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Abstract. In traditional machine learning, geometrically "compact" sets of classes are given by 

representatives with the aim of correctly classifying new objects into classes. We consider an 

application where one class is singled out, and the goal is to classify objects into this target class 

by a stepwise procedure. This problem appears in the precision medicine area under the name of 

“dynamic treatment regime”. A predefined class-action is applied that transforms the object to the 

same or some other class. The mapping of class-actions to the classes forms the policy, and the 

chain of policy-based transformations (under some restrictions) must converge to the target class. 

With graph theoretical tools, we present and evaluate the policy form, and show that the graph is 

partitioned into a couple of structural components, which helps to find out the possible policy 

defects to be corrected by subject domain specialists for better results. 

Keywords: Dynamic treatment regime, One class classification, Class transition policy, BFS and 

DFS. 

1. Introduction 
 

The subject of this article arose when considering the medical problem of dynamic 

treatment regimes (Murphy, 2005) in terms of problems of classifications and transitions 

of objects between classes. These considerations are intended to complement the 

traditional statistical analysis of medical sequential treatment problems in this area. The 

viewpoint began to take shape in works (Aslanyan et al., 2020), (Aslanyan et al., 2020), 

and the initial results were reported at the DAMSS conference (Aslanyan et al., 2022). 

The problem under consideration has similarities with classical supervised 

machine learning classification, which implies several geometrically "compact" sets of 

elements (clusters, classes) defined by sets of representatives of these classes (elements 

of the so-called training set), for which there are procedures capable of correctly 

classifying new objects into desired classes. However, after the learning/training phase, 

the recognition/classification of a trial object is a static, one-step process. Unlike the 

traditional classification approach, our application allocates objects to a single special 

class by a step-by-step procedure. In a separate recursive step, when the temporal class 
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of an object has been defined, a predefined action on the elements of the class is applied, 

which transfers that object into the same class or some other class. The objective of the 

task is to make sure a chain of such transformations will lead the objects to a marked 

target class. The fact that the paper deals with a classification problem using graph 

theory is a contribution.  

For the designated special class we equivalently use the names "normal" and 

"target". The novelty lies in the recurrent classifications over a set of objects, in the 

matching of classes and class actions, and in the convergence of the classifications to the 

target class in as few steps as possible. We distinguish between "white box" and "black 

box" cases. The latter is closer to the model of backward reinforcement learning, 

especially to the concept of learning with apprenticeship. Since the general idea is 

presented in terms of classification algorithms and is a new research postulate, we think 

it necessary to point out the specifics of this idea, as well as to recall existing 

associations with current research tasks in the field of classification algorithms. 

Although there is an association with the classification of unbalanced classes 

(Koço et al., 2013), where the need for general accuracy requires the classification of 

small classes to be emphasized (attention to the unseen), our classification has additional 

algorithmic constraints coming from the subject domain (otherwise we would apply the 

action that transfers the object to the target class in one step).  

The second association is with sequential learning algorithms (Even-Zohar et al., 

2001). Sequential learning aims to limit the classes step by step until it finds the right 

class for the object. In the case of our problem, sequential learning/classification aims to 

find a stepwise approximation of the object being classified to a predefined target class. 

The classification structure is again constrained based on the set of available data and 

rules of the subject domain.  

A good example of the application of the idea of target class classification (𝑇𝐶𝐶) 

is the medical problem of stepwise treatment of chronic diseases (Murphy, 2005). 

Examples of this kind are many in publications (Lavori and Dawson, 2008). The tasks of 

this group of medical approaches belong to the field of personalized/precision medicine 

and are well known in terms of dynamic treatment regime (or adaptive treatment 

strategies) problems (Murphy, 2005), where it is required to construct an optimal 

treatment policy for patients that consists of their gradual approach to a class of normal 

health condition.  

