
5 This type of link is called “condition” in (Čerāns et al., 2017)) to reflect the intuition that these

are added as triple conditions on top of an existing query structure.

324 Ovčiņņikova et.al.

reference links are not foreseen in the notation, as they would have logically void

contents). Figure 6 shows an example of a negated reference link. In queries with nested

block structure (due to e.g., subqueries or optional/negated structure links) a reference

link can be allowed from a structurally deeper query block to a higher one.

Figure 6. Example of a negated reference link: count the treatments in ward that have the

attending physician that is not the responsible physician for the wards’ hospital episode6.

2.5. Query Structure Extensions

The constructs introduced so far allow the creation of a wide range of visual queries,

where the query structure matches the class and property structure of the data model. To

expand the capabilities of the visual notation, the free edges (labelled by ++) and same-

data edges (labelled by ==) are provided. A free edge just connects the nodes in the

query structure without creating a data connection between them (typically, such a

connection shall be created by reference links or cross-references to the node names in

condition expressions). The same-instance edge, labelled by “==”, provides a way of

having the same data instance, represented by more than one node (this might be useful

e.g., when more than one class name is to be specified for an instance, or when an

instance node needs to be present both within a hosting query and a subquery). An

alternative to using the “==” notation would be using the free “++” edge between the

nodes while additionally using the same name of an instance in both examples. Figure 7

shows an example of using a negated free edge together with the subquery and reference

link constructs (the OutpatientEpisode O needs to be brought into the subquery together

with the HospitalEpisode H to have the name H visible at O).

Besides the free and same-data edges, there are also control (non-data) nodes, the

unit node [] and the union node [+] that can be used for further query structuring.

These nodes do not themselves describe any data instance, however, they can specify the

fields, conditions, aggregations and orderings with the expressions referring to the data

computed at other nodes (typical for []). If a control node is directly under a data node

in the query structure tree (typically for [+]), the data node properties and links can be

used in the context of the control node, as well. Figure 8 and Figure 9 show examples of

the usage of the unit and union nodes, respectively.

6 The definite articles are used in the query formulation since the maximum cardinality of the

involved properties is 1.

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 325

Figure 7. Example of a free link (++): Count the patients that have at least 3 hospital episodes

and do not have any earlier outpatient episodes.

An important way of extending the query structure is also possible by the names

defined in one place of the query (e.g., node or field aliases) and referring to them from

other parts of the query. If the same name is used as an explicit alias in different query

parts, the name would in all places refer to the same resource.

Figure 8. Unit node as a “wrapper” query: Count all wards (attribute ward values) that have more

than 1000 treatments in ward instances. The wrapper queries can be used to emulate SPARQL

HAVING construct, as well as to add further functionality (e.g., counting the matching values).

Figure 9. Union node example: Find the codes of diagnoses that are made for a given patient

either as hospital episode admission diagnoses or as outpatient episode diagnoses.

326 Ovčiņņikova et.al.

2.6. Expression Notation

The visual query notation allows using textual expressions both in conditions (as e.g.,

lengthInDays >= 10 in Figure 2) and in field value computation descriptions (e.g.,

YEAR(birthDate) in Figure 2). In the case of simple queries, the expressions are mostly a

comparison of an attribute value with a constant or applying a function to an attribute

value. Still, for the sake of the query notation completeness, more complex expressions

are permitted, as well; a user can use those, as his/her query building skills permit.

Generally, all expression constructs that are available in SPARQL are supported also

by the ViziQuer visual query notation, with an important modification that instead of

SPARQL variables formed by the prefix ‘?’ the expressions in visual notation use

explicit names defined in the query (as instance or field names/aliases) or the names of

the properties (property paths allowed, as well). A property name in an expression at a

node stands for a resource or a literal linked to the node instance (i.e., the “value” of the

property). If a property name needs to be referenced as a resource in an expression,

prefix its name with the inverse apostrophe (e.g., as in `rdf:type).

In addition to the basic “modified SPARQL” expressions there are several custom

shorthands introduced, e.g.:

- notations ‘~’ and ‘~*’ as options for infix REGEX specification (use a ~ b for

REGEX(a,b) and a ~* b for REGEX(a,b,’i’) (case insensitive matching),

- abc[i] for the initial part of abc of length i (as e.g., in condition abc[1]=’A’),

- abc@en for selecting the attribute abc only if its language tag is en (use

abc@(en,de) for selecting attributes according to multiple language tags), and

- UML-style notation ‘.’ for navigation expressions (SPARQL style property

paths, built by ‘/’, are available, as well).

There is a further constraint on using arithmetic operators +, -, * and / in expressions:

they need to be surrounded by spaces (to avoid conflicts with their use in forming URIs

and property path expressions). The expression grammar is considered in Section 3.3.

2.7. Exploratory Queries

There are options to place explicit variables in the positions of a class and a property

within the visual notation; in this case, the notation with an explicit ‘?’ prefix is to be

used. Some examples of exploratory queries are displayed in Figure 10.

Figure 10. Exploratory Queries: (a) Find all class and property pairs (C,p) such that a link by p

from some C instance goes to a patient, and (b) find all (property,value) pairs for a given person.

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 327

If the class or property name to be found in the selection is not to be included in the

query output, the corresponding variable name is to be preceded by ‘??’ (can be used,

e.g., for finding all resources connected to the given initial resource by any property, if

the property name is not relevant).

The names for class and property variables can be referred to from other expressions

within the query (to make a reference use the variable name without the ‘?’ or ‘??’

mark).

3. Visual Query Implementation

The implementation of the visual queries is provided within the frame of the ViziQuer

visual query tool (cf. (Čerāns et al., 2018b)) that offers means for visual query editing

(VQEditor), translating the queries into SPARQL (VQTranslator) and executing the

queries over given SPARQL endpoint (VQExecutor), as outlined in Figure 11.

The ViziQuer tool is implemented in the ajoo visual tool building platform (Sprogis,

2016) which allows the creation of visual domain-specific languages by offering means

for rapid development of concrete syntax and visual editor for the language. Still, the

implementation of the visual language semantics (translation of the visual queries into

SPARQL in the case of the ViziQuer tool) lies outside the scope of the platform; for the

ViziQuer tool it is presented in this paper.

Figure 11. Architecture of ViziQuer and data flow of query editing and execution

328 Ovčiņņikova et.al.

Figure 12. Metamodel of diagram presentation in ajoo tool

The ajoo platform provides the representation of a visual diagram in the form of a

graph of connected elements (boxes and lines), possibly with certain textual

compartments (cf. Presentation model in Figure 12, left). There is also the Type model

information available during the diagram runtime that allows discriminating among the

roles that the different elements and compartments play in a diagram (cf. Figure 12) (cf.

(Bārzdiņš et al., 2007) for the explanation of the concept of runtime management of

visual diagrams and their elements through their linked type/configuration elements).

The visual query implementation starts with creating for it an abstract syntactic

structure (Abstract Syntax Tree) that is based on semantic concepts of query composition

as Node, (Attribute) Field, Condition, etc. (cf. Section 3.1) and that is used further on

(instead of the raw ajoo-structured representation) in the SPARQL query generation:

building the symbol table (Section 3.2), resolving the expression types (Sections 3.3 and

3.4), as well as generating the abstract internal model of the SPARQL query (Section 4),

further on used to generate the textual SPARQL query form.

We note that the projects in the visual tool environment also have options for setting

the parameters (described in Section 3.5) that can influence the query implementation.

Type model

Tool
name:string

DiagramType
name:string
style:string

ElementType
name:string

BoxType
style:string

LineType
style:stringCompartnemtType

name:string
defaultValue:string
prefix:string
sufix:string
tab:string
rowType:string
style:string

Presentation model

Project
name:string

Diagram
name:sting

Element
location:string
style:string

Box

Line

Compartnent
input:string
value:string
style:string

*

*

start

1

*

end

1

*

*

*

*

*

start

1

*

end

1

*

* type 1

 * type 1

 * type 1

tool 1 *

*

*

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 329

Figure 13. ViziQuer Graphical Query Abstract Syntax Tree Model

3.1. Abstract Syntax Tree Core Structure

The principal structure of the visual query implementation is that of the query Abstract

Syntax Tree (AST) that encodes the query information in accordance with the conceptual

visual query components as nodes, links, data fields and conditions, as well as parsed

textual expressions and resolved names of the (background) data schema elements (the

data schema lists the defined namespaces (one of them is the default namespace), as well

as the data model entities – the classes and the properties, listing their full entity iri, as

well as the namespace, local name, and display name; in the case of properties also their

cardinality information can be made available (as it can influence the query generation)).

