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Abstract. In this paper we are conducting a series of experiments with several state-of-the-art
models, based on Transformers architecture, to perform Named Entity Recognition and Classi-
fication (NERC) on text of different styles (social networks vs. news) and languages, and with
different levels of noise. We are using different publicly-available datasets such as WNUT17,
CoNLL2002 and CoNLL2003. Furthermore, we synthetically add extra levels of noise (random
capitalization, random character additions/replacements/removals, etc.), to study the impact and
the robustness of the models. The Transformer models we compare (mBERT, CANINE, mDe-
BERTa) use different tokenisation strategies (token-based vs. character-based) which may ex-
hibit different levels of robustness towards certain types of noise. The experiments show that the
subword-based models (mBERT and mDeBERTa) tend to achieve higher scores, especially in the
presence of clean text. However, when the amount of noise increases, the character-based tokeni-
sation exhibits a smaller performance drop, suggesting that models such as CANINE might be a
better candidate to deal with noisy text.
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1 Introduction

Natural Language Processing (NLP) models are essential in processing and understand-
ing vast amounts of textual data. Transformers, a type of NLP model, has recently
shown very good results in various NLP tasks. However, the performance of these mod-
els can be impacted by noise in the input text, such as typos and grammatical errors,
which are common in social media and internet-based text.
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Transformers are State-of-the-Art Deep Learning models that can be pre-trained
on large amounts of unlabelled data and later fine-tuned for particular tasks. As pre-
training phase usually involves a large amount of data and computation power, it can
usually be afforded by large companies, e.g., Google, Microsoft, or Facebook. Thus the
number of pre-trained models available for experimentation is limited. When it comes
to multilingual models, the list of available models gets reduced further. Apart from
the source of pre-training data, the models differ in other aspects, such as the text-
tokenisation strategy. Therefore, getting insight and understanding the performance of
some of these modern models in the presence of noisy text would guide the choice of
each model for the proper task.

In this work we compare three well-known Transformer-based models (CANINE,
mBERT and mDeBERTA) on four different datasets which span three different lan-
guages (English, Spanish, and Dutch). We added controlled synthetic noise to these
datasets, obtaining three different variations with incremental noise of different types
(capitalisation noise and character-editing noise). We ran experiments with these three
models on all of the resulting datasets and made a comparison of the resulting scores
and the degradation of the scores with regard to the added noise. The results show that
the subword-based models tend to work better on formal and clean text, but when the
amount of noise increases, the character-based tokenisation exhibits a more robust be-
haviour, reducing the amount of degradation in the resulting scores.

The rest of this paper is structured as follows. Section 2 briefly describes the related
work. Section 3 details the datasets we have used for the evaluation and comparison.
Section 4 illustrates the noise addition process we have followed to obtain different
datasets with a controlled incremental level of text noise. Section 5 introduces the pre-
trained Transformers models that we have included in the evaluation and comparison.
Section 6 describes the experimental setting and the training details from which we
have obtained the results. Section 7 contains the evaluation, including the tables with
quantitative results and their description. Finally, 8 contains the concluding remarks and
future work.

2 Related Work

State-of-the-art NER models usually work well on datasets written in a standard lan-
guage with accurate grammar and similar to the data they have been trained on. Their
performance drops on noisy datasets, particularly those with capitalization problems
(Mayhew et al., 2020; Bodapati et al., 2019). Also, traditional NER models make pre-
dictions based on the features of the tokens and the context. As confusion among dif-
ferent entity categories exists, NER models could overfit to the source domain entities
and generalise worse to the target domain (Liu et al., 2020). It has been shown that even
Transformer-based models, such as BERT, perform worse in the case of synonym swaps
or spelling mistakes in a sentence (Jin et al., 2020; Hsieh et al., 2019; Sun, Hashimoto,
Yin, Asai, Li, Yu and Xiong, 2020).