Clarification of the subject and initial findings requires a general consideration of 

the field of classification algorithms, raising the need for the approach being presented as 

a complement to existing concepts (1.1. Notes on Classification Framework). Next, 

elements of the theory of adaptive treatment strategies (based on (Murphy, 2005)) are 

mentioned in 1.2. An Example Application Scenario. The data structure for the problem 

is described in 1.3. Data, and finally, one simple case of the problem with its graph-

theoretic analysis is considered in 2. Target-Class Classification, the Simplest Case 

Analysis). The main result of this proof of concept type paper is formulated as Theorem 

1. An extended version of this paper will add experimental results with medical data, 

aiming to provide further research results on Markov Chain and Hidden Markov Models, 

classification stability, the limiting behaviour of classification recursions, and 

reinforcement learning. 
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1.1. Notes on classification framework 
 

The task of classification in the field of modern machine learning refers specifically to 

the field of pattern recognition (an earlier name for machine learning) (Bongard, 1967), 

(Chervonenkis et al., 1974), (Mohri et al., 2018), (Zhuravlev, 1998). The classification 

problem objective is to identify the class (property, category) to which an observed 

object belongs, based on the set of associated feature values. Typically, a set of training 

dataset observations with known class membership is available to train the algorithm, 

and a validation dataset is foreseen for the algorithm evaluation. The classification 

problem can be further categorized as:  

(a) binary classification problem, in the case when the class label can take only two 

values,  

(b) multiclass classification problem, in the case when the class label can take more than 

two different values, and  

(c) multi-label classification problem, in the case when each observation is associated 

with more than one class.  

Modern classification is a mixture of discrete mathematical procedures, 

heuristics, approximations, and estimations, with random sampling, average and worst-

case analyses, and statistical estimations that are as a rule an overestimation of the 

reality. A wide variety of algorithms have been proposed to solve the classification 

problems. Example algorithms for binary classification include linear regression, logistic 

regression, naive Bayes, voting, support vector machines, decision tree, random forest, 

k-nearest neighbours, artificial neural networks, etc. It appears that depending on the 

specific problem type, one or the other algorithm may be more appropriate. For this 

reason, the performance of different algorithms should be evaluated before selecting the 

one that best fits the problem characteristics.  

An additional idea is the sequential learning model, which utilizes classifiers to 

sequentially restrict the number of competing classes while maintaining, with high 

probability, the presence of the true outcome in the candidate set. Sequential 

classification is central to many practical machine learning problems. In a variety of real-

world applications (ranging from protein/DNA classification, speech recognition, 

intrusion detection, and text classification), there is a need to classify sequence data (we 

distinguish sequential classification from the classification in a sequence). 

Sequence data are different from the more-typical vector representation. The 

distances between arbitrary pairs of sequences are difficult to determine because the 

sequences can be of different lengths and the information contained in the order of the 

sequence elements is lost when applying standard metrics such as Euclidean distance. 

The concepts of Sequence Profile, Hidden Markov Models (HMM) (Rabiner, 1989), 

(Murphy, 2005), (Warnow, 2017), and HMM Profile have a rich history in sequence data 

modeling for classification, segmentation, and clustering. The HMMs’ success is based 

on the convenience of their simplifying assumptions. The space of probable sequences is 

constrained by assuming only pairwise dependencies over hidden states. Pairwise 

dependencies, emission, and transition matrices also allow for a class of efficient 

inference algorithms, where steps are built based on the Forward-Backward algorithm. 

After training, the per-sequence transition matrices of the HMM are used as fixed-length 

vector representations for each associated sequence.  

The problem considered in this paper is a new, specific classification paradigm, 

but it can still be interpreted in association with the properties of unbalanced classes and 

sequential learning. Normal imbalance is meant to protect small classes from 



 Target Class Classification Recursion Preliminaries  401 
 

misclassification while target class classification focuses on a single, main class which 

we call the target class. The task is to build an algorithm that assigns all objects to the 

target class. The classification and transition means are limited, and in order to achieve 

the goal, it is necessary to apply them consecutively, several times. Classification, or 

finding an action to apply, in 𝑇𝐶𝐶, is a traditional machine learning algorithm, while the 

target class classification is a chain of classifications and process analysis. It is necessary 

to answer the question about the consistency of the framework for the final assignment 

of objects to the target class, as well as to build an iterative classification algorithm with 

the required accuracy of the final assignment of objects to the target class. 

