Baltic J. Modern Computing, Vol. 11 (2023), No. 3, pp. 420434
https://doi.org/10.22364/bjmc.2023.11.3.05

A Multi-objective Optimization Service for
Enhancing Performance and Cost Efficiency in
Earth Observation Data Processing Workflows

Arthur LALAYAN'2, Hrachya ASTSATRYAN!, Gregory GIULIANI?*

! Institute for Informatics and Automation Problems National Academy of Sciences of Armenia
2 National Polytechnic University of Armenia
3 Institute for Environmental Sciences, University of Geneva, Switzerland
4 UNEP/GRID Geneva, Switzerland

arthurlalayan97@gmail.com, hrach@sci.am, Gregory.GiulianiQunige.ch

ORCID 0000-0001-6695-3697, ORCID 0000-0001-8872-6620, ORCID 0000-0002-1825-8865

Abstract. Earth observation technology has become increasingly crucial for monitoring various
aspects of our planet through systematic data collection. However, processing the large volume
of satellite data generated can be challenging, requiring high-performance computing solutions.
The Dask framework has gained popularity for its flexibility and efficiency in processing large
amounts of data in a distributed manner. Nevertheless, determining the optimal Dask cluster
configuration remains challenging, as it requires balancing performance and cost objectives. A
novel multi-objective optimization service is proposed to address this challenge that enhances the
performance and cost efficiency of earth observation data processing workflows. Our approach is
to generate a set of Pareto-optimal solutions, allowing users to make informed decisions regarding
the optimal trade-offs between performance and cost. The effectiveness is demonstrated using
real-world earth observation datasets and outperforms existing performance and cost-efficiency
solutions.

Keywords: Earth observation, HPC over cloud, Dask, multi-objective optimization, Pareto-optimal

1 Introduction

Earth observation (EO) data obtained from satellites play a crucial role in monitoring
various layers of the Earth, including the land, atmosphere, and ocean (Camps-Valls
et al., 2016). However, the growing volume of EO data has created new challenges in
handling and analyzing such large amounts of data (Yao et al., 2019). To overcome
these challenges, high-performance computing (HPC) has emerged as an effective so-
lution for improving data processing capabilities by distributing computation across

A Multi-objective Optimization Service for EO Data Processing Workflows 421

multiple machines (Li, 2020; Astsatryan et al., 2023). The most commonly used HPC
platforms for EO data processing are the open-source parallel Python Dask library
(Rocklin, 2015) and the Apache Spark engine (Zaharia et al., 2016), using a master-
slave architecture. EO communities widely adopt the Dask library due to its abundance
of tools and libraries for handling geospatial data using Python. Dask can be config-
ured and customized in various virtual, physical, cloud-based, and on-premises com-
puting environments, making it a versatile solution for parallelizing EO data processing
tasks. The execution time of EO data processing tasks depends on the configuration of
the Dask cluster, particularly the number and computational characteristics of worker
nodes (central processing unit - CPU and random-access memory - RAM). At the same
time, cloud providers offer various instances with varying numbers of CPUs and sizes
of RAM, each incurring different costs. Finding the optimal trade-off between perfor-
mance and cost is challenging when determining the optimal Dask configuration.

On the one hand, utilizing more computational resources can lead to greater par-
allelization of data processing. On the other hand, this incurs higher costs from cloud
providers. The article proposes a multi-objective optimization method for optimal EO
data processing that considers performance and cost objectives to address this chal-
lenge.

The article is organized as follows: In Section 2 (Problem formulation), we for-
mulate the problem of optimizing EO workflows. Section 3 (Related work) provides a
comprehensive review of previous optimization techniques used in the field of EO. Sec-
tion 4 (Methodology) outlines the methodology of our proposed approach. In Section 5
(Evaluation), we evaluate the effectiveness of our method. Finally, Section 6 (Conclu-
sion) summarizes the essential findings and implications of the study and concludes the
article.

