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Abstract. Antimicrobial resistance prediction is a pivotal ongoing research activity that is 

currently being explored across various levels. In this context, we present the application of two 

prediction methods that model the antimicrobial resistance of Neisseria gonorrhoeae on the 

national level as an outcome of socio-economic processes. The methods use two different 

implementations of the principal component analysis combined with classification algorithms. 

Using these two methods, we generated forecasts concerning antimicrobial resistance of Neisseria 

gonorrhoeae, using publicly available databases encompassing over 200 countries from 1998 to 

2021. Both approaches exhibit similar mean absolute averages and correlations when comparing 

available measurements with predictions. Steps of statistical analysis and applications are 

discussed, including population-weighted central tendencies, geographical correlations, time trends 

and error reduction possibilities. 

Keywords: PCA, principal component regression, antimicrobial resistance, AMR prevalence 

prediction, Neisseria gonorrhoea, surveillance. 

1. Introduction 

Antimicrobial resistance (AMR) is an important health issue increasing healthcare costs, 

operational and research burden for healthcare services, and increasing mortality 

worldwide. The increasing speed at which bacteria develop resistance to new 
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antimicrobials combined with the reduced economic return in the development of new 

antimicrobials leads to a serious threat to global healthcare. AMR is studied and 

modelled in at least three levels – micro (within-host), meso (between-host) and macro 

(society) levels. These studies aim to design new antimicrobials, develop treatment 

guidelines and administration strategies to optimize the introduction of new 

antimicrobials with the aim of postponing the emergence of resistance as much as 

possible. This is particularly important considering the slow pace at which new 

antimicrobials are developed. In this article, we study AMR modelling at a macroscopic 

level. We follow the justified assumption that AMR is correlated with socioeconomic 

processes (Blommaert, et al., 2014; Alsan et al., 2015; Collignon et al., 2015; Alvarez-

Uria et al., 2016; Collignon et al., 2018) and its quantitative indicators can be predicted 

using quantitative socio-economic indicators. 

Gonorrhoea is the second most prevalent sexually transmissible infection. It is caused 

by the bacterium Neisseria gonorrhoeae (NG) (Yang and Yan, 2020). The World Health 

Organization has estimated that approximately 787 million new gonorrhoea cases 

emerge annually (Unemo et al., 2019). There are no effective gonococcal vaccines, 

therefore antimicrobial (antibiotic-based) therapy remains the main tool for treating and 

preventing gonorrhoea infections (Tapsall, 2002; Ison et al., 2013; Cyr et al., 2020;). 

The first antibiotic for treating infections caused by gonococcus was introduced in 

the 1930s. AMR in NG is advancing, leading to significant implications for 

reproductive, maternal and newborn health (Unemo and Nicholas, 2012; Lewis, 2014; 

Lewis, 2019; WEB, b).  

The lack of quantity and quality of AMR data is one of the major challenges for both 

national and international AMR surveillance programs, particularly in low and middle-

income countries. This challenge becomes even more pronounced for community-

acquired pathogens such as NG. The lack of data makes it impossible to effectively 

estimate the AMR prevalence of drug-resistant gonorrhoea strains (Unemo et al., 2012) 

in most countries with standard statistical methods. This issue is aggravated by the 

global increase in the AMR of NG. The possibility of filling the gaps in AMR 

surveillance data with data-driven predictions would allow the healthcare community to 

improve planning for the usage of existing drugs, optimize the introduction of new drugs 

and associated surveillance programs, and define guidelines restricting inappropriate 

antibiotic usage in areas where the highest possible risk has been estimated. 

A range of general-purpose methods used to predict missing information, such as 

approximation, interpolation, extrapolation and others, have been developed (Meijering, 

2002; Mittal, 2016). Machine learning approaches such as dimensionality reductions and 

representation learning are widely used, see examples in (Bengio et al., 2013; Bzdok et 

al., 2018). The literature reviews (Sakagianni et al., 2023; Faiza et al., 2023) list main 

machine learning application areas and methods for AMR. Currently most machine 

learning applications are designed to serve as clinical decision support tools. They deal 

with training sets addressing individual patient information (demographics, previous 

infections and antibiotics treatments etc.) and predict AMR in individual cases. Logistic 

regression (Hosmer, D.W. and Lemeshow, S., 2000) along with decision tree (Shalev-

Shwartz, S., Ben-David, S., 2014) and random forest (Breiman, L., 2001) are mentioned 

as the most widely used prediction methods (Tang et al., 2022). We note that except of 

(Oldenkamp et al., 2021) there appears have been no other publications studying the 

AMR at the society level. 
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An effective and widely used ingredient of data modelling and analysis is the 

Principal Component Analysis (PCA) (Hotelling, 1933; Hotelling, 1936). It is used to 

associate to a discrete set of data points a shifted linear subspace which shows the most 

significant variables and their linear combinations. PCA is used for dimensionality 

reduction, linearization of data, filtering out noise and finding the most important linear 

combinations of data variables (Meglen, 1991; Gorban et al., 2008). It is considered a 

major unsupervised learning technique in machine learning competing in the data 

approximation area with linear regression which is a supervised learning technique. PCA 

is also used in statistical tools developed by statisticians, showcasing a broad range of 

applications across various fields of science and technology. It serves as a crucial step in 

acquiring predictions through machine learning methodologies. 