The AST structure is summarized in Figure 13. The central item of the AST structure

is Node. Every node except the query root node (RootNode) belongs to the LinkedNode

class, where both the node properties and the node attachment link to its parent node in

the query structure spanning tree are specified. According to the incoming structure link

RootNode

NodeInfo
_id:string[1]

parsed_exp:ParsedExp[0..1]

_

display_name:string[1]

local_name:string[1]

iri:s tring[1]

is_local:boolean[1]

_

text_prefix:string[1]

Field
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

alias:string[0..1]

text_prefixes:string[0..1]

requireValues:boolean[1]

isHelper:boolean[1]

order:integer[1]

_

addLabel:string[0..1]

addAltLabel:string[0..1]

addDescription:string[0..1]

Aggregation
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

alias:string[0..1]

requireValues:boolean[1]

Condition
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

allowResultMultiplication:boolean[1]

Ordering
_id:string[1]

fulltext:string[1]

exp:string[1]

parsed_exp:ParsedExp[0..1]

_

isDescending:boolean[1]

Grouping
_id:string[1]

fulltext:string[1]

exp:string[1]

Node
isUnit:boolean[1]

isUnion:boolean[1]

_

isBlankNode:boolean[1]

instanceAlias:string[0..1]

instanceIsConstant:boolean[1]

instanceIsVariable:boolean[1]

_

classIsVariable:boolean[1]

classVariableName:string[0..1]

_

distinct:boolean[1]

groupByThis:boolean[1]

lim it:string[0..1]

offset:string[0..1]

fullSPARQL:string[0..1]

comment:string[0..1]

_

indirectClassMembership:boolean[1]

labelServiceLanguages:string[0..1]

LinkedNode
is Inverse:boolean[1]

linkMode:LinkMode[1]

isSubQuery:boolean[1]

isGlobalSubQuery:boolean[1]

{dis joint} {complete}

SubqueryNode JoinNode

{dis joint} {complete}

ReferenceLink
is Inverse:boolean[1]

isNot:boolean[1]

_

target_node_id:string[1]

<<DataType>>

LinkMode

{"Plain", "Optional", "

Negation", "Filter Exists"}

AttributeCondition
exp:string[1]

parsed_exp:ParsedExp[0..1]

LinkInfo
_id:string[1]

parsed_exp:ParsedExp[0..1]

local_name:string[1]

nodeInfo 1

field *

aggregation *

condition *

ordering *

grouping *

linkInfo

1

aggregation *

ordering *

grouping

*

child *

linkInfo

1

referenceLink *

attributeCondition

0..1

330 Ovčiņņikova et.al.

type, the linked nodes are split into the JoinNode and SubqueryNode classes, where the

subquery nodes can have further information items (e.g., aggregations, groupings, and

orderings). The reference links (cf. Section 2.4) go into a separate class ReferenceLink,

such a link is attached to its source node and describes the target node in textual form.

Figure 14. ViziQuer graphical query and its abstract syntax tree

Each graphical element (nodes, links, and node/link compartments: fields, conditions,

aggregations, groupings, and ordering) has an _id attribute that technically identifies the

element; for nodes, the _id attribute is stored in the related NodeInfo instance, and for

links – in the LinkInfo instance (so, for a LinkedNode instance there shall be both the

node and its incoming structure link identifications available).

The references from the AST structure to the data model with the class and property

information are limited to local_name, iri, prefix and is_local information in the

NodeInfo class and local_name information in the LinkInfo class. There is, however, a

parsed_exp attribute for all diagram elements that contains a parsed form of the textual

expression placed in the element and the references to the data schema are provided from

therein.

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 331

The AST is built from the diagram presentation model provided by the platform (cf.

Figure 12) and the associated data schema information in two stages:

(i) Initial structure creation, builds all model information, except the parsed_exp

attribute and the explicit references to the data model, and

(ii) Full AST creation based on the initial AST structure, involving expression

parsing, name resolution (based on the data model information and on the

names defined within the query) and creation of the symbol table (ST).

Figure 14 outlines an example of the ViziQuer graphical query in the initial AST

notation, with expression parsing and schema element identification yet to be done.

3.2. The Symbol Table

The role of the symbol table is to identify names (identifiers) defined in a query, hold

information on their typing and kind, as well as scope – accessibility in different nodes

in the query (apart from the names described in the symbol table, the expressions at

nodes can also use property and class names from the data model; these are introduced

into the symbol table only if they make the entire expression field that can be further on

referred to from other places in the query).

The symbol table is built initially based on the initial AST structure (not involving

the schema information and parsed expressions) and is further enriched in parallel with

the process of resolving the names appearing in the AST expressions (cf. Section 3.4).

Figure 15. Structure of the Symbol Table

The structure of the symbol table is outlined in Figure 15. For each node the set of

the names visible in its context is maintained, each name can have one or several

descriptions denoting the possible different meanings of the name (the case with one

description of a name is typical, however, several descriptions are possible, as well).

In the name description, the kind of the name shall have one of the following values:

 PROPERTY_NAME – the name is introduced in the query as a data model

property.

 CLASS_NAME – the name is introduced in the query as a data model class.

SymbolTable

Node
id:string[1]

Description
kind:KIND[0..1]

type:Type[0..1]

context:string[1]

upBySubQuery:integer[0..1]

downBySubQuery:boolean[0..1]

upByOptional:boolean[0..1]

distanceFromClass:integer[0..1]

Type
iri:string[1]

prefix:string[1]

local_name:string[1]

display_name:string[1]

is_local:bolean[1]

object_cnt:integer[0..1]

data_cnt:integer[0..1]

max_cardinality:integer[0..1]

inverse_max_cardinality:integer[0..1]

property_type:string[0..1]

data_type:string[0..1]

<<DataType>>

KIND

{"PROPERTY_NAME",

"PROPERTY_ALIAS",

"CLASS_NAME",

"CLASS_ALIAS",

"AGGREGATE_ALIAS",

"BIND_ALIAS",

"REFERENCE_TO_ALIAS"}

Name
nameText:s tring[1]

type 0..1

node

*

name

*

description

*

332 Ovčiņņikova et.al.

 PROPERTY_ALIAS – the name is defined in the query as an alias of a field

holding a single property name or property path expression (can be implemented

as a variable appearing in a SPARQL Basic Graph Pattern).

 BIND_ALIAS – the name is defined in the query as an alias of a field holding a

more complex expression (requires BIND construct for implementation in

SPARQL).

 CLASS_ALIAS – the name is defined in the query as a name of an instance

described by a node.

 AGGREGATE_ALIAS – the name is defined in the query as an alias of an

aggregated field (typically defined in some aggregated subquery).

 REFERENCE_TO_ALIAS – the name is defined in the query via a field

expression that refers itself to an alias described elsewhere (such a reference can

be used to extend the scoping of the alias also to places where the original alias

definition would not be accessible (typically used with deeply nested

subqueries)).

The accessibility of the names introduced in the query is summarized in Table 1. The

contents of the symbol table reflect the availability of the names according to these rules.

Table 1. Summary of name scoping/visibility rules in visual queries

 This
node

Other
nodes in
the
fragment

Down by
optional,
negation,
union, or
sub-union

Up by
optional,
union, or
sub-union

Down by
subquery

Up 1 level
through a
subquery
link

Instance name
(Class alias)

Yes Yes Yes Yes (3) Yes (4) No (select
as a field
to export)

Property name
(implicit alias)

Yes (1) Yes (2) No Yes (3) No Yes (5)

Explicit alias
(Property, Bind
Reference to
alias)

Yes (1) Yes (2) No Yes (3) No Yes (5)

Aggregate alias No No No No No Yes (5)
Legend:

(1) can be used in conditions and aggregations; usage in instance field expressions is possible

after the field introducing the name.

(2) can be used in field expressions in nodes that are structurally above the node that

introduces the name, as well as in conditions anywhere in the fragment.