Self-augmentation appeared to be a perspective solution to this problem (Zhang
et al., 2018; Wei and Zou, 2019; Dai and Adel, 2020; Chen, Wang, Tian, Yang and
Yang, 2020; Karimi et al., 2021). It includes automatic generation of a pseudo-training
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dataset derived from the original training data with golden labels (Wu et al., 2022).
Efforts to decrease dependency on labeled data for NLP tasks include token-level ad-
versarial attacks (e.g., word substitutions (Kobayashi, 2018; Wei and Zou, 2019; Dai
and Adel, 2020; Zeng et al., 2020) or addition of noise (Narayan et al., 2019)) and
paraphrasing at sentence-levels (e.g., back translations (Xie et al., 2020; Sennrich et al.,
2016a; Fadaee et al., 2017; Dong et al., 2017; Yu et al., 2018)). The latter includes
sentence-level rewriting without significantly altering semantics. Another noteworthy
technique is mixup, which uses the feature-level data augmentation (Zhang et al., 2018;
Chen, Wang, Tian, Yang and Yang, 2020; Sun, Xia, Yin, Liang, Philip and He, 2020;
Zhang et al., 2020). It was originally proposed in computer vision and used for imple-
menting linear interpolations between randomly sampled image pairs to create virtual
training data. Later, the idea was adapted to the textual domain (Miao et al., 2020; Chen,
Yang and Yang, 2020) and applied to text classification (Chen, Wang, Tian, Yang and
Yang, 2020).

One more proposed data augmentation technique is the constrained augmentation
such as contextual augmentation (Kobayashi, 2018), conditional BERT (Wu et al.,
2019) and AUG-BERT (Shi et al., 2019). For a task, for which a model is taught on
labeled data, constrained augmentation transforms a pre-trained language model into
a label-conditional language model (Bari et al., 2021). Also, it was proposed to create
entity-switched datasets by replacing entities with others of the same type (Agarwal
et al., 2020). Meanwhile, augmenting training data with upper- and lower-cased text
variations was suggested in (Bodapati et al., 2019; Vı̄ksna and Skadin, a, 2021a) to re-
duce the influence of noisy data on NER performance.

Linguistic noise such as word dropout and synonym replacement performs as well
as statistical noise while being simpler and easier to fine-tune (Narayan et al., 2019).
In (Viksna and Skadin, a, 2021b) three different strategies to increase the robustness of
NER have been explored, namely, error injection into grammatically correct texts, aug-
menting grammatically correct texts with faulty texts, and augmenting grammatically
correct texts with faulty texts with specific errors.

In this work we choose to evaluate three different Transformers-based models. The
Transformers architecture is a deep neural network architecture that is used in most of
the current State-of-the-Art Deep Learning models. The success of this type of archi-
tecture is due to the self-attention mechanism that lies at the core of the architecture
which allows the models to attend and operate on the whole input sequence at once,
thus enabling the models to learn long-term dependencies (Zuo et al., 2020), syntactic
and semantic relations (Sajjad et al., 2022), etc. On the other hand, transformers can be
pre-trained on large amounts of raw text, i.e., use self-supervised training, which allows
them to learn language models from scratch, without labeled data (Chen et al., 2021).

The choice of models for comparison also takes into consideration the way the
model vocabulary is generated. The vocabulary will contain the minimum units the
model will manipulate when modelling the input text (Wies et al., 2021). Depending
on the algorithm used to generate the vocabulary, the way the model splits the text
into tokens (words, sub-words, punctuation marks, etc.) will vary. Thus tokenisation
is important for language models to segment a raw text string into a sequence for the
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input (Devlin et al., 2019; Brown et al., 2020; Wolf et al., 2020). For this step, several
strategies can be applied.

Classic NLP tools used full words as tokens. The advantage of this strategy is having
one exact representation for each word in the vocabulary, which is easier to process.
However, it has several drawbacks, e.g., the need for a very large vocabulary to cover
representative amount of the words from a given language, the over-specialisation of a
vocabulary (i.e. the model cannot be transferred from one language to another because
most of the tokens/words will not provide meaningful information) (Wieneke et al.,
2020), and data sparsity (i.e., many words will not have enough occurrences in the
training data).

The Transformer-based models use more modern tokenisation strategies that split
the words into subwords, using different algorithms to derive the most appropriate
subword-vocabulary space in a given corpus, such as WordPiece, Byte-Pair Encod-
ing (BPE) or SentencePiece (Rai and Borah, 2021; Sennrich et al., 2016b; Kudo and
Richardson, 2018). Another option is to tokenise at the character level so that each in-
put character is treated as a token that is represented in the model. The character-based
approach gives more flexibility, although it is more difficult for the model to understand
the meaning of a word from its individual character tokens (Lees et al., 2022).