1.2. An Example Application Scenario 

 
Let us turn to the original medical problem, from which the algorithmic problem of 

classification to the target class originated. Adaptive treatment strategies (also known as 

dynamic treatment regimes) are emerging as a tool for personalized and precision 

medicine as a new paradigm for the treatment and long-term management of chronic 

disorders such as alcoholism, smoking cessation, cocaine abuse, depression, and 

hypertension (Murphy, 2005). In adaptive treatment strategies, the level and type of 

treatment are repeatedly adjusted according to the needs of the individual (classification 

based on feature values). 

An adaptive treatment strategy is characterized by a sequence of decision rules, 

one for each treatment (sequential learning). Researchers now use a combination of 

clinical experience, trial and error, behavioural, psychosocial, and biological theories, 

observational studies, and randomized experimental studies conducted for other purposes 

to formulate the decision rules that constitute an adaptive treatment strategy. The goal of 

the strategy is to bring patients to a normal state, which we interpret as the final 

assignment/classification to the target/normal class. In this paper, we analyze the 

simplest case of treatment where the process is strictly static.  

The whole spectrum of cases in question is as follows: 

a) А class (state) of an object (patient) is defined, and a standard (single) action 

(procedure) is assigned to this class; as a result of the action the class objects move to 

one single class. 

b) As a result of the action, the class objects move to a number of other classes by 

certain probabilities. 

c) А number of actions are possible in each step, and each action can be either 

deterministic, with one output, or probabilistic, with many outputs. 

Our long-term goal is to optimize adaptive treatment strategies, that is, to create a 

treatment strategy that produces the best (or required) classification result. A number of 

trials have been and are being conducted in this concern. 

 

In order to name the main goals of the 𝑇𝐶𝐶, let us define the objectives: 

 Validation - Considering any of the cases a) - c) and the corresponding 𝑇𝐶𝐶 

solution, we need to determine whether it solves the problem of effectively 

assigning objects to the target class. To do this, we first need to construct 

such an algorithm, and then we can apply cross validation scheme or a 

standard control procedure from pattern recognition with a control set to 

obtain an estimate of success. 
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 Superiority - The comparison of two or more procedures is also carried out 

based on a consistent control set of objects or cross validation type 

procedures. 

 Optimization is the main procedure of the 𝑇𝐶𝐶. It looks at all available data 

on the problem and analyses it by all available means. It is usually discrete 

mathematical analysis, it is matrix analysis, Markov chains, HMM, etc. 

 

In most cases, the goal of these trials is to develop adaptive treatment strategies 

(sequences of treatments for a particular individual), and they are not confirmatory. That 

is, the goal does not include confirming that one adaptive treatment strategy is better 

than control or standard treatment. Confirmatory trials comparing an optimized adaptive 

treatment strategy with a corresponding control or standard treatment should follow such 

trials. 

1.3.  Data 

 
𝑇𝐶𝐶 problem is a data-driven procedure. 

Suppose we need to make at most 𝑘 decisions, 𝑎1;  𝑎2;  . . . ;  𝑎𝑘 per individual. 𝑆1 

denotes pre-treatment information whereas 𝑆𝑗 , 1 < 𝑗 ≤ 𝑘 denotes the intermediate 

outcome information available after decision 𝑎𝑗−1 and prior to decision 𝑎𝑗. Thus, the 

time order is 𝑆1; 𝑎1;  𝑆2; 𝑎2; … ; 𝑆𝑘; 𝑎𝑘; 𝑆𝑘+1. This is an individual track, and we call the 

set of tracks over the population of individuals a trellis. Denote past and present 

information as 𝑆�̅� = {𝑆1;  . . . ;  𝑆𝑗}. The primary outcome is 𝑌 = 𝑢(𝑆�̅�+1; �̅�𝑘) where 𝑢 is a 

known summary function. In the addiction management study, 𝑌 is the main percent of 

days abstinent so 𝑢 counts the number of days abstinent and divides by study length in 

days. An adaptive treatment strategy is a sequence of decision rules, one per decision. 