(3) can be used as a value, not as a starting point of a navigation expression; (2) applies, as

well.

(4) except in aggregate fields.

(5) the field must be selected from the subquery; after the move up through the subquery link

to the host node, the field is visible by default within the current fragment only.

During the initial phase of construction (before the name resolution), the kind

information for name descriptions shall have values CLASS_ALIAS and

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 333

AGGREGATE_ALIAS (these are known from the initial AST structure) and shall use

temporary markers UNRESOLVED_FIELD_ALIAS (in the case, if the field has an

alias) and UNRESOLVED_NAME (all other cases).

Within the full symbol table (as constructed in Section 3.4) the name descriptions

referring to the data model entities (i.e., being of the kind PROPERTY_NAME or

CLASS_NAME) shall have type information describing the denoted entity (including

e.g., the entity iri and display_name, as well as further data model information to be used

in the user interface or the SPARQL query generation).

The context attribute of a description holds the AST id of the node where the name

has been defined (where the definition of the alias appears; for names from the data

model the current node id is stored here).

The remaining description attributes upBySubquery, downBySubquery, upByOptional

and distanceFromClass assist in the symbol table building.

Figure 16 shows a fragment of the symbol table for the query of Figure 14.

Figure 16. A Symbol Table Fragment example

334 Ovčiņņikova et.al.

3.3. Expression Structure and Parsing

Essentially, an expression is built by operations from constants (literals or IRIs), node

and field references and path expressions that can be property paths (in the most

common case – a single property from the data schema) or explicit query variables. To

specify the expressions in textual form, a concrete expression syntax is needed. Since the

expressions to be specified need to offer the constructs that are to be mapped into the

SPARQL language (WEB, b), the SPARQL 1.1 syntax (its part, starting from the

“Expression” rule) is used as the basis of the ViziQuer expression syntax.

The ViziQuer expression grammar is provided in Appendix 1. If compared to the

original SPARQL expression grammar, it has the following modifications:

 There are no explicit SPARQL variable terms, built using the ‘?’ notation, in the

ViziQuer expressions (except for standalone property and class variables not

included in richer expression structures).

In the places where the SPARQL grammar admits a variable (within a wrapping

expression), the ViziQuer grammar permits using:

o a reference to a node, a field, or an explicit query variable
7
 (to be

translated into the corresponding SPARQL variable); such references

can, for the sake of disambiguation, optionally include the @ prefix, or

o a path expression (e.g., a property name), to be translated into:

 a SPARQL triple relating the path expression (initial)

reference item via the path expression to a new SPARQL

variable, and

 the use of the created SPARQL variable within the wrapping

expression.

 The class and property names, as well as individual resources can be specified

using their unique display name form (syntactically, a text in [and] brackets,

possibly prefixed by a namespace prefix), cf. Section 3.4.

 If a URI in an expression has to be interpreted as a constant URI and not as a

property URI denoting its value, ` needs to be used before the URI (as in

`rdf:type).

 A restriction on arithmetics: the operators +, -, * and / in the expressions need to

be surrounded with spaces to distinguish their arithmetic operation meaning

from their symbol usage in URIs or property path constructions.

 There are custom shorthand notations introduced to support easier expression

creation in different envisioned use cases (cf. also Section 2.6):

o The property names can be suffixed by a language tag or their group, as

in abc@en or abc@(en,de), for specifying property value selection in

the designated languages only.

o The path expressions can be specified using the point notation

(H.admissionTime, patient.outpatientEpisode) following a UML-style

convention for navigation expressions (the SPARQL-like syntax of

using / as the path item separator is allowed, as well).

7 Note that even in the case of an explicit query variable (that has been introduced using the ?

notation), the references to it from the expressions elsewhere are made without the ? prefix.

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 335

o A REGEX expression can be written in an infix form, using SQL-style

~, and ~* (for case insensitive matching) or LIKE operators (so,

REGEX(?ward, "1-2$"), ward ~ '1-2$' and ward LIKE '%1-2' all denote

equivalent expressions).

o BETWEEN notation: the expression lengthInDays BETWEEN (10, 30)

is a shorthand for lengthInDays>= 10 && lengthInDays<= 30.

o The initial substring, e.g., SUBSTRING(ward,1,3), can be specified by

its length in the brackets (e.g., ward[3]).

o The inverse property specification ^outpatientEpisode can be written

also as INV(outpatientEpisode).

o There is a shorthand notation for data differences that can be used for

queries over OpenLink Virtuoso backed data endpoints: days(x-y)

expresses the same, as bif:datediff("day", x, y); there are functions years

and months, as well.

The provided grammar is used to build a JSON-encoded parse tree for a given

expression. The parsing in ViziQuer is done by PEG.js library (WEB, a). There are rules

added to the grammar terms that identify the name entities within the expression text (in

accordance with the places where the SPARQL grammar would have allowed a

SPARQL variable, as described above), the parsing shall place each such entity under

the var key in the created JSON representation (also covering the mark for a node/field

reference (@), property as value mark (`) or property path modifier (?, * or +), if there is

one coming with the name). These name entities are then further subjected to name

resolution and kind/type enrichment, as described in Section 3.4, before storing the

entire expression parse tree in the parse_exp attribute in the AST.

3.4. Name Resolution and Expression Enrichment

To enable the interpretation of expressions and their use in SPARQL query generation,

the names used therein must be resolved as references to their definition in the query

text, or as direct references to the entities (properties, classes) of the data model (data

schema).

The names to be resolved can be of the following forms:

 @name – a plain string, prefixed by @, denoting a reference to a name, defined

in the query,

 prefix:name – a prefixed name, denoting a reference to an element (a class or a

property) of the data model, or an unknown URI (if the reference cannot be

found, and the prefix is known in the data model),

 <iri> - a full iri, put in braces, denoting an element of the data model, or an

unknown URI,

 name – a plain string that can be interpreted either as a reference to a name or as

a reference to a data model element that belongs to the default namespace,

 [text] or prefix:[text] – text in square brackets, with or without the prefix part,

denoting a designated display name (stored in the data model) for a data model

entity,

 `prefix:name – a prefixed name (with a known prefix), prefixed by `, denoting a

property as value and not to be referenced as an element (a class or a property) of

the data model.

336 Ovčiņņikova et.al.

The resolution of a name in an expression within AST involves setting the kind and

type attributes for the name in the expression. If the name to be resolved is a plain

string, then we distinguish two cases
8
:

- if the name coincides with the whole expression, then it is checked, if it matches

an available property from the default namespace within the data model; if so, the

name is resolved as the found property name; otherwise, it is looked up in the

symbol table, if the name is available in the context of this node (avoiding

circular references of the name to itself, of course), and

- if the name is a proper part of the expression, it is looked up first in the symbol

table; if it is not found there, then it is looked up as a property from the local

namespace within the data model.

Figure 17. parse_exp content examples: caseRecordNo (a) and T_Count (b) from Figure 16.

For a name resolved as a property from the data model (in the described cases of the

plain string format, and the prefixed name, iri and bracketed text formats), its kind is set

in the AST as DIRECT_PROPERTY (a kind distinct from any symbol table kinds) and

the supplementary context information from the data model is retrieved and placed in its

type attribute (cf. an example in Figure 17, a).

8 To avoid ambiguity, @ prefix can be used for the references to names defined in the query and

prefix:name notation for references to the model properties; the plain string option has been

offered for convenience. There are further restrictions not allowing the plain string option, if it

is viewed as causing too much ambiguity (e.g., when the name matches both an alias defined in

the query and a property in the default namespace).

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 337

For a name resolved as a name defined in the query, its kind and type are looked up

in the symbol table for the node, filling it beforehand, if necessary.

The records for the name in the symbol table (at different nodes) are filled with the

kind and type at the point of processing the definition of the name within AST (note that

a definition of the name occurs through an alias or through a reference to a property that

constitutes the entire field expression). At this point the properties of the name in ST

including kind (PROPERTY_NAME, PROPERTY_ALIAS, BIND_ALIAS or

REFERENCE_TO_ALIAS), model type (for simple expressions) and max cardinality

(possibly also for more complex expressions)) are retrieved from its defining expression,

and they are also propagated to all places in ST that refer to the name definition.