2 Problem formulation

HPC over the cloud is a popular and practical alternative to traditional on-premise clus-
ters for running embarrassingly parallel or loosely coupled jobs (Malla and Christensen,
2019). There are several methods of delivering HPC through the cloud, such as virtual
machines or containers hosted on the cloud infrastructure. However, the performance of
these solutions can vary significantly based on their configuration, making it challeng-
ing to determine the optimal balance between performance and cost. We aim to provide
users with the best possible performance while minimizing costs. Thus, this article ad-
dresses the challenge of finding an optimal balance between performance and cost for
EO data processing in the cloud.

Cloud service providers offer various instances with varying quantities of CPU and
RAM. Table 1 lists some of the widely used compute-optimized instances provided by
Amazon’s Elastic Compute (EC2) cloud service.

The table showcases the diverse options for computing instances, ranging from 2 to
64 CPUs, each with a corresponding hourly cost proportional to the number of CPUs.
Dask clusters rely on selecting appropriate instance types, which offer varying combi-
nations of CPU, memory, and storage resources, and determine the number of worker
nodes that can be launched in the cluster. The challenge lies in finding the optimal

422 Lalayan et al.

Table 1. List of some compute-optimized EC2 instance types.

Instance name vCPU Memory (GiB) Hourly rate ($)

large 2 4 0.1134
xlarge 4 8 0.2268
2xlarge 8 16 0.4536
4xlarge 16 32 0.9072
8xlarge 32 64 1.8144
16xlarge 64 128 3.6288

instance type and quantity that balances performance and cost-effectiveness. Each in-
stance comes with a cost proportional to the number of CPUs it offers. Moreover, the
user must consider several other critical factors, such as the limitation of execution time
and budget constraints for the computational resource cost. Besides, the EO data pro-
cessing time depends on various factors, such as function complexity, input data size,
or the type of complexity computational infrastructure.

EO data is acquired by specialized sensors that capture images and various forms
of data about the Earth from space. The data obtained can be represented as matrices,
making it possible to process EO data by performing operations on these matrices and
extracting relevant information. The performance and cost objectives for the EO task
can be represented by the formula 1:

t=r7(s,n,r)
p=uv(t,n,r) (1
where r € R; n,s € N.

where 7 and v are the performance and cost objective functions, respectively. ¢ is
the execution time of the EO task with complexity s regarding the input data size. The
computational Dask cluster consists of » number of nodes, each with an instance type
of r from the finite set of cloud-based computing instances R. s and n are positive in-
tegers from the set of natural numbers N. The cost of the EO task is represented by
p- It depends on the execution time of the task and the characteristics of the computa-
tional cluster, particularly the number of nodes and instance type of the nodes. Formula
2 is used to find the optimal combination of the computational resources to balance
performance and cost.

min t= =v(t
T‘EIR [T(S, n, T’), p U() Ty T):I 2)
subjectto 0 <t <t ,0<p<yp.

where ' and p’ are corresponding task execution time and cost budget constraints.

3 Related work

EO data processing is a crucial aspect of many environmental research studies, which
rely on vast amounts of satellite data to monitor resources such as land and water.

A Multi-objective Optimization Service for EO Data Processing Workflows 423

Several EO applications are highlighted in studies shoreline delineation services (Ast-
satryan et al., 2022) and regional crop classification (Ijabs and Urtans, 2022). As the
volume and complexity of the data have grown, the need for efficiency in EO data pro-
cessing has become increasingly important. Hence, the limitation of these kinds of stud-
ies is that they do not focus on the efficiency of processing EO data, whereas handling
large datasets requires significant computational resources and processing time. Many
research studies have adopted scalable data processing frameworks and techniques to
enhance data processing performance on the top of various distributed platforms and
tools such as Spark, Dask, and Message Passing Interface (MPI) (Huang et al., 2017;
Tan et al., 2021; Appel et al., 2018; Xu et al., 2020; Wang et al., 2020) . The studies indi-
cate that scaling can enhance the performance of specific EO tasks without considering
the optimal factor of scaling or configuration parameters provided by the platforms and
tools.

To address this gap, researchers (Yu et al., 2021; Sun et al., 2019) have proposed
methods to optimize EO task configuration parameters, search for an optimal distributed
processing solution by considering factors such as the number of chunks and worker as-
signments through regression models and genetic algorithms. These studies show that
optimizing configuration parameters can significantly decrease runtime compared to
using the default parameters and find the optimal scaling factor considering limited
computing resources. Nevertheless, the limitation of these studies is that they concen-
trate solely on the efficient performance objective without considering the expenses
related to scaling. Therefore, a multi-objective optimization approach is necessary to
balance performance and resource cost, considering factors such as execution time and
cost depending on the complexity of the EO task.