Thus, we denote an adaptive treatment strategy by the decision rules {𝑑1;  𝑑2;  . . . ;  𝑑𝑘} 

where the decision rule 𝑑𝑗 takes the information available at time 𝑗. 𝑆𝑗 = {𝑆1;  . . . ; 𝑆𝑗} and 

past treatment �̅�𝑗−1 = {𝑎2;  . . . ; 𝑎𝑗−1} outputs a treatment type/level, 𝑎𝑗. For example, in 

the addiction management study, 𝑘 = 2 and the possible treatments, values for 𝑎1 at the 

first decision time point are 𝑚𝑒𝑑 (with a low level of counseling) and 𝑐𝑏𝑡 (cognitive 

behavioural therapy) (Murphy, 2005). The information available for making the second 

decision includes pre-treatment information denoted by 𝑆1, the first treatment, and the 

intermediate outcomes denoted by 𝑆2. The structure of the trellis can be very different. 

The initial states (classes) may be different, but in that case, it is possible to group tracks 

with the same initial state, which will simplify the preliminary analysis. The problem is 

also in tracks having different lengths, they may end in different states. 

Sometimes only the initial and final states of a track and its length are known. 

Sometimes, only transitions, the previous state, and the next state are taken from the 

data. The data used is also characterized by the algorithm applied to classify the states. 

Sequence profile-type algorithms use state frequencies, while HMM profile class 

algorithms can use transition frequencies, both first and higher orders, which is akin to 

the reinforcement learning approach. The algorithm introduced in Section 2.2 is the 

simplest one for the simplest case of the problem. It considers first-order transitions, and 

the result of a transition is only one fixed value. The issue is to understand the 

constraints that provide assigning objects to the target class. If the experimental data do 

not satisfy the constraints identified by this research framework, this indicates the need 
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to verify, update, or revise the experimental data, or requires the adoption of a new 

hypothesis about the processes and data. 

2. Target-Class Classification, the Simplest Case Analysis 
 
Consider case a) of the problem given in Section 1.2. Once the classes 𝐾0, 𝐾1, 𝐾2, . . . , 𝐾𝑙  

are given, each class 𝐾𝑖 initiates a certain action 𝑎𝑖, as a result of which the object 

reallocates into the class 𝑎𝑖(𝐾𝑖) = 𝐾𝑗 . The class 𝐾0 is the target (normal) class to which 

an action is not attached and the elements of this class are not moved anywhere. Having 

a system of these simply defined transitions between classes and policy, it is necessary to 

understand whether there is a possibility and tendency to move objects to the normal 

class as a result of successive classifications. Consider the following graph 𝐺 = (𝑉, 𝐸) 

with vertices that correspond to classes, and edges with marked actions of classes, and 

the orientation to classes determined by the actions. The normal class 𝐾0 is assigned to 

the vertex 𝑣0 ∈ 𝑉.  

In general, a directed graph (or digraph) is called weakly connected if the underlying 

undirected graph is connected. A directed graph is unilaterally connected or unilateral 

(also called semi-connected) if it contains a directed path from 𝑢 to 𝑣 or a directed path 

from 𝑣 to 𝑢 for every pair of vertices 𝑢, 𝑣. It is strongly connected, or simply strong, if it 

contains a directed path from 𝑢 to 𝑣  and a directed path from 𝑣  to 𝑢  for every pair of 

vertices, 𝑣. An oriented graph is a digraph with no cycle of length two. Undefined terms 

can be found in (Bang-Jensen, Gutin, eds., 2018).   

The graph 𝐺 = (𝑉, 𝐸) of our problem is very simple: from each of its vertices exactly 

one oriented edge is going out, except the vertex 𝑣0, where no edge starts from it. Then, - 

what is the structure of this graph? Usually connected component is given as sets of 

vertices and edges. We are interested to obtain more information, in terms of cycles, 

trees, and orientations calling these configurations structural components of 𝐺. Some of 

these components represent cactus graphs, defined as connected graphs in which any 

two graph cycles have no edge in common. We will describe the structure in terms of 

connected components of the underlying undirected graph of 𝐺, and additionally, 

mention the orientations of edges. Some fragments of the structure satisfy the properties 

of unilateral or strongly connected components that we will mention accordingly. 