To fill current gaps in the global prevalence map of NG, we used a previously 

developed statistical model that can predict AMR prevalence based on socio-economic 

World Bank profiles (Oldenkamp et al., 2021). Oldenkamp and colleagues leveraged 

robust statistical relationships between countries’ socio-economic status and measured 

AMR in clinical isolates for nine (predominantly) healthcare-associated WHO priority 

pathogens, to predict AMR prevalence in countries for which AMR data were not 

available. PCA is used in this method to reduce the dimensionality of the World Bank 

data set. They did, however, not assess the community-acquired infections and their 

pathogens. Considering the substantial differences for both infection dynamics and AMR 

surveillance between strategies for healthcare-associated and community-acquired 

infections, it is not clear whether such models would be useful to predict AMR 

prevalence for a community-acquired pathogen such as NG. In an attempt to use 

relationships between World Bank indicators and AMR in a prediction method and 

reduce prediction errors we piloted an innovative prediction model (Daugulis et al., 

2022). In this model, PCA is used to reduce the dimensionality of the data set 

encompassing both socio-economic and AMR data – data points have both socio-

economic and AMR coordinates. Both methods use normalisation of the socio-economic 

data to make it dimensionless. We show that the models have reasonable accuracy for 

NG AMR prediction and provide a wide view of the prevalence of AMR in NG. 

The paper is organised as follows. In Section 2 we describe the data and the 

computational methods. Results, their analysis, possible application and discussion are 

given in Section 3. Finally, concluding remarks and future work are drawn in Section 4. 

 

2. Methods 

2.1. Data Types 

Two main types of data were collected. The first type of data consists of socio-economic 

data collected yearly covering the period 1998-2021. By socio-economic data, we mean 

numerical socio-economic and demographic indicators profiling individual countries at 

the national level. The second type of data consists of yearly AMR prevalence of NG for 

different antimicrobials which can be deduced from antibiograms aggregated at the 

national level. It is a quantitative measure of the resistant bacteria strains that can be 

obtained from public national and international surveillance programmes. Below we 

describe the used data sets.  
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Socio-economic data – the World Bank database. Socio-economic data was 

retrieved from the World Bank database (WEB, c). The World Bank is a unique global 

framework representing more than 200 countries and geographic areas over the period 

1998-2021. In total, the database contains more than 14000 indicators covering a wide 

range of aspects such as population, environment, government finance, national 

accounts, social policy statistics, development assistance, balance of payment, exchange 

rates, prices, financial statistics and trade. Our basic assumption is that World Bank 

panel data represent meaningful quantitative values expressing socio-economic features 

and processes that can be predictive of AMR. Although some indicators that are known 

to strongly correlate with AMR, such as antibiotic consumption, are not directly included 

in the World Bank data set, we assume that they can be expressed as linear functions of a 

subset of existing socio-economic indicators. While most indicators were available 

yearly, a subset of them was only available quarterly. In the latter case, we used the sum 

of the quarterly values as the yearly value. The World Bank observations and indicators 

with >95% missing data were removed. Finally, the columns (indicators) which are 

almost constant, were removed. For this purpose, Kvalseth’s V2 is used instead of the 

coefficient of variation (Kvalseth, 2017). V2 is computed for each column, and columns 

with a value less than 0.2 are crossed out. After these steps, the fraction of undefined 

entries in the World Bank data matrix is reduced to about 70%. The World Bank data 

was collected using R software on September 8, 2021. Initially, the data matrix 

contained 14303 indicators and 5064 observations. After cleaning we were left with 

7248 indicators and 4542 observations. Since we are interested in AMR predictions at 

specified time intervals rather than analyzing the data at specific time moments, the 

focusing of standard panel models is insufficient. We expand the cleaned World Bank 

panel data matrix by adding time indicators.  