4 Methodology

The multi-objective optimization service has been seamlessly incorporated into the EO
data processing platform !, as illustrated in Figure 1.
The following is the step-by-step workflow of the EO data processing platform:

1. The client submits a request to the processing engine with specific parameters such
as the area of interest, time frame, desired function, optional parameters of execu-
tion time (¢'), and cost (p’) constraints;

2. The processing engine then forwards the request to the optimization service to de-
termine the most efficient configurations of the Dask cluster;

3. The processing engine uses the optimization service’s recommended configurations
to establish a Dask cluster in the cloud through the Dask-gateway proxy. The con-
figuration providing the best performance is selected if there are multiple optimal
configurations considering performance and cost objectives;

4. The engine generates a computational graph considering the client’s input and exe-
cutes it in the Dask cluster. The Dask cluster begins processing the data, retrieving
the required data from the EO repositories, and performing the computation in a
distributed manner;

! https://github.com/ArmHPC/EQ_data_multiobjective_Optimization

424 Lalayan et al.

N Request body
Client i
Area Period
E
. g
2 & Function | Constraints |
8 8
S
&
Find optimal configuration
Processing
: Optimization
EO data engine — P .
. Optimal d service
repositories for Dask
(local, global) | "e=u*
Process data
<
o, Gateway Proxy |
%
o T
%, :
S

Dask cluster

. Q Scheduler
’ 9 Worker
[|

UL 1 e

Fig. 1. The structure of the EO data processing platform.

.

5. Finally, the processed output is delivered to the client.

Dask-gateway > ensures the optimal setup recommended by the optimization ser-
vice. It allows the possibility to create and handle Dask clusters, allowing for easy and
flexible management of them remotely. Dask-gateway can be deployed on any cloud
resource using cluster backends such as Kubernetes, Hadoop/YARN, and HPC job
queues. We follow specific standards of data fetching to maintain compatibility with
other services. We use the SpatioTemporal Asset Catalogs API (STAC-API) (Zhao
et al., 2021) to access EO data from repositories, as it offers innovative solutions for
searching, calculating queried data size, and generating a calculation graph for EO data
processing using lightweight metadata in JSON format instead of heavy satellite im-
age data. The Armenian data cube is used as a local EO data repository, providing
researchers access to high-resolution satellite imagery from Landsat and Sentinel mis-
sions, covering the territory of Armenia (Asmaryan et al., 2019). This platform has been
used for various experiments and studies to monitor and manage the region’s natural re-
sources (Astsatryan et al., 2021, 2022). As a global EO data repository, the Amazon
Stack EO Data has been used as a cloud-based platform that provides access to vast EO
data from various sources (Giuliani et al., 2017).

The optimization method leverages this capability to estimate the input data size
using the parameters of interest and the time frame provided by the client. The work of
the optimization service is shown in algorithm 1.

2 https://gateway.dask.org/

A Multi-objective Optimization Service for EO Data Processing Workflows 425

Algorithm 1 Optimization algorithm

Require: s,t',p’ > Task complexity, execution time and cost constraints
Ensure: mi}r% [t =7(s,n,7),p=v(t,n,T)] subject to: t < t',p < p'
re

con figs < finite set of Dask cluster configurations
results <+ {}
optimal Points + {}
for con fig in con figs do
time < 7(s,n,r) > find or predict execution time for the given con fig and complexity s
cost < time X config.instanceRate X config.nodes
if cost < p’ AND time < t' then
results.append((con fig, cost, time))
end if
end for
for r in results do
nonDominatedPoints < {r.cost > it.cost AND r.time > it.time for it in results}
if nonDominatedPoints is empty then
optimal Points.append(r)
end if
end for
return optimal Points