2.1. Structure of 𝑻𝑪𝑪 graph 𝑮 

 
Theorem 1. The underlying graph of 𝑇𝐶𝐶 graph 𝐺 consists of one tree 𝐺0, rooted at 𝑣0 

and may have several other structural components structured as one-cycle cactus graphs. 

Orientation of edges in 𝐺0 are towards the vertex 𝑣0. In cacti, the orientation of the edges 

of cycles is one way and other edges are oriented towards the cycles.  

 

Proof. First, let us prove the existence of the tree 𝐺0, rooted at vertex 𝑣0 (we call it a 

normal-tree) by constructing it. Consider the vertex 𝑣0 and the set of oriented edges that 

enter into 𝑣0. Suppose that these edges originated from the vertices 𝑣11
, 𝑣12

 , . . . , 𝑣1𝑘1
. 

Geometrically, we place vertices layer by layer: 𝑣0 at the lower layer, then 

𝑣11
, 𝑣12

 , . . . , 𝑣1𝑘1
 at the next layer, and so on.  
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Since every vertex in 𝐺 has only one outgoing edge, then 𝑣11
, 𝑣12

 , . . . , 𝑣1𝑘1
 exhaust their 

outgoing edges and therefore will not appear further in the upper part construction of the 

tree. In the next step, we sort out the vertices 𝑣11
, 𝑣12

 , . . . , 𝑣1𝑘1
 of the first layer and 

collect all the edges entering into these vertices from some collection 𝑣21
, 𝑣22

 , . . . , 𝑣2𝑘2
. 

We place these vertices on layer two. This procedure, repeated recursively, ends at some 

step 𝑚 with the construction of a tree rooted at 𝑣0, with one edge going down from all 

internal (non-root) vertices to the vertices of the adjacent layer below. But, it is clear that 

all vertices except the terminal ones (leaves) can contain multiple ingoing oriented 

edges. Now, if the graph is connected, then its structure of 𝐺 is already defined (see 

component 𝐺0 in Figure 1).  

 We mention that the underlying undirected graph 𝐺0 represents a connected 

component of the underlying graph of 𝐺, because no edges are emanating this subgraph 

and no new edges may enter into it. The description is given in terms of underlying 

graphs because 𝐺0 does not have properties neither unilateral nor strong connectivity.  

The case of connected graph 𝐺 is completed.  

Now, suppose that 𝐺 is not connected (there are still vertices outside 𝐺0), and 

let 𝐺1, 𝐺2, . . . , 𝐺𝑙 be the other connected components of its underlying undirected graph. 

Consider an arbitrary component 𝐺𝑖. First, we claim that there must be a cycle in 𝐺𝑖. 

This is explained by the finite number of vertices in the components, where each vertex 

can give exactly one outgoing oriented edge to one other vertex. A cycle can be 

constructed as follows: we start from an arbitrary vertex, go by the outgoing edge of this 

vertex to the edge endpoint vertex, and repeat this step sequentially. The resulting path is 

forced to be closed due to the limited expansion space. We prove that this is a unique 

cycle. Suppose that there is a second cycle in  𝐺𝑖. Then, these cycles must have a 

common vertex, since 𝐺𝑖 is connected. But in this case, from this common vertex, there 

must emanate two oriented edges for two cycles, which is a contradiction. 

In this manner, each of the connected components has a single cycle. There are 

no outgoing links from the cycle. Trees similar to the normal-tree can converge to the 

vertices of this cycle, and thus the structure of such component itself is provided by the 

one-cycle cactus graph, which completes the proof of the theorem. ∎ 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. G0 is the basic component, rooted and oriented to the vertex 𝑣0. All other components 

consist of one oriented cycle, plus several trees, entering and oriented into a vertex of the 

component’s cycle. The cycle itself is strongly connected but the entire component is in terms of 

underlying graph connectivity. 
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Considering Theorem 1. from the point of view of the concerned practical 

problem, we should note the following. If analysis of the experimental data of the 

problem shows that the transition graph constructed by available data does not 

correspond to the above-considered restrictions (supposed in subproblem a)), then this 

indicates non-compliance with the envisioned policy, and the question should be 

transferred to the decision makers of the applied problem. If these conditions are met but 

there is more than one component of 𝐺, then the question arises again in terms of 

accessibility, and it is necessary to make changes in the form of applying updated actions 

to the classes so that the additional components 𝐺1, 𝐺2, … , 𝐺𝑙 properly merged with the 

component 𝐺0. To answer these questions, we have to compute the 𝐺0, 𝐺1, 𝐺2, … , 𝐺𝑙 

representation of the graph 𝐺. 