Antimicrobial resistance data – WHO-GASP and WHO-GLASS. Our target 

variable (to be predicted) is the AMR prevalence in NG at the national level. The data 

was obtained from WHO’s AMR surveillance programs "Gonococcal Antimicrobial 

Surveillance Program" (GASP) (Unemo et al., 2019) and "Global Antimicrobial 

Resistance and Use Surveillance System" (GLASS) (WEB, e). These databases contain 

aggregated antibiograms recording numbers of all and resistant isolates of infections in 

the participating countries. The WHO-GASP data downloaded (9807864 isolates in 

total) represent AMR prevalence in NG against 5 antibiotics/antimicrobials - 

Azithromycin, Cephalosporins, Cefixime, Ceftriaxone, Ciprofloxacin, covering a total of 

90 countries over the period 2009-2018. An earlier WHO-GASP data version contains 

AMR prevalence in NG against Azithromycin, Ceftriaxone, Ciprofloxacin and 

Cefepime, together with data for Cefepime/Ceftriaxone over the period 2009-2016. Our 

predictions were obtained using the WHO-GASP data. Since 2016, gonococcal AMR 

surveillance has also been covered as part of the WHO’s larger GLASS program (WEB, 

a). The most recent report includes national AMR prevalence data from 2019. We 

downloaded the WHO-GLASS data (182275 isolates in total) and used it for 

independent checking of predictions obtained using the WHO-GASP data. 
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2.2. The AMR Value and Its Derivation 

The AMR value is here defined as the fraction of the recorded resistant infection cases 

(isolates) over all recorded infection cases. Table 1 shows the notations explaining our 

computations. 

Table 1. Notations describing population groups 

Category of people  Notation 

The population in a fixed country X NP 

The number of infected people in X NI 

The number of tested infected people in X NT 

The number of resistant tested infected people in X with respect to a fixed antibiotic A NR 

The total number of resistant infected people in X with respect to A NRI 

 

 

Clearly, Np>NI>NT>NR and NRI>NR. We are ultimately interested in estimating NRI 

(the number of infected human carriers of resistant bacteria) for each country since it 

determines the demand for antibiotics and healthcare services. For this purpose, we 

consider fractions which are shown in Table 2. 

 

Table 2. Fractions used in estimating AMR 

Description Notation  Calculation 

The fraction of resistant tested cases (AMR value) a NR/NT 

The fraction of tested infected cases b NT/NI 

The fraction of infected cases c NI/NP 

 

 

Since most surveillance programmes record only the numbers of resistant and all 

isolates, the fraction denoted here by a is the only numerical indicator of AMR available 

for researchers. We are aware that standards defining infection cases as being resistant 

and fractions of tested people are different in different countries. 

Assuming that the isolates tested are a representative sample of the total infected 

population we put NR/NT = NRI/NI=a (the fraction of resistant tested infection cases is 

close to the fraction of all resistant infection cases). Therefore, the fraction a represents 

the fraction of resistant infected people in each country. Additionally, it follows that NRI 

= aNI = acNP. We note that we have no information about the fraction c. This 

consideration significantly limits the possibility of estimating NRI. We are left with 

analyzing and predicting the fractions. 

 

2.3. Prediction Methods 

The beta-binomial principal component regression (BBPCR) method. A framework 

for AMR prediction and surveillance based on a modified beta-binomial principal 

component regression was designed and implemented (Oldenkamp et al., 2021). It takes 
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as input a training set based on paired socio-economic data and available AMR 

measurements, and it outputs AMR predictions and the corresponding confidence 

intervals. We apply this method in the case of NG. Our training set combined socio-

economic data from the World Bank with AMR measurements on NG strains from 

WHO-GASP.  

To reduce the dimensionality of the World Bank data, PCA was performed using the 

nipals function of the R package pcaMethods (Stacklies et al., 2007). The number of 

principal components equal to 30 was chosen to explain at least 90% of the data 

variance. Thus 30 nontrivial orthonormal linear combinations of 7248 World Bank 

indicators were chosen to express the essential variability of the World Bank data. Each 

observation, a vector of length 7248, was substituted by the list of projections of this 

vector onto these linear combinations (PC scores), a vector of length 30.         

In the principal component (PC) regression model, the rows of the training set matrix 

𝑋 correspond to country-year-antimicrobial triples, while the columns are the PC scores 

of the socioeconomic data points. In addition to these scores, the training set also 

included variables related to time (normalized year and squared year). The inclusion of 

time variables was motivated by the dependence of socio-economic indicators on time, 

and by the goal to predict AMR changes over time. A single model combining all 

antibiotics is used, all AMR measurements are arranged into a single vector.   

The vector of AMR values is transformed by the logit link function. The regression 

equation essentially is 𝑦 = 𝑋𝛽 + 𝛼 + 𝜀, wahere 𝑦 is the vector of transformed AMR 

values. 

 A 5-times repeated 5-fold country-groupwise cross-validation was performed as an 

optimal error rate estimate procedure. Model quality was measured by the mean 

coefficient of determination over the 5 folds. The model parameters are computed using 

vgml function (Yee, 2010). 

After training, model predictions were transformed back to AMR values by applying 

the inverse logit function, using the predictvglm function. Prediction quality for this 

model was estimated using the mean absolute prediction error and the mean coefficient 

of determination. 