The optimization algorithm begins by evaluating the task execution time and the
cost of the required computational resources (see formula 1) considering different Dask
cluster configurations from a finite set (with n number of nodes and r instance type)
and the calculated complexity of the task same as the input data size s. The process
of assessing the execution time of the given task considering 7 performance objective
function involves examining the historical simulation dataset to verify whether simi-
lar simulations have been conducted with comparable complexity considering the input
data size. If such data is absent from the historical simulation dataset, a pre-trained re-
gression model predicts the execution time. Then the optimization service calculates
the cost of each configuration using the objective function v by multiplying the esti-
mated execution time by the number of worker nodes and the hourly rate of the worker
instance type. Suppose the resulting cost and execution time align with the client’s re-
strictions (¢’ - execution time constraint and p’ - cost constraint). In that case, it is added
to a list of solution that satisfies the client’s condition. The received list of configura-
tions is filtered by eliminating items that are outperformed by others concerning cost
and performance objectives. Specifically, configurations with higher cost and execution
time are removed from the list. Once this operation is complete, the resulting list of non-
dominated configurations comprises those that offer comparable cost and performance
and do not have a significant advantage.

5 Evaluation

This section evaluates the suggested service and discusses the experiments’ outcomes.
The subsection “Experimental infrastructure” details the infrastructure used for simu-

426 Lalayan et al.

lations. The ”Data and study area” subsection presents the satellite data and the area
of interest utilized for the study. The "Experimental settings” subsection presents the
EO processing functions and input data characteristics. Finally, the "Experimental re-
sults and discussion” subsection introduces and discusses the results obtained from the
proposed optimization service.

5.1 Experimental infrastructure

The experiments made use of computational resources from both CloudLab (Duplyakin
et al., 2019) and the Armenian cloud infrastructure (Astsatryan et al., 2015), which offer
a diverse range of services to the communities (Astsatryan et al., 2016, 2013). Cloud-
Lab provided access to nearly 1,000 machines across three sites in the United States,
while the Armenian cloud infrastructure offered more than 600 vCPUs. The proposed
optimization service underwent a rigorous evaluation on multiple Dask clusters, encom-
passing a diverse array of worker nodes and instances (refer to table 1). These instances
ranged from a single CPU with 2GB RAM up to 64 CPUs with 128GB RAM, and the
same Dask configuration was applied to all possible instance types.

Combining Dask with Kubernetes provides a highly scalable and flexible comput-
ing infrastructure on top of the Cloudlab and Armenian cloud platforms. Kubernetes
serves as a resource manager, dynamically allocating and releasing resources based on
the requirements of Dask workflows. Dask Gateway offers a user-friendly web inter-
face for managing Dask clusters, allowing users to specify the number of worker nodes,
CPUs, and memory required. Users can connect to the Dask Gateway server using a
configured Jupyter notebook. A Kubernetes pod with specified CPU and RAM require-
ments represents each worker node in the Dask cluster. All experimental results are
stored in a historical simulation dataset. In an out-of-memory error, the execution time
is recorded as infinite. Dask automatically partitions input data into chunks for more
efficient processing, using a default chunk size of 128 MB with auto chunk sizing.

5.2 Data and study area

The study area, covering Armenia’s territory, was analyzed using the open-source Sentinel-
2 satellite to obtain EO data. The satellite captures 12 different band images with vary-
ing wavelengths, providing rich information about the Earth’s surface. For this study,
the Near-infrared, Red, Blue, and Green bands, labeled as NIR, RED, BLUFE, and
GREEN, were used as inputs for the EO data processing functions. We utilize the
Sentinel-2 Cloud-Optimized GeoTIFFs repository> that provides access to the data via
STAC API for efficient and scalable retrieval. This approach made it easy to access the
data required for executing our EO data processing functions seamlessly.

Overall, using the Sentinel-2 satellite and STAC-API enable us to obtain high-
quality EO data for our analysis, providing a solid foundation for the subsequent pro-
cessing and analysis.