2.2. Algorithm of construction of structural components of simple 𝑻𝑪𝑪 

graph 𝑮 

 
Input information of 𝑇𝐶𝐶 problem is the graph 𝐺, given by its sets: 𝑉, of vertices, and 𝐸, 

of edges. In this section, we consider algorithms that construct and compute the 

structural components of 𝐺. The complexity of algorithms is also an issue of our 

discussion. 

 According to Theorem 1. the structural parts 𝐺0, 𝐺1, 𝐺2, … , 𝐺𝑙 of 𝐺 correspond 

to the connected components of the underlying undirected graph 𝐺′ of 𝐺 by adding a 

proper orientation to their edges. 𝐺′ is a simple graph, and algorithms for constructing 

connected components of these graphs are well-investigated and well-known. The time 

complexity of finding all connected components in ordinary graphs is O(|V| + |E|). Basic 

algorithms use the breadth or depth-first search by the set of vertices (Tarjan, 1972). In 

fact, data sizes in 𝑇𝐶𝐶 are not big and these algorithms can be used to obtain the 

structure. But a couple of factors justify this new reference to these algorithms. First, we 

may need to justify the complexity formula having that in our particular case the number 

of graph edges is limited by |𝐸| = |𝑉| − 1. Further, the algorithm we construct is a 

mixture of BFS and DFS and it is to check that rounds of these procedures might be 

combined into one-pass data. Finally, it is not enough to have connected components as 

sets of vertices, but the structure of these components is necessary for our needs. On this 

basis, let us consider the following data structure: 

 
Table 1. The data structure of 𝑇𝐶𝐶 policy graph analysis. 

 

Classes, 

vertices 

Transition 

to 

Oriented 

path to 𝑣0 

Incoming lists to vertices 

𝑣0 ∅ ∅ 𝐿0 = {𝑙01, … , 𝑙0𝑘0
} 

𝑣1 𝑣𝑗1
 𝛿1 𝐿1 = {𝑙11, … , 𝑙1𝑘1

} 

𝑣2 𝑣𝑗2
 𝛿2 𝐿2 = {𝑙21, … , 𝑙2𝑘2

} 

… … … … 

𝑣𝑖 𝑣𝑗𝑖
 𝛿𝑖 𝐿𝑖 = {𝑙𝑖1, … , 𝑙𝑖𝑘𝑖

} 

… … … … 

𝑣𝑛−1 𝑣𝑗𝑛−1
 𝛿𝑛−1 𝐿𝑛−1 = {𝑙(𝑛−1)1, … , 𝑙(𝑛−1)𝑘𝑛−1

} 

 



406  Aslanyan et al. 

 

 

The first column of this table starts with vertex 𝑣0 and continues with other 

vertices of 𝐺 in an arbitrarily fixed order. The second column vertex 𝑣𝑗𝑖
, together with 

the first column vertex 𝑣𝑖 indicates to the edge (𝑣𝑖,𝑣𝑗𝑖
), that comes out from the vertex 𝑣𝑖 

and enters into the 𝑣𝑗𝑖
. The third column will code the existence of an oriented path from 

vertex 𝑣𝑖 to vertex 𝑣0 and this field will be filled a bit later. The fourth column 

"incoming lists to vertices" will contain lists 𝐿𝑖 collecting all vertices with directed edges 

to the vertex 𝑣𝑖. Some of the lists may be empty.  

The algorithm works as follows: 

- Making a single pass through the first two columns of the table, the fourth column is 

filled in the following way: being in the 𝑖-th row of the table, 𝑣𝑖 is added to the 

“incoming lists” of the 𝑗𝑖-th row. In the lists, the vertices are arranged according to 

the order of vertices in the first column. The total amount of information in the fourth 

column does not exceed 𝑛, because every vertex cannot be inserted in two or more 

lists.  