If a name in an expression cannot be resolved either as coming from the data model

or as a name defined in the query (e.g., when a name in prefix:name form does not match

the names known in the data model), its kind and type in AST are both set to null,

however, it still can be used in the generated SPARQL query. If such an unresolved

name is to be reflected in the symbol table, its kind attribute is still set to

PROPERTY_ALIAS or PROPERTY_NAME, depending on whether the field with the

unresolved expression has an alias or not (its type information is null also in the symbol

table).

Figure 17, b has a simple example of a parse tree involving a name whose kind is

AGGREGATE_ALIAS.

3.5. Query Environment Parameters

The query diagrams (the projects consisting of the diagrams) in ViziQuer are provided

with a set of parameters whose values can be set by the user and that can influence the

way SPARQL queries are generated from the visual queries (different settings of

parameters can lead to different query SPARQL queries and different results). It is

possible to customize SPARQL generation in ViziQuer through the following

parameters:

DSS schema – the name of the schema that holds the data model and will be used for

name resolution and for querying (used for accessing the appropriate data model).

Use String Literal Conversion (the default value is “SIMPLE”):

 SIMPLE – if in a comparison expression one side is a data property with type

xsd:string and the other side is a string expression, the data property is embedded

in STR function (gender="male" is considered to be str(gender)="male").

 TYPED – if in a comparison expression one side is a data property with type

xsd:string and the other side is a string expression, the suffix ^^xsd:string is

attached to the string expression (gender="male" is considered to be

gender="male"^^xsd:string).

 OFF – no transformations are done (this may result in overlooking literal

equalities SPARQL query execution, as "male" and "male"^^xsd:string are

different values).

Query Engine Type – the type GENERAL invokes no expression transformation,

while the value VIRTUOSO implies:

 The shorthand expression days(a-b) is enabled for date value differences to

denote bif:datediff("day",a,b), similar functions months and years are available,

338 Ovčiņņikova et.al.

as well; the expressions a and b are surrounded by xsd:dateTime(..), if they are of

the data type xsd:date.

 The substrings are implemented using bif:substring function.

Use Default Grouping Separator – specify the separator used in the aggregation

function GROUP_CONCAT. The default value is “, ”.

Direct Class Membership Role –direct class membership role used as a predicate

value in the instance class triple (shall use rdf:type, if not specified).

Indirect Class Membership Role – indirect class membership role used as a

predicate value in the instance class triple when it is specified in the class to use the

indirect role.

Enable Wikibase Label Services – specifies whether to enable Wikibase Label

Services for selecting labels and descriptions along with attributes in queries over

Wikidata.

4. SPARQL Query Generation

In the next step, the ViziQuer graphical query abstract syntax is translated into a

dedicated model for generating SPARQL queries. This translation also considers the

symbol table and the parameters that are set by the user. The process starts with

SPARQL variable name assignment to the names created and used in the query AST.

4.1. SPARQL Variable Names

The principal rule for the SPARQL variable name creation in the case of an explicitly

provided name (alias) in the visual query is to prefix the explicit name by ? (so, the name

X becomes the SPARQL variable ?X). This implies that if different items in the query

are marked by the same explicit variable, they shall correspond also to the same

SPARQL variable. In the case if no explicit name is provided for a query item, the name

is auto-generated from the context information, if available (class name for node

instances, property name for data model references within the fields (using the last

property in the case of a property path)). The auto-generated names, however, are kept

distinct (except in the case of alternate UNION branches) by the means of adding

appropriate suffixes (so, two uses of a property :abc would result in variables ?abc and

?abc_1).

Regarding the use of a name in an expression, the name kind in AST distinguishes

among the reference to an alias and a used property / data model element (cf. Section

3.4). If the name denotes a data model element (or an unknown property), it introduces a

new (locally used) auto-generated name. If the name is an alias, the symbol table is used

to find the corresponding SPARQL variable name: each name description in ST at the

node where the name is used shall have a corresponding introduction context

information (in the case of multiple available contexts, if their SPARQL variable names

coincide (this would correspond e.g., to the case of an explicit name introduced in

multiple places), take this name; otherwise choose any of names and flag an error).

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 339

4.2. SPARQL Query Generation Model

The structure of the SPARQL query generation model is outlined in Figure 18. The

model is structured along the node, link, and field structure of the visual query, however,

the data filled in are collected for the needs of the SPARQL query generation.

The central class Node represents the node of the ViziQuer graphical query, with its

child node structure and most of the node attributes inherited from the query AST

(Figure 13). The node instance variable name (classInstance attribute) is generated, as

explained in Section 4.1. The classDefinition attribute shall contain a textual SPARQL

triple, asserting the class name of the node instance. Furthermore, the linkDefinition

attribute is generated to contain the textual SPARQL form of the link triple connecting

the node to its parent node.

The blocks subordinated to the Node class contain further information relevant to the

SPARQL query generation.

Figure 18. SPARQL query generation model

Node
classInstance:string
classDefinition:string
variableName:string
groupByThis:boolean
distinct:boolean
fullSPARQL:string
labelServiceLanguages:string
isUnion:boolean
isUnit:boolean
offset:integer
limit:integer
linkDefinition:string
linkMode:string
linkVariableName:string
isSubQuery:boolean
isGlobalSubQuery:boolean

AttributeDefinition
bound:string
bind:string
requireValues:boolean

AggregationBaseDefinition
requireValues:boolean

LocalAggregateSubQuery
subQueryText:string

FilterAsTripleDefinition

FilterExpression
expression:string

ReferenceLink
linkTripleText:string

Select

SimpleVariable
name:string

AggregateVariable
name:string
expression:string

Triple
triple:string

OrderBy Order
expression:string

OrderGroupBy
expression:string

DirectGroupBy Group
expression:string

ValuesDefinition
variables:string
dataBlock:string

LabelVariable
name:string

FilterBaseDefinition

Prefix
prefix:string
value:string

ImplicitGroupBy
expression:string

select 0..1

simpleVariable *

aggregateVariable *

childNode

*

attributeDefinition *

aggregationDefinition *

filterDefinition *

filter *

localAggregate *

referenceLink *

orderBy 0..1
order 1..*

groupBy *

triple *

groupBy 0..1

triple *

triple

*

triple

1..*

group 1..*

triple *

values *

labelVariable *

triple

*

filterAsTripleDefinition *

implicitGroupBy *

340 Ovčiņņikova et.al.

Select contains the variables coming from the node (for nodes not inside negation

blocks) that go into the select clause of the query (or the subquery involving the node

fragment). The list consists of simple variables, label variables and aggregated variables.

 Simple variables are created for distinct items in the following list:

o variables from node attribute fields that are not marked in AST as helpers,

o target node instances of reference links starting at the node if the node is

within a subquery and the link goes out of the subquery scope, and

o explicit references to nodes that are outside the subquery scope, made from

attribute definitions (both triple and expression forms) and filters at the

node.

 Aggregate variable – a variable from a node aggregation field (for the main node of

the query or a subquery). Each variable has a name and an expression to be

computed.

 Label variables are created for attributes marked by add Label, add AltLabel or add

Description if the parameter Enable Wikibase Label Services is set. The label

variable name has Label/AltLabel/Description suffix added to the base variable

name.

AttributeDefinition contains the SPARQL clauses describing simple non-aggregated

attribute fields of the node (the instance fields whose expressions involve aggregate

functions are reflected in LocalAggregateSubquery class instead). It consists of:

- triple patterns for all properties included in the field expression, connecting their

values to the node instance variable or another explicit navigation starting point,

- bind clauses (formed if the attribute field contains an expression that is more

than a property name/property path),

- bound clause (formed if the field has required values, is implemented by a bind

clause, and contains an expression not known to necessarily produce a value),

- the requireValues mark for required attribute values (the triple patterns for an

attribute without the mark are to be included in an OPTIONAL block).

For instance, at a node n, the field with the expression totalCost - 3 and alias t creates

a triple pattern ?n :totalCost ?totalCost and a bind clause BIND(?totalCost-3 AS ?t).

AggregationBaseDefinition contains triple patterns for evaluating the properties

within the aggregated function argument expression at an aggregation field of the node.