3 https://registry.opendata.aws/sentinel-2-12a-cogs/

A Multi-objective Optimization Service for EO Data Processing Workflows 427

5.3 Experimental settings

Time-series analysis is critical to EO monitoring, providing valuable benefits such as
detecting water or land area changes over time. We selected several EO indices as data
processing functions to evaluate the proposed optimization method, including the Nor-
malized Difference Vegetation Index (NDVI) (Pettorelli et al., 2005), Normalized Dif-
ference Water Index (NDWI) (McFEETERS, 1996), and Enhanced Vegetation Index
(EVI) (Huete et al., 1997) as specified in formula 3. These indices offer critical infor-
mation about the condition and health of vegetation and can detect the presence of water
bodies.

NIR — RED
NDVI = NIR+ RED
NIR - RED

EVI=25 3

" NIR+6x RED-75x BLUE + 1

GREEN — NIR
GREEN + NIR
The calculations required for these functions are matrix operations easily distributed
across the cluster nodes, making them ideal for use in a distributed computing environ-
ment. This approach allows for the rapid and efficient processing of extensive data,
providing the necessary insights for effectively monitoring the study area. To evaluate
the optimization service, we consider three workloads with varying input data sizes,
each corresponding to a different period for the Armenian territory. The selected work-
loads have weekly (light), monthly (medium), and seasonal (heavy) workloads. The
characteristics of each workload are provided in Table 2.

NDWI =

Table 2. Workload characteristics

Workload type Period ~ Size (Tb)

Light Weekly 0.08
Medium Monthly 0.32
Heavy Seasonal 1.20

The weekly workload indicates a shorter period and requires less processing ca-
pacity. The medium-sized input data for the monthly workload corresponds to a more
extended period and calls for a higher processing capacity than the weekly workload.
Among the three workloads, the seasonal workload has the highest input data amount
requiring the most processing power.

As part of the experiments, we compute the average NDVI, NDWI, and EVI values
for the Armenian territory at weekly, monthly, and seasonal intervals. By considering
various Dask cluster configurations, the study can assess how different processing se-
tups affect the efficiency of the analysis.

428 Lalayan et al.

5.4 Experimental results and discussion

The use of Dask clusters with varying numbers of nodes and instance types results in
different processing times for the EO data processing workflow. Figure 2 shows the
execution time of the average NDVI function and the resource cost for various Dask
cluster configurations under the seasonal workload with varying execution times and
costs.

Seasonal

Dask cluster configuration .
@ 16x(BCPU 16 GB RAM)
B0 & 3Zx(4 CPUE GB RAM)
& Other configurations

me (s

60
5 s
& 400 .
w
*
e ®
200 o® L
L .
e ®

Fig. 2. Performance-cost relationship of different Dask configurations for a seasonal workload.

The experiments demonstrate that the same number of CPUs and RAM for two
Dask clusters does not necessarily mean their performance will be similar. For exam-
ple, the red point in the figure corresponds to 16 nodes with the 2xlarge instance (8
CPUs per node), while the green point corresponds to 32 nodes with the xlarge instance
(4 CPUs per node) each, totaling 128 CPUs. However, their execution times and costs
differ significantly. The green point demonstrates better execution time and lower cost
than the red point. Thus, the green point is the better option, and it dominates the red
one considering the idea of Pareto. The blue-colored configurations labeled as ”Other
configurations” denote Dask clusters that include a variety of worker nodes across the
selected instance types. Figure 3 demonstrates the Pareto front for the seasonal work-
load specifying a trade-off between competing performance and cost objectives.

To summarize the results of the optimization algorithm, it was found that only a tiny
percentage of the configurations were considered Pareto-optimal and non-dominated
for each workload. Specifically, for the seasonal workload, only 5.7% of the config-
urations were Pareto-optimal, with two optimal points identified - one with the best
execution time and the other with the lowest cost. The number of Pareto-optimal solu-
tions depends on the complexity of the studied Dask configurations. In contrast, only
three Pareto-optimal configurations were identified from the available options for the
weekly and monthly workloads. These evaluations demonstrate that the optimization

A Multi-objective Optimization Service for EO Data Processing Workflows 429

Seasonal
500 - - . #® Dominated points (043 %)
: @ Non-Dominated points (5.7 %}
450 - == Pareto front
400 - L]
w 350
E :
c300- i .
S i .
2 250 - *
= : .
HYao- I e
.
150 - ;e
i e "
100 - et R R R RS n
01 0z 03 04 05 0.6 07
Cost (8)