- We may do a limited second pass through the table, when the lists/rows are 

rearranged, forming the layers of the tree 𝐺0: list 𝐿0 follows  vertex 𝑣0, forming the 

first (after vertex 𝑣0) tree-layer of 𝐺0, then the lists corresponding to vertices from 𝐿0 

are placed, thus forming the second tree layer, and so on. 

        Rearrangement of the lists as tree-layers is possible during a single (second) 

pass through the table because, for a vertex from these lists, its corresponding list is 

located directly in the row given by the number of this vertex in the first column, and by 

the "incoming lists" cell of this row. During this pass, the height (the number of layers) ℎ 

of the constructed tree is also determined. Thus, at most 2𝑛 operations of reading and 

readdressing are performed during two passes, which is the complexity characterization 

of this algorithmic fragment. The memory occupies so far 3𝑛 cells but this is reducible 

when necessary using bit-based coding. 

A special note has to be made about the tree leaves. After the second pass, 

rearranging the lists, a set of vertices with empty lists is formed at the end of the 

rearranged part of the table. At this level, all vertices have empty lists although in lower 

layers not all vertices are leaves, and not all lists are empty. All vertices that participated 

in the second pass including leaves are marked in the third column with a “+” sign 

indicating the existence of an oriented path from these vertices to the vertex 𝑣0. The 

subsequent vertices of the first column are not visited by the second pass since they are 

not connected by an edge going from them to the constructed tree with the root 𝑣0. 

These vertices are marked in the third column with a “-“ sign. We may also introduce 

labels indicating the number of the layer for lists, and labels indicating leaves.  

We conclude that building a tree is a low linear procedure in terms of the 

complexity of maintained data and memory used. Similar consideration is valid for the 

rest of the table when the algorithm constructs the cactus-type components. In this case, 

the process starts from 0-indegree vertices that form the cactus branches. And one pass 

is sufficient to form all cycles and cacti bunches.  

After this introduction to the topic let us turn to the existing classic theory of 

graph theoretical algorithms. 

In graph theory, Depth First Search (DFS) and Breadth First Search (BFS) are 

multipurpose graph exploration strategies. The power of these simple procedures to 

understand graph structure is demonstrated in obtaining linear time algorithms for 

finding cut-edges and cut-vertices of undirected graphs, finding strongly connected  
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components of directed graphs, for testing whether a graph is planar. Simple DFS or 

BFS recursion constructs the connectivity forest of a graph. Tarjan's strongly connected 

components algorithm (Tarjan, 1972) is one of the algorithms that constructs the 

strongly connected components (SCCs) of directed graphs 𝐺(𝑉, 𝐸) represented by 

adjacency lists for each 𝑣 ∈ 𝑉. These algorithms run in low linear time 𝒪(|𝑉| + |𝐸|), 

similarly to the alternative methods including Kosaraju's algorithm and the path-based 

strong component algorithm. DFS or BFS begins a recursion from an arbitrary start 

node, and consequently, from any node that has not yet been visited. This search visits 

every node of the graph exactly once. Thus, the collection of search trees is a spanning 

forest of the graph. The procedure requires limited supplementary data per vertex. But if 

the graph is represented by the adjacency matrix, the algorithm may require 𝛰(|𝑉|2) 

time. The order in which the strongly connected components are identified constitutes a 

reverse topological sort of the directed acyclic graph formed by the strongly connected 

components.  

The final decision on the algorithm to be used for 𝑇𝐶𝐶 decides in favor of 

Tarjan's algorithm with some modifications. This algorithm is well-known and will not 

be discussed here in detail. We just have to start with an important comment: 

The recursive step in DFS or BFS starts with an arbitrary unvisited vertex and 

ends with forming a connectivity fragment of the graph. Both searches do the same work 

but with different priorities of vertices. And while so, the DFS and BFS can be applied 

in recursions interchangeably. This comment is applied in the algorithm below. 