For instance, the expression avg(totalCost / lengthInDays) at a node H shall lead to

triples ?H :totalCost ?totalCost and ?H :lengthInDays ?lengthInDays. (Note: computing

the expression itself and applying the aggregate function is recorded at Select class).

FilterAsTripleDefinition is created when a condition can be expressed in the form of

a triple connecting the node instance variable (or another reference point) by a property

or a property path to a value (a literal or URI), or a fully introduced (non-optional) name.

For instance, if the node H has a condition id = 12345, the triple shall be ?H :id 12345.

The conditions that do not fit the triple form are expressed using FilterBaseDefinition

and FilterExpression elements. The FilterExpression alone is used for conditions that

fit into a single FILTER clause (as e.g., FILTER(?T >= 4) for the before defined variable

?T) or FILTER EXISTS block (as e.g., FILTER EXISTS{?H :lengthInDays

?lengthInDays. FILTER(?lengthInDays >= 10)} for expression lengthInDays >= 10).

The FilterBaseDefinition is used to record the triples to be added to the query

outside the FILTER expression, as e.g., ?H :lengthInDays ?lengthInDays outside

FILTER(?lengthInDays >= 10); the FILTER part is still included in the

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 341

FilterExpression. The decision on whether to use the FILTER EXISTS or a simple

FILTER form (with additional triples) depends on the multiplicity of the property

(:lengthInDays in the example); either of the options can be enforced manually, as well.

LocalAggregateSubQuery deals with the situation when there is an aggregate

expression specified in an ordinary attribute field, invoking an aggregate subquery

computation in the context of the node instance. The subQueryText attribute of the

instance shall contain the entire subquery text, including the select, where and group by

clauses. For instance, the field expression count(id) at a node H shall lead to the

subquery text {SELECT ?H (COUNT(?id) AS ?id_COUNT) WHERE{?H :id ?id.}

GROUP BY ?H}.

ReferenceLink contains the triple pattern reflecting a positive reference link from the

current node to a referred node, cf. e.g., Figure 7, the link hospitalEpisode between

HospitalEpisode and CPhysician classes.

DirectGroupBy contains grouping expressions. It consists of:

- variable names to be grouped by (the Group class), and

- triple patterns for the property names in the group by expression (for instance,

{?H :id ?id}, for id a model property (not a field alias) in the group by field of

node H).

The GROUP BY section of the generated SPARQL text (cf. Section 4.4) for

aggregated queries, in addition to explicit grouping fields, shall contain references to all

non-aggregated elements of the SELECT list (gathered in ImplicitGroupBy class).

OrderBy describes the ordering expression. It consists of:

- ORDER BY clause consisting of variables to be ordered, each with the DESC

label, if specified,

- triple patterns for the properties included in the order by an expression that does

not match the fields defined in the query, and

- names of variables introduced in the order by expression; to be included also in

the GROUP BY clause (needs to contain also the non-aggregated ordering

variables).

4.3. SPARQL Query Model Creation Example

To build the SPARQL generation model tree from the ViziQuer abstract query syntax

tree from the AST example in Figure 14, the following steps are taken:

Starting from the model tree root node:

1. A node instance name ?H is generated from the root node instance name H.

2. A triple pattern ?H a :HospitalEpisode. describing the class assertion of the node is

generated from the root node identification information.

3. The query simple select clause variables and the triple patterns describing properties

are formed from attribute fields:

a. The attribute field caseRecordNo is a data property from the schema, so a

simple variable ?caseRecordNo is added to the Select section of the model

into the SimpleVariable section, and the attribute definition triple pattern

?H :caseRecordNo ?caseRecordNo is added to the AttributeDefinition

section.

342 Ovčiņņikova et.al.

b. The attribute field T_Count is a reference to a subquery selection field, so,

only a simple variable ?T_Count is added to the Select block of the model

into the SimpleVariable section.

4. A subquery clause is generated:

a. A node instance name ?TreatmentInWard is generated from the node

identification information (the class name, since no alias has been

specified).

b. A triple pattern ?TreatmentInWard a :TreatmentInWard. for the class

assertion of the node is generated from the node identification information.

c. An incoming link linkMode = REQUIRED and isSubQuery = TRUE

properties are set.

Figure 19. ViziQuer query abstract syntax tree and SPARQL query generation model tree

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 343

d. A triple pattern ?H :treatmentInWard ?TreatmentInWard. describing the

link definition is generated from the current and the parent nodes’

information.

e. The query aggregated select clause variables are formed from aggregation

fields. (the notation count(.) is interpreted as the

COUNT(TreatmentInWard) expression, so an aggregated variable

COUNT(?TreatmentInWard) is added to the Select section of the model

into AggregateVariable section. Since the triple pattern describing the class

assertion of the node was already defined, no triple patterns are added to

the model).

5. A condition T_Count >= 4 is transformed into a filter expression

FILTER(?T_Count >= 4) and is added to the FilterExpression section of the model.

Since variable T_Count is a reference from the subquery, no triple pattern is added

to the model.

6. The Order by expression DESC(?T_Count) is added to the OrderBy section.

Figure 19 outlines the described creation of the SPARQL query generation model.

4.4. SPARQL Query Text Generation

The last thing to be done is to generate the SPARQL textual query from the SPARQL

Query Generation Model.

The SPARQL text is generated in a certain order. First, the definition of all prefixes

used in expressions in the query are retrieved from the data model and are placed in the

SPARQL text. The SPARQL query SELECT clause is then generated to include:

 Simple variables from all nodes that are not under negation or subquery links.

 Aggregated variables from all nodes that are not under negation or subquery

links.

 Label variables from all nodes that are not under negation or subquery links.

The query WHERE clause is built by collecting its textual form via traversing the

SPARQL query abstract syntax tree, starting from the root node, collecting for each

query fragment (set of nodes connected by required join links) the SPARQL code in the

following order, split over the three phases:

 Phase 1. Initial Structure:

o Incoming links into fragment nodes, node class assertions and positive

reference links and filters as triples among the fragment nodes and to

nodes above the fragment.

o The first required attribute of any data node in the fragment, not

introduced so far (to have the node variable defined).

o Grounding: re-introduction of names defined in the query above the

fragment, used in the fragment and not defined in the fragment.

 Phase 2. Required and optional subqueries attached to the fragment nodes, as

well as Direct SPARQL texts of the subquery form, ascribed to the fragment

nodes.

 Phase 3. Main Traversal: For each fragment node, starting from the fragment

head node, in a depth-first search manner:

344 Ovčiņņikova et.al.

o Processing of child nodes with required join links (in-fragment nodes),

o Processing of UNION group fragments behind the node,

o Processing of fragments behind optional join links from the node,

o Attribute definitions (including triples and BIND/BOUND expressions)

and VALUES clauses, in the order of their visual appearance,

o Full SPARQL texts without subquery, attached to the node (the

introduced names can be used e.g., in filters),

o Filters as triple expressions (the ones not processed in Phase 1),

o Filter base triple definitions,

o At the fragment head node: filter expressions (including filter exists and

filter not exists expressions) for all nodes from the fragment,

o Negated subqueries (MINUS queries) attached to the node,

o Aggregation base triple definitions (for fragment head node only).

At the end of processing the main query or a subquery, the triple pattern definitions

from the ORDER BY and the GROUP BY expressions are added to the SPARQL text

and the GROUP BY, ORDER BY, OFFSET and LIMIT clauses themselves are added.

We note that the order of collecting the SPARQL code fragments is important for the

correct placement of place sensitive SPARQL constructs (e.g., MINUS or BIND), as

well as a reasonable order of patterns in the query may enhance the readability of the

created SPARQL queries and help the query execution engines to build a reasonable

plan for query execution. The proposed and implemented SPARQL query generation

order creates a particular SPARQL order; the possibilities of the visual query notation to

encode a different pattern order in the SPARQL query may be limited. Ways of relaxing

these limitations are a subject of future work and are beyond the scope of this paper.

Figure 20 shows an example of the textual SPARQL query generated from the used

SPARQL abstract syntax structure of the query of Figure 19.

Figure 20. Textual SPARQL query corresponding to Figure 19 abstract structure.