Fig. 3. Pareto front for the seasonal workload.

algorithm effectively identifies the best Dask cluster configurations for each workload.
It can help users decide which configuration to choose based on their specific perfor-
mance and cost objectives. Additionally, selecting from the optimal configuration can
improve execution performance while reducing the cost of the computational resources.
When examining the seasonal workload, the average execution time and cost for config-
urations with 128 CPU and 256 GB of RAM are 201 seconds and 0.405 $, respectively.
In contrast, the optimal configurations provide 121 seconds average execution times and
0.17 $ cost. The comparison demonstrates how choosing an optimal point can increase
performance by almost 1.66 times while cutting costs by a factor of 2.38 on average.
The Pareto fronts for the weekly and monthly workloads are shown in figures 4 and 5,
respectively.

Monthly

00 - @ Dominated points (91.4 %)
MNon-Dominated points (8.6 %)
Dominated by the point

500 - == Parato front
W .
w400 -
E 2
5 q
2 300-
2 i »
& : L]
W00 i
i L L]
L e i
00 - #.a® . ® E
00 01 0.2 03 04 05 0.6
Caost (5}

Fig. 4. Pareto-optimal points for the monthly workload.

430

S

Ex

ution time {s)

BOO -

700 -

600 -

500 -

400 -

300 -

Lalayan et al.

Weekly

& Dominated points (91.4 %)

[] @ MNon-Dominated points (8.6 %)

Dominated by the point
-« == Fareto front
04 05 0e 0.7

Cost (5}

Fig. 5. Pareto-optimal points for the weekly workload.

The figure showcases the extent of a configuration’s domination and the Pareto
front. 91.4% are considered as dominated as the remaining 8.6% Pareto-optimal points
outperform them. The optimization algorithm also considers execution time and cost
constraints. Figure 6 displays the unique, non-dominated solution for the specified in-
put restrictions with a cost of 0.3 $ and a performance of 150 seconds.

ar

Ex

ution time (s)

800 -
700 -
B0 -
500 -
400 -
300 -
200 -

100 -

[=]

Weekly

Dominated points (97.1 %)

MNon-Dominated points (2.9 %)
= Parfarmance constraint {150 s
= (nst constraink (0.3)

o®

Fig. 6. Pareto-optimal point for the weekly workload considering execution time and cost con-

straints.

The figure identifies only one point as Pareto-optimal based on the given constraints.
The results obtained from calculating EO functions are noteworthy, as the different
functions showed similar execution speeds for the same input data. However, the input
data size influenced the time taken to compute the functions, as depicted in Figure 7.

A Multi-objective Optimization Service for EO Data Processing Workflows 431

Functions execution time by input data size

Execution time (s)

[
LA -
=

16 32 &4 128
Data size (GB)

Fig. 7. EO functions execution time for the different input data sizes.

The figure illustrates the function execution time on an 8-node Dask cluster that
employs the 2xlarge instance type. The time required for CPU calculations is compara-
tively negligible. Furthermore, the simulation results reveal a significant correlation be-
tween the processing time of EO data and the input data size, which follows an almost
linear pattern. This suggests that a linear regression model can predict the execution
time for an input data size that is not included in the historical dataset. This prediction
can be integrated into a multi-objective optimization method.

The multi-objective optimization method relies on considering a finite range of
Dask configurations that impact task execution times to function effectively with di-
verse input data sizes. To this end, experimental simulations are conducted with a se-
lected set of finite Dask clusters, EO functions, and input data sizes. The results are
recorded in a simulation dataset to train a regression model for predicting task exe-
cution time. The k-Fold Cross-validation method is used for hyperparameter tuning to
optimize the model’s performance. Table 3 presents some of the outcomes of the trained
model tested on previously unseen data.