Minimal PCA-distance method (MPCD). The BBPCR method applies PCA 

analysis in the space containing only independent (e.g. socio-economic) variables. Such 

a feature may obscure relationships between the independent variables and AMR 

(Artigue, Smith, 2019).  In an attempt to apply PCA innovatively, we piloted an 

alternative method, the minimal PCA-distance method (Daugulis et al., 2022). Similar to 

the BBPCR, the MPCD method is based on dimensionality reduction through PCA. But 

in this method, PCA is applied to reduce the dimensionality of data points in the n+1 

dimensional space including n socio-economic indicators plus time, and one extra 

dimension corresponding to the AMR values. Regression is not used in this method, and 

PCA is used in combination with a metric (Euclidean or other) in the ambient real linear 

space of variables. The idea behind this method is to consider the distance between two 

hyperplanes - the hyperplane spanned by the first principal components and the 

hyperplane of candidate points. The point on the candidate hyperplane in the minimal 

distance to the principal component hyperplane produces the AMR prediction. The steps 

of the method can be interpreted in terms of machine learning - the addition of the extra 

AMR dimension and performing PCA in this space can be interpreted as a feature of 

supervised learning.  
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For each antibiotic, a separate PCA-hyperplane is constructed using the AMR 

measurements for that antibiotic. 

In this method, the structure of the World Bank socio-economic matrix is used to 

impute its missing values. We impute the missing values via interpolation by cubic 

splines for data grouped by countries and indicators. Missing values for a specific 

indicator and specific country are imputed as values of the cubic spline determined by 

existing values for the same indicator-country pair. This approach is justified by the 

assumption that the values of a given socio-economic indicator vary smoothly over time 

for a given country. In comparison, the BBPCR method uses nipals function which 

performs PCA without taking into account the training set structure. 

Detection of outliers and influential observations. In both methods Cook’s 

distance (Cook, 1979), with modifications implied by the methods, is used to identify 

and remove from training sets the outlying data or data with the largest influence on the 

predictions. In the BBPCR method, the total Cook’s distance of each country’s data is 

computed iteratively and the country with the maximal Cook’s distance value is 

removed. In the MPCD method, outliers are identified using our variation of Cook’s 

distance idea based on (Kim, 2017; Zimek and Schubert, 2017;). The measure of the 

influence of a given point p is the difference between sums of projection squares of all 

data points onto PC planes with and without p (Daugulis et al., 2022). To save 

computation time, outliers are removed in one step - the top 5% of points having high 

influence measures are removed before finalizing the PC hyperplane for prediction in the 

MPCD method. 

 

2.4. Analysis and Application Methods 

Population-weighted central tendencies. Central tendencies (means, medians, modes) 

of AMR value predictions for the world summarize information over the whole data set 

and are useful in drawing justified conclusions. For instance, AMR values that are higher 

than the average or median value may imply an urgent need to introduce a new 

antibiotic. 

Because the numbers of human carriers of resistant bacteria are important for 

estimating demand for antibiotics and health-care policies, it would be too naïve to 

consider unweighted averaging. Instead, we should consider population-weighted 

averaging. As in section 1, we use the following notation: NI is the number of infected 

people; NRI is the number of resistant infected people; NT is the number of tested people; 

NR is the number of resistant people; a=NR/NT b=NT/NI, c=NI/NP. We see that the 

number of carriers of resistant strains is proportional to a and NP (that is, NRI = caNP). 

Although the coefficient c is unknown, it is possible to compute and interpret 

population-weighted averages of the quantity numbers of human carriers of resistant 

bacteria (NRI). Suppose we have m countries with total populations N1, N2,…, Nm and 

AMR values a1, a2,…, am. Then the total number of resistant human carriers is cΣakNk 

and the fraction of resistant (infected) human carriers is 

cΣakNk/ΣNIk=cΣakNk/cΣNk=ΣakNk/ΣNk, which is the population-weighted average of a. 

Geographical correlation analysis. The dynamics of community-acquired 

infections must have a part implied by human mobility – travel, migration and contacts. 

One can conjecture that the AMR of community-acquired infections for neighbouring 

countries are related. We can assume that the AMR of a given community-acquired 
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pathogen in a country should be close to the (population-weighted) mean AMR of its 

neighbours or, more generally, the mean with respect to an appropriate geography-based 

distance matrix. We perform the Moran I analysis, see (Oldenkamp et al., 2021; Getis, 

2010). The AMR value a for each country is compared with the average (lagged) AMR 

values alag of its neighbouring countries. For each country-year-antimicrobial 

combination, we have the point (a,alag) and take the union of such points over the world 

defining a set S. We consider the linear regression line L (the Moran I line) y=kx+b for 

S. If (a,alag) is below L then it is below (a,ka+b) (a is higher to alag than expected) and to 

the right of (a0,alag), where a0 is such that alag=ka+b (the expected lagged value for a is 

lower than alag). Outlying countries having their points (a,alag) below L should be 

considered as countries at risk – Moran outliers. In these countries, the AMR is 

progressing faster than what could be explained by contact and travel dynamics. 