In this work we compare three different Transformer-based models that are widely
used in the community: CANINE, mBERT and mDeBERTaV3. Each one uses a differ-
ent tokenisation strategy: WordPiece, SentencePiece and character-based tokenisation.
All three of them are multilingual. We train, evaluate and compare these three models
for a NERC task on four different datasets covering three different languages and three
different levels of extra synthetic noise. The objective is to examine the robustness of
each model and to conclude under which circumstances each model and tokenisation
strategy may perform better.

3 Datasets

For the evaluation and comparison of the three models, we use several NER datasets.
NER consists of detecting and classifying words in a text that are the mentions of a
certain entity, e.g., locations, people names, or organisations. The models need to accu-
rately tell which token belongs to each possible entity type or category, and perturba-
tions in the input data may complicate the ability of the model to perform the task. The
datasets used in our experimentation are shortly described in the following subsections.

3.1 WNUT’17 Dataset

We used WNUT’17 Shared Task3 dataset as one of the datasets to study the robust-
ness of pre-trained models in NER task. The focus of this shared task – unusual and
rare entities in noisy text (Derczynski et al., 2017). WNUT’17 dataset is annotated and
made of 2,295 texts taken from different sources – Reddit, Twitter, YouTube, and Stack-
Exchange comments. This dataset is split into training, development and test subsets.

3 For more information, check https://noisy-text.github.io/2017/index.html

https://noisy-text.github.io/2017/index.html
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Training data consists of 1000 annotated tweets. The development subset is made of
Youtube data (user-generated comments) and the test subset includes data from Reddit
and StackExchange. WNUT’17 dataset is annotated with 6 classes:

1. Person
2. Location (includes GPE and facilities)
3. Corporation
4. Product (goods and services)
5. Creative work (e.g., song, movie, book, and so on)
6. Group (music bands, sports teams, and non-corporate organisations)

Table 1. Statistics of final development and test subsets Derczynski et al. (2017).

Train Dev Test

Documents 1000 1008 1287
Tokens 65124 15,734 23,394
Entities 1984 835 1040

As a preprocessing step, common entities were filtered out from development and
test subsets. WNUT’17 dataset was constructed in such a way so it would provide high-
variance data i.e., have very few repeated surface forms. The statistics of final develop-
ment and test subsets are presented in Table 1.

In the WNUT’17 shared task the score achieved by the best-performing participant
(Jansson and Liu, 2017) was 39.98% of F-score for NERC and 37.77% of F-score for
the Surface Forms metric (which takes into account only the set of different entities
detected/omitted regardless of their frequency).

3.2 CoNLL 2002 & 2003 Datasets

CoNLL-2002 Shared Task focused on language-independent NER. The annotated types
of named entities include persons, locations, organizations and miscellaneous (entities
that do not belong to the other 3 classes). The data cover two languages – Dutch and
Spanish. The Spanish data is a collection of news wire articles made available by the
Spanish EFE News Agency (the articles are from May 2000) while Dutch data consist
of four editions of the Belgian newspaper De Morgen of 2000 (June 2, July 1, August 1
and September 1) Tjong Kim Sang (2002). Each of the languages has a training subset,
a development subset and a test subset. Table 2 and 3 show the statistics of Spanish and
Dutch datasets respectively.

In the original CoNLL-2002 shared-task, the scores achieved by the best-performing
participant (Carreras et al., 2002) were 81.39% of F-score for Spanish and 77.05% of
F-score for Dutch.

CoNLL-2003 Shared Task concentrated on language-independent NER as well. It
covered English and German languages. For each language there were annotated sub-
sets (training, development and test subset) and a large subset with unannotated data
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Table 2. Statistics of CoNLL-2002 Shared Task Spanish data.

Spanish data Sentences Tokens LOC MISC ORG PER

Training set 8323 264715 4913 2173 7390 4321
Development set 1915 52923 984 445 1700 1222
Test set 1517 51533 1084 339 1400 735

Table 3. Statistics of CoNLL-2002 Shared Task Dutch data.

Dutch data Sentences Tokens LOC MISC ORG PER

Training set 15806 202931 3208 3338 2082 4716
Development set 2895 37761 479 748 686 703
Test set 5195 68994 774 1187 882 1098

(Tjong Kim Sang and De Meulder, 2003). The English data was taken from the Reuters
Corpus and consists of Reuters news stories between August 1996 and August 1997.
Table 4 shows the English dataset distribution.