5. Conclusions

We have demonstrated the feasibility of implementation of a rich visual query language

over RDF data via its translation into the standard textual SPARQL query language. The

source of the translation is an encoding of visual diagrams in the form of boxes, lines,

and compartments, as provided by the generic visual DSL platform ajoo (Sprogis, 2016)

and the translation target is the rich textual structure of SPARQL. The principal

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 345

milestones of the translation involve creation of an abstract query model, followed by a

dedicated model for generating the textual SPARQL code out of the abstract query

model structure.

The identified query translation structures and steps separate the translation into

self-standing blocks that can allow for being reused within other tasks of serving the

visual query diagrams, as, e.g., using the abstract syntactic structure and the symbol table

for context-based query completion, or reversely generating the visual presentation of an

existing SPARQL query (the prototype functionality corresponding to both these use

cases is available in the existing ViziQuer visual tool environment). There would also be

a re-use possibility in creating other implementations of the visual query language (for

instance, by translating the visual queries directly into SQL for execution over data back-

ends that are supported by relational databases).

The described implementation solution can support a rich set of visual queries that

involve optional and negated links, as well as aggregation and subqueries, and advanced

expressions for the data selection and conditions. The visual notation permits reverse

visualization of a rich set of SPARQL queries, as well. To be able to fine-tune the

reverse translation SPARQL queries back into the visual notation, the visual notation

still needs to be further enriched to include means for query clause ordering

specification; we expect that a natural extension of the provided notation would be able

to cope with the task. Another work in progress item relates to the named graph

specification options that would require the expansion of the provided notation.

Acknowledgements

This work has been carried through at Institute of Mathematics and Computer Science,

University of Latvia, and has been partially supported by Latvian Science Council grant

lzp-2021/1-0389 “Visual Queries in Distributed Knowledge Graphs” and project

“Streng-thening of the capacity of doctoral studies at the University of Latvia within the

framework of the new doctoral model”, identification No. 8.2.2.0/20/I/006

(J.Ovčiņņikova).

References

Aasman, J. (2017). Graph visualization with a time machine, In Dataconomy August 29, 2017,

available at http://dataconomy.com/2017/08/graph-visualization-

time-machine/

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z. (2007). DBpedia: A

Nucleus for a Web of Open Data, in Aberer. K., et al. (ed.), Proceedings of The Semantic

Web, ISWC 2007. Lecture Notes in Computer Science, Vol. 4825, Springer, Berlin,

Heidelberg, pp. 722–735. https://doi.org/10.1007/978-3-540-76298-0_52

Barzdins, J., Grasmanis, M., Rencis, E., Sostaks, A., Barzdins, J. (2016). Ad-Hoc Querying of

Semistar Data Ontologies Using Controlled Natural Language, in ArnicansG., et al. (ed.),

Frontiers of AI and Applications, Vol. 291, Databases and Information Systems IX, IOS

Press, pp. 3-16.

Bārzdiņš, J., Zariņš, A., Čerāns, K., Kalniņš, A., Rencis, E., Lāce, L., Liepiņš R., Sproģis, A.

(2007). GrTP: Transformation Based Graphical Tool Building framework, in Andreas. P., et

al. (ed.), Proceedings of MoDELS 2007, Workshop on Model Driven Development of

Advanced User Interfaces, MDDAUI 2007, Nashville, TN, USA

346 Ovčiņņikova et.al.

Catarci, T., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S. (2003). An Ontology Based

Visual Tool for Query Formulation Support, in Meersman, R., Tari, Z. (ed.), Proceedings of

On The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops. OTM 2003.

Lecture Notes in Computer Science, Vol. 2889. Springer, Berlin, Heidelberg, pp. 32–33.

https://doi.org/10.1007/978-3-540-39962-9_15

Čerāns, K., Bārzdiņš, J., Šostaks, A., Ovčiņņikova, J., Lāce, L., Grasmanis, M., Sproģis, A.

(2017). Extended UML Class Diagram Constructs for Visual SPARQL Queries in

ViziQuer/web, Proceedings of Voila 2017, CEUR Workshop, 1947, 87-98.

Čerāns, K., Lāce, L., Grasmanis, M., Ovčiņņikova, J. (2021a). A UML-Style Visual Query

Environment Over DBPedia, in Garoufallou, E., Ovalle-Perandones, MA., Vlachidis, A.

(ed.), Proceedings of Metadata and Semantic Research. MTSR 2021. Communications in

Computer and Information Science, Vol 1537. Springer, Cham, pp. 16–27.

https://doi.org/10.1007/978-3-030-98876-0_2

Čerāns, K., Ovčiņņikova, J., Bojārs, U., Grasmanis, M., Lāce, L., Romāne, A. (2021b). Schema-

Backed Visual Queries over Europeana and Other Linked Data Resources, in Verborgh, R.,

et al (ed.), Proceedings of The Semantic Web: ESWC 2021 Satellite Events. ESWC 2021.

Lecture Notes in Computer Science, Vol. 12739. Springer, Cham, pp. 82–87.

https://doi.org/10.1007/978-3-030-80418-3_15

Čerāns, K., Ovčiņņikova, J., Grasmanis, M., Lāce, L. (2022a). Experience with Visual SPARQL

Queries over DBPedia, Proceedings of Voila 2022, CEUR Workshop, 3253, 59-65.

Čerāns, K., Ovčiņņikova, J., Grasmanis, M., Lāce, L. (2022b). Towards UML-Style Visual

Queries over Wikidata, in Groth, P, et al. (ed.), Proceedings of The Semantic Web: ESWC

2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, Vol. 13384.

Springer, Cham, pp. 11–15. https://doi.org/10.1007/978-3-031-11609-4_2.

Čerāns, K., Ovčiņņikova, J., Lāce, L., Hodakovska, J., Romāne, A., Grasmanis, M., Kalniņa, E.,

Sproģis A., Šostaks, A. (2019). Visual Query Environment over RDF Data, Proceedings of

Posters and Demos at SEMANTiCS 2019. CEUR Workshop, 2451. September 9-12,

Karlsruhe, Germany, 2019

Čerāns, K., Šostaks, A., Bojārs, U., Bārzdiņš, J., Ovčiņņikova, J., Lāce, L., Grasmanis, M.,

Sproģis, A. (2018a). ViziQuer: A Visual Notation for RDF Data Analysis Queries, in

Garoufallou, E., Sartori, F., Siatri, R., Zervas, M. (ed.), Proceedings of Metadata and

Semantic Research. MTSR 2018. Communications in Computer and Information Science,

Vol. 846. Springer, Cham, pp. 50-62. https://doi.org/10.1007/978-3-030-14401-2_5.

Čerāns, K., Šostaks, A., Bojārs, U., Ovčiņņikova, J., Lāce, L., Grasmanis, M., Romāne, A.,

Sproģis, A., Bārzdiņš, J. (2018b). ViziQuer: A Web-Based Tool for Visual Diagrammatic

Queries Over RDF Data, in Gangemi, A., et al. (ed.), Proceedings of The Semantic Web:

ESWC 2018 Satellite Events. ESWC 2018. Lecture Notes in Computer Science, Vol. 11155.

Springer, Cham, pp. 158–163. https://doi.org/10.1007/978-3-319-98192-5_30

Ferré, S. (2017). Sparklis: An Expressive Query Builder for SPARQL Endpoints with Guidance in

Natural Language. Semantic Web 8(3), 405-418. IOS Press.

Haag, F., Lohmann, S., Siek, S., Ertl, T. (2015). QueryVOWL: A Visual Query Notation for

Linked Data, in Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C.,

Zimmermann, A. (ed.), Proceedings of The Semantic Web: ESWC 2015 Satellite Events.

ESWC 2015. Lecture Notes in Computer Science, Vol. 9341. Springer, Cham, pp. 387–402.

https://doi.org/10.1007/978-3-319-25639-9_51.

Hayes, P.J., Patel-Schneider, P.F. (2014). RDF 1.1 Semantics, available at
https://www.w3.org/TR/rdf11-mt/

Hogan, A., Blomqvist, E., Cochez, M., de Melo, G., Gutierrez, C., Kirrane, S., Labra G., José E.,

Navigli, R., Neumaier, S., Ngonga Ngomo, A-C., Polleres, A., Rashid, S. M., Rula, A.,

Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A., d Amato, C. (2021). Knowledge

graphs. ACM Computing Surveys (CSUR) 54.4 (2021), 1-37.