Table 3. Several prediction examples

Function|Data size (Tb)|Nodes|Instance type Time?s(;ug(])st ©) Timzrfsc)hgzjt ©) Accuracy
NDVI 0.05 2 large 431 0.027 349 0.022 81
0.1 1 xlarge 1680 | 0.106 | 2016 | 0.127 80
EVI 0.2 4 2xlarge 88 0.044 77 0.039 85
0.4 8 4xlarge 71 0.143 82 0.165 83
NDWI 0.6 4 8xlarge 213 0.429 175 0.353 82
0.8 2 16xlarge 195 0.393 230 | 0.464 82

432 Lalayan et al.

6 Conclusion

The multi-objective optimization service offers a promising solution for optimizing
the configuration of Dask clusters for efficient EO data processing. The experiments
demonstrate that the proposed method outperforms the traditional approaches and is
a more efficient and cost-effective solution. The findings indicate that many configura-
tions may not be effective when considering performance and cost objectives. However,
choosing one of the optimal configurations recommended by the optimization service
can result in a substantial improvement in performance and a reduction in cost, par-
ticularly in the case of the seasonal workload, where there can be a performance im-
provement of up to 1.66 times and a cost reduction of 2.38 times. This highlights the
importance of the multi-objective optimization approach for EO data processing work-
flows.

Acknowledgements

The research was supported by the Science Committee of the Republic of Armenia by
the project entitled ”Scalable data processing platform for EO data repositories” (Nr.
22AA-1B015) and the University of Geneva Leading House by the projects entitled
”Self-organized Swarm of UAVs Smart Cloud Platform Equipped with Multi-agent Al-
gorithms and Systems” (Nr. 21AG-1B052), "Remote sensing data processing methods
using neural networks and deep learning to predict changes in weather phenomena”
(Nr. 21SC-BRFFR-1B009), and "ADC4SD: Armenian Data Cube for Sustainable De-
velopment”.

References

Appel, M., Lahn, F.,, Buytaert, W., Pebesma, E. (2018). Open and scalable analytics of large earth
observation datasets: From scenes to multidimensional arrays using scidb and gdal, ISPRS
Journal of Photogrammetry and Remote Sensing 138, 47-56.

Asmaryan, S., Muradyan, V., Tepanosyan, G., Hovsepyan, A., Saghatelyan, A., Astsatryan, H.,
Grigoryan, H., Abrahamyan, R., Guigoz, Y., Giuliani, G. (2019). Paving the way towards an
armenian data cube, Data 4(3).

Astsatryan, H., Grigoryan, H., Abrahamyan, R., Poghosyan, A., Asmaryan, S., Muradyan, V.,
Tepanosyan, G., Guigoz, Y., Giuliani, G. (2022). Shoreline delineation service: using an
earth observation data cube and sentinel 2 images for coastal monitoring, 15, 1587-1596.

Astsatryan, H., Grigoryan, H., Poghosyan, A., Abrahamyan, R., Asmaryan, S., Muradyan, V.,
Tepanosyan, G., Guigoz, Y., Giuliani, G. (2021). Air temperature forecasting using artificial
neural network for ararat valley, Earth Science Informatics 14, 1-12.

Astsatryan, H., Lalayan, A., Giuliani, G. (2023). Scalable data processing platform for earth
observation data repositories, Scalable Computing: Practice and Experience 24(1), 35-44.

Astsatryan, H., Narsisian, W., Asmaryan, S. (2016). Swat hydrological model as a daas cloud
service, Earth Science Informatics 9, 401-407.

Astsatryan, H., Sahakyan, V., Shoukourian, Y., Dongarra, J., Cros, P.-H., Dayde, M., Oster, P.
(2015). Strengthening compute and data intensive capacities of armenia, 2015 14th RoE-
duNet International Conference - Networking in Education and Research (RoEduNet NER),
pp- 28-33.

A Multi-objective Optimization Service for EO Data Processing Workflows 433

Astsatryan, H., Sahakyan, V., Shoukouryan, Y., Daydé, M., Hurault, A., Guivarch, R., Terzyan,
H., Hovhannisyan, L. (2013). On the easy use of scientific computing services for large
scale linear algebra and parallel decision making with the p-grade portal, Journal of grid
computing 11, 239-248.