 

Algorithm 𝑇𝐶𝐶: 
 

A. Start from vertex 𝑣0 and treat the graph as an ordinary one, i.e. we ignore the 

orientation of edges. As a result, BFS recursion (as it was discussed earlier in this 

point) constructs the component 𝐺0 of 𝐺. The particular use of BFS gives us the 

layers of the tree as well. 

B. Choose arbitrary 𝑣 ∈ 𝐺\𝐺0 and apply Tarjan's procedure (DFS) to it. A 

supplementary array 𝑛𝑢𝑚(𝑣𝑖) keeps the consecutive number of visited vertices. 

Let a node repetition mentioned in Theorem 1 appears at the vertex 𝑢 by the 

current edge (w, u). The vertices with consecutive numbers from 𝑛𝑢𝑚(𝑢) until 

the 𝑛𝑢𝑚(𝑤), compose the cactus cycle. The path 𝑣, … , 𝑢, in reverse order, will be 

used again in Tarjan's procedure in the construction of cactus bunches when 

necessary. 

C. Uses one more supplementary array 𝑟𝑒𝑣(𝑣𝑖) (this can be a bit level array) that is 

indicating vertices of the cactus cycle with “+” when above the incoming and 

outgoing edges of the cycle at 𝑣𝑖 there exists at least one more edge incoming to 

the 𝑣𝑖. This will be a bunch edge and this bunch starts at the vertex 𝑣𝑖. 

D. Apply point A. on each vertex with 𝑟𝑒𝑣(𝑣𝑖) = " + " of the construction and 

proceed with B., if the vertices of 𝐺 are not expired. We construct bunches of 

current cactus layer-by-layer and all Theorem 1 cacti, one after the other. 
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2.3. 𝑻𝑪𝑪 defects and their correction 

 
Having Theorem 1. and algorithm 𝑇𝐶𝐶, and the fact that 𝑇𝐶𝐶 solution is correct only 

when its transition graph structure is a tree with root 𝑣0 and with an orientation of edges 

to 𝑣0 it is necessary to estimate the degree of displacement of graph structure 𝐺 from this 

desired structure. There are two types of defects: critical defects and defects related to 

optimality. The characteristic of the latter is determined by the height of the tree 𝐺0 

where the minimum value is preferable. Critical defects include problems with the 

existence of many components, as well as the existence of cacti with their cycles. In this 

case, we are dealing with a medically egregious defect, when the classes of states 

(patients) can in no way pass to the normal class based on the treatment policy applied. 

The presence of a cycle in the cactus bulla aggravates the situation because the cycle 

indicates the possibility of infinite transition between classes without entering the normal 

class. 

Therefore transformations of structural components of graph 𝐺 are needed to 

restore the connectedness of the graph and to break cycles. However, if one can 

transform the graph by introducing and reconstructing the transitions in such a way that 

the bouquet vertices go to 𝐺0, then this does not correct the defect since all cycle vertices 

remain directed-isolated from 𝑣0. To restore the cycle's connection to 𝐺0 it is necessary 

to break the cycle so that the only outgoing edge of one of its vertices goes to the 

vertices of the 𝐺0 component. Then all vertices of cactus bouquets will also get directed 

paths to the vertex 𝑣0. This also indicates the minimum required information about the 

structural composition of the graph, which provides the search and correction of defects 

in the 𝑇𝐶𝐶. It is enough to have a graph 𝐺0 as a set of vertices, and it is necessary to 

have all cycles of cacti, possibly, as sets of edges. 

The specified transformation is a recommendation to the medical institution 

based on a logical analysis of the data, and the right to decide what is possible and what 

to change of course belongs to the medical side. 

 

3. Conclusion 
 
Among the unbalanced and recursive classification algorithms, there is a practical need 

to develop new algorithms that assign objects to one predetermined class through 

sequential classifications and transitions. On a practical level, this research is related to 

the needs of precision medicine, where transition rules are defined and specified in the 

form of the policies they apply. The main research in this direction is conducted in terms 

of stochastic modeling and reinforcement learning. In this paper, a logical analysis of the 

transition graph (policy) of the problem is carried out, where the existing defects of 

transitions, and possibilities of their elimination are determined. 
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