The rate of change of the AMR. The rate of AMR value change (overloading 

terminology we call it the AMR trend) is another numerical indicator that can be used to 

assess the AMR and determine countries where the introduction of a new antibiotic 

could be prioritized. Countries with a relatively high AMR trend can be considered to be 

at risk and require attention. Countries with relatively low AMR trends should be studied 

further.  

If AMR values for a country in years Y and Y-d are a and a’, respectively, then the 

AMR trend is estimated as r=(a-a’)/d. Using the above notation, (rNP)c is equal to the 

change in the number of resistant human carriers of the pathogen. Again, the absolute 

number of the rate of change of human numbers is not possible to estimate without 

knowing the coefficient c (the fraction of infected people), we can consider ranking lists 

and population-weighted averages. The AMR trend is measured in %/year. 

Identifying capabilities to improve predictions by adding more AMR data. In 

addition to AMR predictions, useful information can be obtained using the UI-generating 

feature of the beta-binomial principal component regression method. We remind the 

reader that prediction errors (UI) in the beta-binomial principal component regression 

method are computed using the beta-binomial distribution and that they depend on the 

fraction of resistant isolates and the total number of isolates. 

We are interested in obtaining predictions with as small local and global UI as 

possible. Therefore, we can ask the following question posed and implemented in 

(Oldenkamp et al., 2021). In which countries should we increase the number of tested 

infected people so that the total prediction error according to the beta-binomial principal 

component regression method in a suitable sense is as small as possible? This can be 

done by running a loop over countries with an artificially increased number of tested 

cases (isolates) for the country under iteration, computing the whole prediction process 

for that iteration. We increase the number of tested people by 30 since it is the minimal 

number sufficient for the inclusion of AMR data.  

Countries corresponding to higher total prediction reduction are considered to have a 

high prediction precision impact. Error reduction can be considered both for the same 

country (direct effect) or for other countries (indirect effect). Requesting additional data 

from such countries can be considered an optimal step for increasing the precision of 

AMR prediction which can be further used for various purposes. 
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3. Results and Discussion 

3.1. National Predictions of AMR 

Using the beta-binomial principal component regression method we computed AMR 

predictions using the WHO-GASP version for the period 2009-2018 available in 2022, 

for 202 out of a total of 235 world countries and areas during the period 1998-2021, as 

available from the World Bank data. Two countries (Australia and Canada) were 

removed from the training set because Cook’s analysis identified them as outliers. Using 

the minimal PCA-distance method, AMR predictions were computed using the WHO-

GASP data available in 2021 for the years 1998-2021 for 204 countries. The number of 

countries having AMR measurements in GASP ranges from 65/235=27% (cefixime) to 

87/235=37% (ceftriaxone). By applying our methods, we improved the coverage to 

202/235=86% of all the world countries and areas specified by the United Nations 

(WEB, d). We note that AMR predictions are made for all Low and Low-Middle Income 

Countries (LMIC), where AMR estimates are currently lacking. As previously 

mentioned, the criteria for bacterial resistance and the proportions of tested individuals 

can vary across different countries.  

After obtaining AMR predictions and their 95% confidence intervals (for the BBPCR 

method), we compared measured and predicted AMR values for those years and 

countries where measurements exist, using the Mean Absolute Error (MAE) and 

correlations, see Table 3. There are missing entries in the table since computations for 

the two methods used different GASP versions which had different sets of 

antimicrobials. 

The total MAE for all antibiotics combined for the BBPCR and MPCD methods is 

8.8% and 6.9%, respectively. The correlation between the total measurement and 

prediction vectors for the BBPCR and MPCR methods is 0.862 and 0.877, respectively. 

We note that in this sense the difference between the two methods is insignificant and 

both methods provide comparable levels of accuracy. The cross-validated q^2 

(predictive correlation coefficient) for the BBPCR method after 5-fold cross-validation is 

0.725.  

 

Table 3. MAE and correlations comparing measured and predicted NG AMR values for 202 and 

204 countries 

 

Antimicrobial MAE 

(%, BBPCR) 

MAE 

(%, MPCD) 

Corr. 

(BBPCR) 

Corr. 