In the original CoNLL-2003 shared task the score achieved by the best-performing
participant (Florian et al., 2003) was 88.76% of F-score for English. It’s important to
note that these results are no longer considered State-of-the-Art, as these datasets have
been extensively utilized for research across numerous papers, achieving progressively
higher scores. The current leading score is expected to surpass 90%, depending on the
configuration and language specifics. For instance, in the original BERT paper (Devlin
et al., 2019), a 92.6% F-score is reported for the English CoNLL dataset using a sole
English BERT base model.

In our experiments we decided to use only the datasets for three languages (English,
Spanish and Dutch).

4 Noise addition methods

For all the described datasets we have conducted a series of synthetic noise additions
to systematically perturb the original words making the text understanding task more
challenging for the models. The result of these additions is a set of derived datasets with
an increasing amount of noise of different types.

We base our synthetic noise additions on the works of (Bodapati et al., 2019; Rychal-
ska et al., 2019; Náplava et al., 2021; Vı̄ksna and Skadin, a, 2021a; Viksna and Skadin, a,
2021b). We chose a mixture of perturbation methods according to the set of languages
the datasets are written in as the same set was applied to all of them. Also, we took
into consideration the potential the noise additions have in order to address the most
common errors and irregularities which may be the cause of lesser robustness in NER
models, especially when they are applied to informal texts. We chose to add linguis-
tic and statistical noise to the datasets in our experiments because this type of noise
injection is easier to fine-tune (Narayan et al., 2019).
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Table 4. Statistics of CoNLL-2003 Shared Task English data.

English data Articles Sentences Tokens LOC MISC ORG PER

Training set 946 14,987 203,621 7140 3438 6321 6600
Development set 216 3,466 51,362 1837 922 1341 1842
Test set 231 3,684 46,435 1668 702 1661 1617

Informal texts on the Internet, such as the ones from social media and chats, usually
contain common writing errors related to a lack of proper capitalisation, orthographic
errors and typing errors. To represent this kind of noise, we have included synthetic
noise of two types: capitalisation-related noise and word-edit noise. The former alters
the capitalisation of the words, setting them to lowercase or uppercase. This kind of
added noise tries to mimic the fact that the user on the Internet, when writing informal
texts, pays less attention to proper capitalisation or omits it totally.

The other noise addition alters individual words by adding, removing, switching
or replacing single characters. This perturbation tries to emulate typos, misspellings,
or shortening of words and slang. To adequately emulate some of these phenomena a
more sophisticated common error study would be necessary, but we assume that this
simpler approach should suffice to measure the robustness of each model against input
text degradation.

The configuration of noise addition is as follows:

– Capitalisation noise: for any given word, with a probability of 10%, set the word to
lowercase, set the word to uppercase, or randomly capitalize one of its characters.

– Word-edit noise: for any given word, with a probability of 5%, duplicate a char-
acter, or remove a character, or replace the character, or swap a character with the
following one.

For each original dataset we generated three perturbed variants. One with just cap-
italisation noise, another with just word-edit noise, and a third one combining both
noise-addition strategies. The size and label distribution of the resulting datasets are
identical to the original ones, since the perturbations apply to individual words, keeping
the number of sentences and labeled entities the same.

5 Pre-trained Models

We compare three different publicly available Transformers-based models that are well-
known by the community: CANINE, mBERT and mDeBERTaV3. Each one uses a
different tokenisation strategy: character-based, WordPiece and SentencePiece tokeni-
sation respectively. All three models are multilingual, allowing us to evaluate their ro-
bustness across different languages. Also, it is worth noting that the three models we
used are of an equivalent and/or comparable size: a "base" model of 12 stacked Trans-
former layers, as opposed to larger models such as BERT-large and others. Furthermore,
the three models are "cased" models, which means that the capitalisation is relevant to
them, as opposed to "uncased" models that work only with lowercase text. These three
models, selected for our study, are briefly introduced in the following subsections.
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5.1 CANINE

CANINE is a character-based neural encoder (Clark et al., 2022). Its major difference
from other Transformer-based text encoders is that it is trained directly at a Unicode
character-level. Training at a character-level comes with a longer sequence length,
which CANINE solves with a downsampling strategy, before applying a deep Trans-
former encoder. Model input is sequences of Unicode characters, that give a much larger
flexibility and adaptability to other languages.