Khalili, A., Meroño-Peñuela, A. (2017). WYSIWYQ–What You See Is What You Query,

Proceedings of Voila 2017, CEUR Workshop, 1947, 123-130.

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 347

Rietveld, L., Hoekstra, R. (2013). YASGUI: Not Just Another SPARQL Client, in Cimiano, P.,

Fernández, M., Lopez, V., Schlobach, S., Völker, J. (ed.), Proceedings of The Semantic

Web: ESWC 2013 Satellite Events. ESWC 2013. Lecture Notes in Computer Science, Vol.

7955, Springer, Berlin, Heidelberg, pp. 78–86. https://doi.org/10.1007/978-3-642-41242-4_7

Russell, A.B., Smart, P.R. (2008). NITELIGHT: A Graphical Editor for SPARQL Queries, in 7th

International Semantic Web Conference (ISWC 2008). 2008: Germany. p. 26-30.

Schweiger, D., Trajanoski, Z., Pabinger, S. (2014). SPARQLGraph: a web-based platform for

graphically querying biological Semantic Web databases, BMC Bioinformatics 15, 279.

https://doi.org/10.1186/1471-2105-15-279

Soylu A., Kharlamov, E., Zheleznyakov, D., Jimenez Ruiz, E., Giese M., Skjaeveland, M.G.,

Hovland, D., Schlatte, R., Brandt, S., Lie, H., Horrocks, I. (2018). OptiqueVQS: a Visual

Query System over Ontologies for Industry, Semantic Web 9(5), 627-660, IOS Press.

Sprogis, A. (2016). ajoo: WEB Based Framework for Domain Specific Modeling Tools, in

Arnicans. G., et al. (ed.), Frontiers of AI and Applications, Vol. 291, Databases and

Information Systems IX, IOS Press, pp. 115-126.

Vargas, H., Aranda, C.B., Hogan, A., López, C. (2019). RDF Explorer: A Visual Query Builder

for Semantic Web Knowledge Graphs, Proceedings of The Semantic Web – ISWC 2019

Auckland, New Zealand, October 26–30, Proceedings, Part I. Springer-Verlag, Berlin,

Heidelberg, 647–663. https://doi.org/10.1007/978-3-030-30793-6_37

Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A. (2016). PepeSearch: semantic

data for the masses. PloS one, 11(3), e0151573.

https://doi.org/10.1371/journal.pone.0151573

Vrandečić, D., Krötzsch, M. (2014). Wikidata: a Free Collaborative Knowledge Base.

Communications of the ACM 57, 10, 78–85. https://doi.org/10.1145/2629489

Zviedris, M., Barzdins, G. (2011). ViziQuer: A Tool to Explore and Query SPARQL Endpoints, in

Antoniou, G., et al. (ed.), Proceedings of The Semanic Web: Research and Applications.

ESWC 2011. Lecture Notes in Computer Science, vol 6644. Springer, Berlin, Heidelberg, pp.

441-445. https://doi.org/10.1007/978-3-642-21064-8_31

WEB (a). PEG.js – Parser Generator for JavaScript, available at https://pegjs.org/

WEB (b). SPARQL 1.1 Overview. W3C Recommendation 21 March 2013, available at
http://www.w3.org/TR/sparql11-overview/

WEB (c). The LinDA Query Designer, available at
https://2015.semantics.cc/sites/2015.semantics.cc/files/files/

LinDAQueryDesigner.pdf

WEB (d). The Linked Open Data Cloud, available at https://lod-cloud.net/

348 Ovčiņņikova et.al.

Appendix 1 – ViziQuer Expression Grammar
9

Expression = "[]" / "[+]" / "(no_class)" / ValueScope / ConditionalOrExpression /

ClassExpr /"*"

ValueScope = "{" (ValueScopeA / ValueScopeB / ValueScopeC) "}"

ValueScopeA = INTEGER ".." INTEGER

ValueScopeB = Scope ("," Scope)*

ValueScopeC = (UNDEF / PrimaryExpression) ("," (UNDEF / PrimaryExpression))*

Scope = "(" ((UNDEF / PrimaryExpression) ("," (UNDEF / PrimaryExpression))*) ")"

ClassExpr = "(.)" / "." / "(select this)" / "(this)"

ConditionalOrExpression = ConditionalAndExpression (("||"/ "OR") ConditionalAndExpression)*

ConditionalAndExpression = RelationalExpression (("&&" / "AND") RelationalExpression)*

RelationalExpression = RelationalExpressionA / RelationalExpressionB / RelationalExpressionC

/ RelationalExpressionD

RelationalExpressionA = NumericExpression ("IN" / "NOT" "IN") (ExpressionListA /

ExpressionListB / ExpressionListC)

RelationalExpressionB = ClassExpr Relation NumericExpression

RelationalExpressionC = NumericExpression Relation ClassExpr)

RelationalExpressionD = NumericExpression (Relation NumericExpression)?

NumericExpression = AdditiveExpression

AdditiveExpression = MultiplicativeExpression MultiplicativeExpressionList*

MultiplicativeExpressionList = Concat / Additive / NumericLiteralPositive /

NumericLiteralNegative

Concat = "++" MultiplicativeExpression

Additive = ("+" / "-") MultiplicativeExpression

MultiplicativeExpression = UnaryExpression UnaryExpressionList*

UnaryExpression = ("!" / "-")? PrimaryExpression

UnaryExpressionList = ("*" / "/") UnaryExpression

PrimaryExpression = BooleanLiteral / BuiltInCall / QName / iriOrFunction / RDFLiteral /

BrackettedExpression / NumericLiteral / Var / DoubleSquareBracketName / LN

PrimaryExpressionCOALESCE = BooleanLiteral / iriOrFunction / BuiltInCallNoFunction /

RDFLiteral / BrackettedExpression / NumericLiteral / Var / DoubleSquareBracketName

/ QName / LN

BooleanLiteral = "true" / "false"

RDFLiteral = StringQuotes (LANGTAG / ("^^" iri))?

BrackettedExpression = "(" Expression ")"

BuiltInCall = Aggregate / FunctionExpression / RegexExpression / SubstringExpression /

SubstringBifExpression / StrReplaceExpression / ExistsFunc / NotExistsFunc

BuiltInCallNoFunction = Aggregate / RegexExpression / SubstringExpression /

SubstringBifExpression / StrReplaceExpression / ExistsFunc / NotExistsFunc

Aggregate = AggregateA / AggregateB / AggregateC

AggregateA = "COUNT_DISTINCT" "(" Expression ")"

AggregateB = ("COUNT"/ "SUM"/ "MIN"/ "MAX"/ "AVG"/ "SAMPLE") "(" "DISTINCT"? Expression ")"

AggregateC = "GROUP_CONCAT" "(" "DISTINCT"? Expression SEPARATOR? ")"

SEPARATOR = (";" "SEPARATOR" "=" StringQuotes) / ("," (StringQuotes))

FunctionExpression = FunctionExpressionC / FunctionExpressionA / FunctionExpressionB /

IFFunction / FunctionExpressionD / FunctionExpressionLANGMATCHES / FunctionCOALESCE

/ BOUNDFunction / NilFunction / BNODEFunction

FunctionExpressionA = ("LANG" / "DATATYPE" / "IRI" / "URI" / "ABS" / "CEIL" / "FLOOR" /

"ROUND" / "STRLEN" / "STR" / "UCASE" / "LCASE" / "ENCODE_FOR_URI" / "YEAR" /

"MONTH" / "DAY" / "HOURS" / "MINUTES" / "SECONDS" / "TIMEZONE" / "TZ" / "MD5" /

"SHA1" / "SHA256" / "SHA384" / "SHA512" / "isIRI" / "isURI" / "isBLANK" /

"dateTime" / "date" / "isLITERAL" / "isNUMERIC") "(" Expression ")"

FunctionExpressionB = ("LANGMATCHES" / "CONTAINS" / "STRSTARTS" / "STRENDS" / "STRBEFORE" /

"STRAFTER" / "STRLANG" / "STRDT" / "sameTerm") "(" Expression "," Expression ")"

FunctionExpressionC = ("days" / "years" / "months" / "hours" / "minutes" / "seconds") "("

PrimaryExpression "-" PrimaryExpression ")"

9 The actual implementation uses a wider range of characters for literals and variable names,

allowing Unicode in delimited string constants, as well as variable names, surrounded by [and

].