(MPCD) 

Azithromycin 8.94 5.36 0.04 0.44 

Ceftriaxone 3.41 3.95 0.43 0.18 

Ciprofloxacin 19.2 15.73 0.55 0.67 

Cefixime 4.92 NA 0.08 NA 

Cefepime NA 2.91 NA 0.64 
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Correlations between the BBPCR predictions for different antibiotics are close to 1 

(ranging from 0.78 to 0.99). This is consistent with the fact that in the BBPCR method 

PC scores depend only on socio-economic indicators and time and do not depend on 

AMR values. For most antibiotic pairs they are higher than correlations between 

measurement vectors. 

Correlations between the MPCD method predictions for various antibiotics vary from 

-0.11 to 0.51. Correlations between prediction vectors are lower than correlations 

between measurement vectors. In contrast with the BBPCR method, no clear features 

relating measurement and prediction correlations for antibiotic pairs are visible which is 

against expectations regarding a prediction method. Thus we have found only one 

potential benefit of the MPCD method – the closeness of its MAE and correlations 

comparing AMR measurements and predictions to that of the BBPCR method. 

3.2. Prediction Analysis from the Antibiotic Introduction Point of View 
 

Basic statistical analysis. Before doing statistics we can visualize the computed AMR 

predictions using coloured maps. Figure 1 shows the world map where each country is 

coloured according to the predicted AMR to Azithromycin using the beta-binomial 

principal component regression method.  

 

Figure 1. Azithromycin NG AMR prediction map (%, BBPCR method, GASP 2009-2018, 

predictions for the last year with the WB data for each country, 2020-2021. 

The basic prediction analysis involves ranking countries or regions according to their 

predicted AMR value. Countries with the largest predicted AMR value are priority 

candidates for the introduction of new antimicrobials. The reason is that new 

antimicrobials in these countries would decrease the number of human carriers of 

pathogens and, therefore, slow down the spread of existing resistant pathogens. 

Additionally, if a population is highly resistant to existing antibiotics, a new antibiotic 

would result in higher therapeutic success. On the contrary, countries with low predicted 
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AMR would not benefit from the introduction of new antibiotics, and bacteria strains 

resistant to the new antibiotic would start to develop earlier. Below we give two lists 

with the top ten countries sorted by predicted AMR values. For all antimicrobials, the 

countries with maximal AMR values are the same because the regression is made by 

combining the AMR measurements in a single vector (a single model). 

We show countries with maximal AMR value predictions for Azithromycin and 

Ceftriaxone in Table 4. For two countries (Iran and Bangladesh) AMR measurements are 

not available, our predictions give its first estimates. 

 

Table 4. Countries with maximal predicted NG AMR values (%, BBPCR method, GASP, 2009-

2018, predictions for the last year with the WB data for each country, 2020) 

 Azithromycin  Ceftriaxone 

Rank  Country AMR (%) 95% UI  Country AMR (%) 95% UI 

1. Indonesia 63 44-79  Indonesia 26 13-43 

2. China 42 29-56  China 13 8-20 

3. India 27 16-41  India 7 4-12 

4. Japan 26 19-35  Japan 7 4-10 

5. Vietnam 24 16-35  Vietnam 6 4-10 

6. Iran 23 1-90  Iran 5 0-63 

7. S.Korea 17 12-23  S.Korea 4 3-6 

8. Bangladesh 16 11-23  Bangladesh 4 2-6 

9. Germany 16 10-24  Germany 4 2-6 

10. USA 16 9-27  USA 4 2-7 

 

In Table 5 we compare the BBPCR-predicted values for these countries with the 

GASP data for the last available year. We note that there are countries with the error 

larger than the MAE. Many of the measurements are based on small numbers of isolates. 

Table 5. Comparison of predicted and GASP NG AMR data for countries with maximal predicted 

AMR values (%, BBPCR method, GASP, 2009-2018, predictions for the last year with 

the WB data for each country, latest GASP data). 

 Azithromycin  Ceftriaxone 

Rank  Country AMR (%) GASP 

(%) 

 Country AMR (%) GASP 

(%) 

1. Indonesia 63 20  Indonesia 26 80 

2. China 42 14.5  China 13 11.7 

3. India 27 9.4  India 7 3.1 

4. Japan 26 26  Japan 7 19 

5. Vietnam 24 0.5  Vietnam 6 2.3 

6. Iran 23 NA  Iran 5 NA 

7. S.Korea 17 0  S.Korea 4 8.3 

8. Bangladesh 16 NA  Bangladesh 4 NA 

9. Germany 16 4  Germany 4 0.1 

10. USA 16 0.5  USA 4 0.05 
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Table 6 shows countries with maximal AMR values obtained by the minimal PCA-

distance method (Daugulis et al., 2022). There are no WHO-GASP measurements for 

Bolivia, Cameroon, Congo DR, Guinea, Guyana, Iran, Kuwait, Kosovo, Lesotho, 

Mozambique, Papua New Guinea, Sao Tome and Principe, Tuvalu, Zambia. It can be 

noted that maximal AMR values are close to 100% and differ markedly from the 

measurements. Although the mean square error of both methods (BBPCR method and 

MPCD method) are close, the MPCD method seems to distort predictions for countries 

having outlying data with respect to the PCA hyperplane. This may follow from the fact 

that regression is not used in the MPCD method. The fact that there were predicted AMR 

values that were close to 100%, together with the properties of correlations mentioned 

above, led us to conclude that the MPCD method generates too many outlying 

predictions for a working prediction method. In applications, we focused on the BBPCR 

method.  