CANINE has the following main components (Clark et al., 2022):

1. a vocabulary-free technique for embedding text;
2. a character-level model which makes CANINE by downsampling and upsampling

(changing the length of input strings);
3. a masked language modeling on a character-level model.

The CANINE pre-training procedure uses masked-language modelling (MLM) com-
bined with one of two loss calculation techniques – autoregressive character prediction
(Yang et al., 2019) or subword prediction (Joshi et al., 2020) – for tokenization-free
model which follows the pre-training.

While recent tokenizers, which are based on a data-derived subword approach, are
more robust compared to rule-based tokenizers, these techniques still face limitations
due to the unique characteristics of different languages (Clark et al., 2022). Further-
more, models with fixed vocabularies are constrained in their ability to adapt (Xue et al.,
2022). CANINE addresses these issues by adopting a tokenization-free and vocabulary-
free approach. In the case of CANINE, tokens for a given example text, such as ’Jim
Henson was a famous puppeteer,’ would be represented as:

['J', 'i', 'm', ' ', 'H', 'e', 'n', 's', 'o', 'n', ' ', 'w',

'a', 's', ' ', 'a', ' ', 'f', 'a', 'm', 'o', 'u', 's', '

', 'p', 'u', 'p', 'p', 'e', 't', 'e', 'e', 'r']

Note how even the individual white spaces are represented as part of the input.

5.2 mBERT

The most widely known Transformer encoder is the original BERT model (Devlin et al.,
2019) published by Google, which helped to popularise the Transformer architecture.
Particularly, its multilingual version, known as mBERT, enabled the community to ex-
periment and contribute to the State-of-the-Art in many tasks and for different lan-
guages. Multilingual BERT (mBERT) has been trained on 104 languages and shown a
good performance on several NLP tasks in cross-lingual settings (Pires et al., 2019; Wu
and Dredze, 2020). It can be seen as the grandfather of the Transformer-based models,
but it is still a referent to measure against.

With regard to tokenisation, mBERT uses WordPiece tokenisation strategy, which
calculates a subword vocabulary based on provided training data. Using mBER to-
keniser the following example sentence "Jim Henson was a famous puppeteer" results
in the tokens:
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['Jim ', 'Hen ', '##son ', 'is ', 'a', 'famous ', 'pu', '##ppet ',

'##eer ']

Some words are split into subwords, and the subwords that are not part of the beginning
of a word are marked with ’##’. White spaces and line breaks are not represented.
Usually, WordPiece algorithm is no longer used by new models, favoring the use of
SentencePiece tokenisation.

5.3 mDeBERTa

mDeBERTa is a DeBERTaV3 (He et al., 2021) language model pre-trained by Microsoft
on multilingual Common Crawl data. Instead of masked language modeling (MLM)
it used replaced token detection (RTD) which is more efficient for pre-training (He
et al., 2021). Thus mDeBERTa combines DeBERTa (He et al., 2020) with ELECTRA
(Clark et al., 2020) and results in increased performance. The tokenisation used by
mDeBERTa, similar to other modern Transformer-based text-models, is SentencePiece.
Applied to the example text "Jim Henson was a famous puppeteer" the mDeBERTa
would produce:

['_Jim ', '_Hen ', 'son ', '_is ', '_', 'a', '_', 'famous ', '_pup

', 'pete ', 'er ']

The head subwords that start right after a white space are marked with a special symbol,
while the subsequent subwords are not.

6 Experimental setup

For the robustness study of selected models, we used 4 experiments with different con-
figurations, where we added different levels of noise to the data. More precisely, we
have had the following experimental setups:

1. noise0: the original dataset unperturbed
2. noise1: added random capitalization noise to the dataset
3. noise2: added random character addition, removal, duplicating, switching, etc.
4. noise3: noise1 + noise2 combined

For each dataset and its noisy variants, we have trained each model using the same
hyper-parameters. Table 5 describes the hyper-parameters related to the training of the
models.