Camps-Valls, G., Verrelst, J., Munoz-Mari, J., Laparra, V., Mateo-Jimenez, F., Gomez-Dans, J.
(2016). A survey on gaussian processes for earth-observation data analysis: A comprehensive
investigation, /[EEE Geoscience and Remote Sensing Magazine 4(2), 58-78.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M.,
Johnson, D., Webb, K., Akella, A., Wang, K., Ricart, G., Landweber, L., Elliott, C., Zink, M.,
Cecchet, E., Kar, S., Mishra, P. (2019). The design and operation of CloudLab, Proceedings
of the USENIX Annual Technical Conference (ATC), pp. 1-14.

Giuliani, G., Chatenoux, B., de Bono, A., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H.,
Peduzzi, P. (2017). Building an earth observations data cube: lessons learned from the swiss
data cube (sdc) on generating analysis ready data (ard), Big Earth Data 1, 1-18.

Huang, W., Meng, L., Zhang, D., Zhang, W. (2017). In-memory parallel processing of massive
remotely sensed data using an apache spark on hadoop yarn model, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 10(1), 3—19.

Huete, A., Liu, H., Batchily, K., van Leeuwen, W. (1997). A comparison of vegetation indices
over a global set of tm images for eos-modis, Remote Sensing of Environment 59(3), 440—
451.

Tjabs, H., Urtans, E. (2022). Bidirectional long short-term memory networks for automatic crop
classification at regional scale using tabular remote sensing time series, Baltic Journal of
Modern Computing 10(4), 611-622.

Li, Z. (2020). Geospatial Big Data Handling with High Performance Computing: Current Ap-
proaches and Future Directions, High Performance Computing for Geospatial Applications,
pp- 53-76.

Malla, S., Christensen, K. (2019). Hpc in the cloud: Performance comparison of function as a
service (faas) vs infrastructure as a service (iaas), Internet Technology Letters 3, ¢137.

MCcFEETERS, S. K. (1996). The use of the normalized difference water index (ndwi) in the
delineation of open water features, International Journal of Remote Sensing 17(7), 1425—
1432.

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., Stenseth, N. C. (2005). Us-
ing the satellite-derived ndvi to assess ecological responses to environmental change, Trends
in Ecology and Evolution 20(9), 503-510.

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling,
Proceedings of the 14th python in science conference, Vol. 130, SciPy Austin, TX, p. 136.

Sun, J., Zhang, Y., Wu, Z., Zhu, Y., Yin, X., Ding, Z., Wei, Z., Plaza, J., Plaza, A. (2019). An
efficient and scalable framework for processing remotely sensed big data in cloud computing
environments, IEEE Transactions on Geoscience and Remote Sensing 57(7), 4294-4308.

Tan, X., Di, L., Zhong, Y., Yao, Y., Sun, Z., Ali, Y. (2021). Spark-based adaptive mapreduce data
processing method for remote sensing imagery, International Journal of Remote Sensing
42(1), 191-207.

Wang, J., Huang, X., Zheng, J., Rajapakshe, C., Kay, S., Kandoor, L., Maxwell, T., Zhang, Z.
(2020). Scalable aggregation service for satellite remote sensing data, in Qiu, M. (ed.), Algo-
rithms and Architectures for Parallel Processing, Springer International Publishing, Cham,
pp- 184-199.

Xu, D., Ma, Y., Yan, J., Liu, P,, Chen, L. (2020). Spatial-feature data cube for spatiotemporal
remote sensing data processing and analysis, Computing 102.

Yao, X., Li, G., Xia, J., Ben, J., Cao, Q., Long, Z., Yue, M., Zhang, L., Zhu, D. (2019). Enabling
the big earth observation data via cloud computing and dggs: Opportunities and challenges,
Remote Sensing 12, 62.

434 Lalayan et al.

Yu, Z., Wang, Z., Bai, L., Chen, L., Tao, J. (2021). Parameter optimization on spark for particulate
matter estimation, 2021 Workshop on Algorithm and Big Data, Association for Computing
Machinery, United States, pp. 9-13.

Zaharia, M., Xin, R. S., Wendell, P, Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, 1. (2016).
Apache spark: A unified engine for big data processing, Commun. ACM 59(11), 56-65.

Zhao, Y., Yang, X., Vatsavai, R. R. (2021). A scalable system for searching large-scale multi-
sensor remote sensing image collections, pp. 3780-3783.

Received February 25, 2023, revised June 6, 2023, accepted August 7, 2023