 

Table 6. Countries with maximal predicted Azithromycin and Ceftriaxone NG AMR values (%, 

MPCD method, GASP 2009-2018, predictions for the last year with the WB data for 

each country) 

Rank Country Azithromycin 

AMR (%) 

GASP  

(%) 

Country Ceftriaxone 

AMR (%) 

GASP 

(%) 

1. Guinea 100 NA Indonesia 100 80 

2. Lesotho 100 NA Iran 100 NA 

3. Madagascar 100 0 Kuwait 100 NA 

4. Uganda 100 0 Papua New Guinea 100 NA 

5. Zambia 100 NA Vietnam 100 6 

6. Peru 99 9 Bolivia 99 NA 

7. Kosovo 97 NA Mozambique 93 NA 

8. Congo,D.R. 91 NA Tuvalu 92 NA 

9. STP 91 NA Kosovo 92 NA 

10. Cameroon 82 NA Guyana 90 NA 

 

 

Population-weighted central tendencies. Table 7 shows the global population-

weighted central tendencies for Neisseria gonorrhoea AMR predictions using GASP 

data for various antimicrobials (GASP 2009-2018, predictions for the last year with the 

WB data for each country). Mean AMR values show the global progress of AMR and 

the effectiveness of specific antimicrobials. Coefficients of variation for all antibiotics 

are below 1, this may mean that the AMR value is low-variance according to our model 

and additional indicators would increase the variance, i.e. the sensitivity of the prediction 

method. We note that Ciprofloxacin has the highest population-weighted mean. This 

may imply a need to develop and introduce new antimicrobials substituting 

Ciprofloxacin. 

Apart from taking population-weighted averages over the world, we can consider 

various ways to partition the world into subsets, i.e. consider income groups or 

continents. Table 8 shows the population-weighted central tendencies for LMIC. We 

note that the difference between the world and LMIC means is not significant. 
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Table 7. Population-weighted central tendencies for NG AMR predictions over all countries (%, 

BBPCR method, GASP 2009-2018, predictions for the last year with the WB data for 

each country) 

Antimicrobial Weighted 

mean (%) 

Weighted 

st.dev. (%) 

Weighted 

median (%) 

Weighted 

mode (%) 

Coefficient of 

variation 

Azithromycin 22.9 14.8 15.5 42 0.65 

Cefixime 15.1 11.2 9.5 17 0.74 

Ceftriaxone 6.5 5.7 6.5 7 0.88 

Ciprofloxacin 75.7 12.9 74.5 92 0.17 

 

 

Table 8. Population-weighted central tendencies for NG AMR predictions over LMIC (%, 

BBPCR method, GASP 2009-2018, predictions for the last year with the WB data for 

each country) 

Antimicrobial Weighted 

mean (%) 

Weighted 

st.dev. (%) 

Weighted 

median (%) 

Weighted 

mode (%) 

Coefficient of 

variation 

Azithromycin 22.3 14.7 25.5 27 0.66 

Cefixime 14.7 11.6 16 17 0.79 

Ceftriaxone 6.4 6.3 6.5 7 0.98 

Ciprofloxacin 75.8 12.9 84 85 0.17 

 

 

Geographical correlation analysis. Figure 2 shows the S-set in the case of 

Azithromycin. Among Moran outliers with respect to the model estimates, there are 

Lesotho, Lithuania, Moldova, and Switzerland. 

 

 

 

Figure 2. The Moran set for Azithromycin in the full range of AMR values from 0% to 100% (left 

panel). A closer inspection of AMR values and lagged values in the range 0%-25% (right panel). 

In this range of AMR values, we identified several outlier countries (LSO = Lesotho;  

LTU = Lithuania; MDA = Moldova; SWZ = Switzerland). 
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Temporal tendency observation. Our national AMR predictions are computed as 

time series for several consecutive years, i.e. for the years having the World Bank data. 

It allows us to estimate the rate of change of the predicted AMR value.  

To demonstrate AMR value time series in one picture we consider groups of 

countries which have the same income level – income groups. Figure 3 shows these time 

graphs for azithromycin and ceftriaxone. The time graphs are obtained using GASP data, 

dots correspond to GLASS data. We can notice that population-weighted income 

averages appear to be converging, the maximal AMR value difference changes from 

10% in 2009 to 3% in 2018. This may be a manifestation of worldwide globalization 

processes. 