Each training uses the official training, validation and test split (with the correspond-
ing amount of noise in each case). The gold-labels for each dataset remain exactly the
same regardless of the noise addition. The training is configured to run a maximum
number of epochs using an early-stopping strategy with specified patience. If the val-
idation score of the model does not improve for the specified number of epochs, the
training stops.

For each training run, we select the model checkpoint that performs the best on its
corresponding validation set. Then, we evaluate each model on the corresponding test



600 García-Pablos et al.

Table 5. Training Hyper-parameters Shared by All Experiments

Hyper-parameter Value

Max training epochs 100
Early stopping patience 20
Batch size 4
Learning rate 2E-5
Warm-up epochs 4
Gradients accumulation steps 4

set to calculate various quantitative metrics and compare the results. It is worth noting
that, in addition to comparing the models against each other, we were also interested in
evaluating their robustness to noise. This means that we wanted to compare each model
to itself when trained on different types of noisy data. The results of the comparison of
the models are presented in the following section.

7 Evaluation

In order to evaluate and compare the models, each experiment has been run 3 times with
different random seeds (42, 54 and 86), to average the results and obtain a more robust
conclusion (since variations on randomized initialization on the models may result in
variations in the final performance).

Table 6 summarizes the evaluation of three models for each noise-variant version of
each dataset. The table shows two different metrics, a classical F1-score, and a surface-
forms metric. The surface forms metric takes into account only the set of surface forms
detected or missed, without taking into account their frequency in the dataset, reducing
the bias from detecting very frequent and easy entities versus scarce but more challeng-
ing entities. This metric was described and used in the original WNUT17 shared task
(Derczynski et al., 2017).

Table 7 shows the average standard deviation of all the experiments for each model,
which were calculated from the 3 runs per experiment for each model and dataset vari-
ation combination. The values are below 0.5% of the metrics’ scores, which indicates
that the measured scores are stable and not biased by a lucky or unlucky model initiali-
sation.

For the WNUT17 dataset we observe that the F-score is around 40%. It is something
to be expected for this dataset since even the original version (without synthetic noise)
is noisy and challenging. In the original WNUT17 shared task (Derczynski et al., 2017)
the best-performing system obtains 41% of F-score being a carefully crafted system,
while Transformers-based models obtain a similar or even higher score without any
specific feature engineering. The mDeBERTa model shows much higher scores than
the other two in the original dataset, with a 48.3% of F-score and a 46.8% of surface-
forms metric. In the WNUT17 evaluation we see that all three models experience a
similar drop in performance when the extra noise is added though it needs to be taken
into consideration the original version of the WNUT17 dataset is already noisy.



On Checking Robustness on Named Entity Recognition 601

We observe that for CANINE, the noise related to character edition (noise2) hurts its
performance more than the capitalisation-related noise. It makes sense since CANINE
treats each character individually, and it can understand the relation between a capital
letter and its lowercase counterpart, while for the subword-based models such a change
in the input may lead to a totally different tokens sequence.

For the CoNLL datasets we observe a different scenario in comparison to the WNUT17
dataset. All the models obtain very high results, as expected. If we observe the degra-
dation of the performance with the noise addition, we observe that CANINE exhibits
a more robust behaviour. From the score obtained in the original, unperturbed, CoNLL
English dataset (90.1% F1-score) to the score obtained in the noisiest version (87.8%)
there is a drop of 2.3 points. For mBERT and mDeBERTa the drop is 5.2 and 5 points
respectively. The surface-forms score shows similar behaviour.

For the CoNLL Spanish the results are equivalent among the models, showing that
CANINE is not the best performing model when the data is clean but is the best resisting
the extra noise addition. For the CoNLL Dutch dataset the result is not that clear, being
that the performance degradation due to the noise addition is similar for all the models,
but mDeBERTa obtained better overall scores.

Table 6. Evaluation results of NER models on various dataset variations and datasets, showing the
F-score scores of the NERC and Surface Forms for the original datasets and the score variation
(i.e. degradation) for each noise-added variant.

Model Noise WNUT17 CoNLL English CoNLL Spanish CoNLL Dutch

NERC Surf. NERC Surf. NERC Surf. NERC Surf.