 Visual Diagrammatic Queries in ViziQuer: Overview and Implementation 349

FunctionExpressionD = ("COALESCE" / "CONCAT") ExpressionListA

FunctionCOALESCE = PrimaryExpressionCOALESCE "??" PrimaryExpressionCOALESCE

FunctionExpressionLANGMATCHES = (PNAME_LN / QName / LN) (LANGTAG_MUL / LANGTAG)

BOUNDFunction = "BOUND" "(" PrimaryExpression")"

NilFunction = ("RAND" / "NOW" / "UUID" / "STRUUID") NIL

BNODEFunction = "BNODE" (("(" Expression ")") / NIL)

IFFunction = "IF" "(" Expression "," Expression "," Expression ")"

RegexExpression = "REGEX" "(" Expression "," Expression ("," Expression)? ")"

SubstringExpression = ("SUBSTRING"/"SUBSTR") "(" Expression "," Expression (","

Expression)? ")"

SubstringBifExpression = ("bif:SUBSTRING" / "bif:SUBSTR") "(" Expression "," Expression

("," Expression)? ")"

StrReplaceExpression = "REPLACE" "(" Expression "," Expression ("," Expression)? ")"

ExistsFunc = ExistsFuncA / ExistsFuncB

ExistsFuncA = "EXISTS" ("(" Expression ")") / Expression

ExistsFuncB = "{" Expression "}"

NotExistsFunc = NotExistsFuncA / NotExistsFuncB

NotExistsFuncA = "NOT" "{" Expression "}"

NotExistsFuncB = "NOT" "EXISTS"? ("(" Expression ")") / Expression

ExpressionListA = NIL / "(" Expression ("," Expression)* ")"

ExpressionListB = "{" Expression ("," Expression)* "}"

ExpressionListC = "{" INTEGER ".." INTEGER "}"

LANGTAG = "@" StringLang

LANGTAG_MUL = "@" "(" (StringLang ("," StringLang)*) ")"

iri = IRIREF / PNAME_LN

IRIREF = "<" ([A-Za-z_0-9:.#/-()%,] / "\\")* ">"

PNAME_NS = (PN_PREFIX? ":")

PNAME_LN = "@"? "`"? PNAME_NS (CharsStringVarname / BasicCharStringNum)

SubstringBetweenLikeExpression

PN_PREFIX = BasicCharString

iriOrFunction = iri ArgList?

ArgList = ("(" "DISTINCT"? ArgListExpression ")") / NIL

NIL = "(" ")"

ArgListExpression = Expression ("," Expression)*

NumericLiteral = NumericLiteralUnsigned / NumericLiteralPositive / NumericLiteralNegative

NumericLiteralUnsigned = DOUBLE / DECIMAL / INTEGER

NumericLiteralPositive = DECIMAL_POSITIVE / DOUBLE_POSITIVE / INTEGER_POSITIVE

NumericLiteralNegative = DECIMAL_NEGATIVE / DOUBLE_NEGATIVE / INTEGER_NEGATIVE

DECIMAL = [0-9]* "." [0-9]+

DOUBLE = ([0-9]+"."[0-9]*[eE][+-]?[0-9]+)/("."([0-9])+[eE][+-]?[0-9]+)/(([0-9])+ [eE] [+-]?

[0-9]+)

INTEGER = [0-9]+

INTEGER_POSITIVE = ("+" INTEGER)

DECIMAL_POSITIVE = ("+" DECIMAL)

DOUBLE_POSITIVE = ("-" DOUBLE)

INTEGER_NEGATIVE = ("-" INTEGER)

DECIMAL_NEGATIVE = ("-" DECIMAL)

DOUBLE_NEGATIVE = ("-" DOUBLE)

Var = ("??" VARNAME?) / ("?" VARNAME) / ("$" VARNAME)

StringQuotes = STRING_LITERAL1 / STRING_LITERAL2

STRING_LITERAL1 = "'" QuotedString "'"

STRING_LITERAL2 = doubleQuotes QuotedString doubleQuotes

QName = Path / PathBrRound /PathBr

Path = PathAlternative SubstringBetweenLikeExpression

PathBrRound = "[[(" PathAlternativeBr SubstringSpec? ")]]" BetweenExpression?

LikeExpression?

PathBr = "[[" PathAlternativeBr SubstringSpec? "]]" BetweenExpression? LikeExpression?

PathAlternative = PathSequence ("|" PathSequence)*

PathAlternativeBr = PathSequenceBr ("|" PathSequenceBr)*

PathSequence = PathEltOrInverse (("." / "/") PathEltOrInverse)+

PathSequenceBr = PathEltOrInverse (("." / "/") PathEltOrInverse)*

PathEltOrInverse = PathEltA / PathEltB

350 Ovčiņņikova et.al.

PathEltB = "^"? PathElt

PathEltA = "inv" "(" PathElt ")"

PathElt = PathPrimary PathMod?

PathPrimary = ("!" PathNegatedPropertySet) / iriP / ("(" Path ")") / LNameP/ "a"

PathNegatedPropertySet = PathNegatedPropertySetBracketted / PathOneInPropertySet

PathNegatedPropertySetBracketted = "("(PathOneInPropertySet("|" PathOneInPropertySet)*)? ")"

PathOneInPropertySet = PathOneInPropertySet2 / PathOneInPropertySet1

PathOneInPropertySet1 = "^"? (iriP / LNameP/ 'a')

PathOneInPropertySet2 = "inv" "(" (iriP / LNameP/ 'a') ")"

iriP = IRIREF / PNAME_LNP / PNAME_NSP

PNAME_NSP = PN_PREFIX? ':'

PNAME_NSPSQ = BasicCharString ":"

PNAME_LNP = "@"? PNAME_NSP (BracketedCharString / BasicCharString)

LNameP = "@"? (BracketedCharString / BasicCharString)

LN = LNameINV / LNameINV2 / LName

LNameSimple = CharsStringVarname / BasicCharString

LName = "@"? "`"? LNameSimple PathMod? SubstringBetweenLikeExpression

LNameINV = "@"? "`"? "INV" "(" PNAME_NS? LNameSimple ")" SubstringBetweenLikeExpression

LNameINV2 = "@"? "`"? "^" LNameSimple SubstringBetweenLikeExpression

DoubleSquareBracketName = "`"? PNAME_NSPSQ? BracketedCharString

CharsStringVarname = "[[" BasicCharString "]]"

SubstringBetweenLikeExpression = SubstringSpec? BetweenExpression? LikeExpression?

SubstringSpec = "[" (INTEGER ("," INTEGER)?) "]"

BetweenExpression = "BETWEEN" "(" NumericExpression "," NumericExpression ")"

LikeExpression = LikeExpressionA / LikeExpressionB

LikeExpressionA = ("LIKE" / "~*" / "~") (likeStringA / likeStringB)

LikeExpressionB = ('~*' / '~') (likeStringC / likeStringD)

likeStringA = doubleQuotes "%"? ([A-Za-z0-9_])+ "%"? doubleQuotes

likeStringB = "'" "%"? ([A-Za-z0-9_])+ "%"? "'"

likeStringC = doubleQuotes ([A-Za-z0-9_^* .])+ doubleQuotes

likeStringD = "'" ([A-Za-z0-9_^* .])+ "'"

doubleQuotes = '"'/ '“' / '”'

BasicCharString = [A-Za-z_-] [A-Za-z0-9_-]* (("..") [0-9]*)?

BasicCharStringNum = [A-Za-z0-9_-] [A-Za-z0-9_-]* (("..") [0-9]*)?

BracketedCharString = "[" [A-Za-z0-9_] ([A-Za-z0-9_., -()/] / "'")* "]"

StringLang = [A-Za-z]+

QuotedString = ([A-Za-z0-9] / "\\" / "[" / "]" / [-_.:, ^$()!@#%&*+?|/])*

VARNAME = [A-Za-z_] [A-Za-z0-9_]*

Relation = "=" / "!=" / "<>" / "<=" / ">=" /"<" / ">"

PathMod = "?" / "*" / "+"

Received May 2, 2023, accepted June 13, 2023