  

 

 

Figure 3. Population-weighted country-group mean prediction time graphs (Azithromycin, 

BBPCR method, 2009-2018), compared with GLASS (dots). 

 

 

AMR value time series allows us to estimate the rate of change of the predicted 

AMR value. We compute the AMR trend (the rate of change) for each country and for 

population-weighted central tendencies such as mean and variance, taking d=5 and Y 

equal to the last year of prediction. In Figure 4 we visualize the AMR trend for 

azithromycin using the coloured map. 
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Figure 4. Azithromycin trends map (%/year, BBPCR method, GASP 2009-2018, starting from 

predictions for the last year with the WB data for each country during the period). 

 

The ranking of countries can be repeated using the AMR trend values. Countries with 

the largest AMR trend value are countries where the AMR is progressing and a response 

will be required soon. Table 9 shows countries with top trend values. 

 

 

Table 9. Countries with highest Azithromycin NG AMR trends (%/year, BBPCR method, GASP 

2009-2018, trends starting from predictions for the last year with the WB data for each 

country) 

World  %/year 95% UI, 

%/year 

LMIC  %/year 95% UI, 

%/year 

United States  2.2 0.2 - 4.8 Indonesia  1.6 0 -8.6 

Indonesia  1.6 0 - 8.6 Micronesia, India, 

Vietnam  

1.2 0.2 - 2.1 

Belarus, Brazil, 

Germany, St.Lucia, 

Mexico, Russia  

1.4 0.2 - 2.8 Bolivia, Iran, 

Kyrgyzstan, 

Samoa  

1 0 - 17 

 

 

Population-weighted central tendencies of the AMR trends for various antimicrobials 

give us statistical information about the rate of change of human carriers of resistant 

bacteria strains. Table 10 shows global population-weighted central tendencies for 

trends. We notice again that Ciprofloxacin has the highest populated-weighted mean.  
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Table 10. Global population-weighted central tendencies for NG AMR prediction trends (%, 

BBPCR method, GASP 2009-2018, predictions for the last year with the WB data for 

each country) 

Antimicrobial Weighted mean 

(%/year) 

Weighted stand.dev. 

(%/year) 

Weighted mode 

(%/year) 

Coefficient of 

variation 

Azithromycin 0.38 0.84 1.2 2.21 

Cefixime 0.24 0.62 0.8 2.58 

Ceftriaxone 0.13 0.34 0.2 2.62 

Ciprofloxacin 0.97 1.79 1 1.84 

 

 

Identifying capabilities to improve predictions by adding more AMR 

measurement data. Figure 5 shows the error reduction capacity of various countries for 

AMR predictions in the case of Azithromycin. Each vertical bar coloured in red and blue 

corresponds to one country. The red bar corresponds to the direct effect - the population-

weighted fraction of error reduction for country X caused by increasing the number of 

tested persons in X by 30. The blue bar corresponds to the indirect effect - the 

population-weighted fraction of error reduction for countries other than X caused by 

increasing the number of tested persons in X by 30. Figure 5 also shows clusters of 

counties based on the PCA scores (projections) of their World Bank data points. We can 

identify countries causing maximal error reductions globally (Iran) or in various clusters 

(Austria, Myanmar, South Sudan, Sudan, USA). 

 

 

 

Figure 5. Distribution of error reduction for prediction of the AMR value of Azithromycin. 
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4. Conclusion 

We have presented a description and implementation of two different methodologies for 

the prediction of AMR of Neisseria gonorrhoeae, a community-acquired pathogen, 

which are based on quantitative socio-economic indicators at the national level and 

AMR measurements for a subset of countries. These appear to be the first published 

macro (society) level AMR predictions for a community-acquired pathogen. Our work 

has extended the approach started in (Oldenkamp et al., 2021). In the minimal PCA-

distance method, PCA is innovatively used in the space containing both independent 

(e.g. socio-economic) and AMR components. This feature addresses a problem 

mentioned in the literature (Artigue and Smith, 2019). However, this method generates 

more outliers compared to the beta-binomial principal component regression method. 

Both methods continue the current trend in machine learning to use PCA as a dimension-

reduction tool for unsupervised learning. The observed MAE values and prediction 

errors may be related to the quality of AMR monitoring in various countries.  

We describe several approaches to prioritize countries for the purpose of introducing 

of a new antibiotic. Our results can also be used by pharmaceutical companies to 

develop guidelines and strategies to prolong the efficacy of new antibiotics released in 

the market.  

For better model training the introduction of additional variables, such as antibiotic 

consumption and treatment practices on the national level, in training sets can be 

considered. Future work also needs to be done to develop methods for AMR prediction 

on the sub-national level in the absence of adequate socio-economic data and AMR 

measurements at that level. 
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