CANINE

original 41.3 40.8 90.1 88.5 85.7 84.3 87.8 84.7
noise1 -4.2 -3.8 -0.6 0.1 -1.3 -1.1 -3.1 -2.2
noise2 -5.5 -5.6 -1.1 -0.9 -0.8 -1.2 -2.1 -1.9
noise3 -8.1 -7.5 -2.3 -1.8 -2.2 -2.5 -6.0 -5.3

mBERT

original 44.1 43.1 90.7 88.5 87.1 86.0 90.4 87.8
noise1 -6.0 -5.6 -2.9 -2.2 -4.5 -5.4 -6.4 -6.9
noise2 -4.6 -4.8 -2.0 -1.9 -1.6 -2.6 -3.3 -3.8
noise3 -8.9 -8.4 -5.2 -4.3 -7.0 -7.8 -9.1 -9.5

mDeBERTa

original 48.3 46.8 88.3 85.3 88.2 86.7 92.2 89.9
noise1 -4.1 -3.9 -2.3 -1.9 -1.8 -1.8 -3.4 -3.2
noise2 -3.9 -4.0 -1.8 -1.3 -1.4 -1.7 -2.5 -2.8
noise3 -6.7 -6.6 -5.0 -4.6 -3.6 -3.7 -5.6 -5.7

According to these results, there is no best model for all situations. The initial
knowledge of the language model (which depends on its pre-training data and strat-
egy) and the type of tokenisation favour different scenarios. The subword-based mod-
els, which are the most widely used in the community nowadays, have the advantage of
having more informative tokens when the content matches the tokenisation they have
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Table 7. Average standard deviation for NERC and Surface Forms scores across models.

Model NERC Surface Forms

CANINE 0.41 0.46
mBERT 0.39 0.45
mDeBERTa 0.46 0.39

been trained with. Modelling a text character by character not only is more computa-
tionally expensive but also increases the difficulty of deriving the meaning of a word
and its contexts by composing a very individual character, that bears no meaning on its
own. However, character-based tokenisation provides more flexibility and robustness
against certain perturbations in the input. The altering of an individual character or the
capitalisation of a single letter only affects that very character instead of potentially
disrupting the whole token sequence.

8 Discussion and Conclusions

In this paper we have compared three different State-of-the-art Transformers models:
CANINE, mBERT and mDeBERTA. The selection of these three models is based on the
fact that all of them are multilingual language models, well-known in the community,
and each of them uses a different tokenisation algorithm or paradigm. In particular
CANINE is a character-based model that does not require any specific tokenisation.
This kind of models is very interesting due to their flexibility for modelling any kind of
input, but they are not as extended as their subword-based counterparts, probably due
to the extra computational cost of treating a sequence character by character.

For the comparison in terms of robustness against noise, we have taken four dif-
ferent publicly available NERC datasets, spanning three different languages. We have
created noisy versions of each of them. In particular, we have generated different levels
of noise of different types: capitalisation and character-editing noise. The result is a set
of four original datasets plus three noisy variants of each of them.

We have trained the compared models on each of the resulting datasets, using the
exact same procedure and hyper-parameters, to compare the results side by side and ex-
tract conclusions. The main conclusion is that, although there is no single best model,
the character-based nature of CANINE seems to be more robust against input cor-
ruption. All the models’ experiment drops in their performances, but CANINE shows
smaller drops compared to the other models.

The State-of-the-Art in NLP has been evolving really fast over the last couple of
years, and every year brings a new set of models. Therefore in the future we plan to
extend this comparison to other types of NLP tasks. We also prepare to explore the dif-
ferences of encoder-decoder models for text-generation tasks, such as the ByT5, based
on characters, versus other models from the T5 family based on subword tokenisation. It
would be useful to assess to which extent the character-based tokenisation makes more
robust the text-generation tasks in the presence of noise, or when the output needs an
extra layer of flexibility. Furthermore, it would be interesting to conduct a similar study
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for languages such as Estonian, Latvian, or Lithuanian, and observe how the models
perform.

Finally, as of the time of writing, the landscape of NLP has undergone a significant
transformation with the emergence of truly Large Language Models (LLMs) contain-
ing billions of parameters. The computational demands associated with training and
deploying such models can be prohibitive or counterproductive, highlighting the on-
going relevance of smaller, more specialized models like those explored in this study,
particularly for specific tasks and use cases. In light of this, exploring the resilience of
LLMs in the presence of noisy input could prove to be a valuable avenue for future
research.
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