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Abstract. In this research, a novel framework is presented for traffic monitoring and analysis that 

leverages drone footage and georeferencing technology. The study focuses on the analysis of 

various pedestrian crossing configurations, including standard zebra crossings, crossings with 

islands, and crossings with speed bumps, with a particular emphasis on their impact on vehicle and 

pedestrian behaviour. High-resolution drone footage was captured along selected roads in Kaunas, 

Lithuania, enabling a comprehensive examination of the interactions between vehicles and 

pedestrians at these diverse crossings. The proposed framework incorporates advanced object 

detection models, such as Faster R-CNN, to effectively identify and analyse vehicular movements. 

The experimental validation of the framework is demonstrated through a specific case study 

involving pedestrian crossing analysis. 

Keywords: vehicle detection, vehicle tracking, traffic flow analysis, convolutional neural network, 

UAV drone data, pedestrian crossing analysis 

1. Introduction 

In urban environments, pedestrian crossings play a crucial role in facilitating safe 

interaction between pedestrians and vehicular traffic. The effective design and placement 

of pedestrian crossings are essential for ensuring the safety of both pedestrians and 

drivers. However, despite their widespread use, there is a gap in the literature regarding 

studies that investigate the driver's behaviour when approaching pedestrian crossings of 

different types and various settings. 

To understand the dynamics between pedestrian crossings and traffic intensity, it 

becomes necessary to acquire vast amounts of data. Traditionally, the acquisition of 

traffic data has relied on methods such as manual counters, vehicle fixed detector and 

probe vehicles (Brahimi et al., 2020). While these approaches have provided valuable 

insights, they come with inherent limitations. For instance, manual counting does not 

perform well when vehicles go at higher speed. Stationary detectors often offer restricted 
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spatial coverage and are susceptible to adverse weather conditions (Barmpounakis et al., 

2016). Additionally, fixed camera devices face a problem of occlusion where vehicles 

are fully or particularly hidden behind other object like trees, road signs, another vehicle, 

etc. Such problems can be solved by installing more cameras however such approach 

drastically increases expenses (Muhammad et al., 2018). Meanwhile probe vehicles 

always require good signal coverage and road network for data acquisition (Serrone et 

al., 2023). The introduction of innovative technologies, notably drones, has transformed 

data collection methodologies, offering a more efficient and cost-effective means of 

gathering comprehensive traffic data. Drones enable an agile and expansive view of 

traffic patterns, overcoming the limitations posed by traditional methods (Coifman et al., 

2006 and Serrone et al., 2023). This need for huge amounts of data required for traffic 

analysis forms the core of our study, motivating the utilization of drones to efficiently 

gather significant datasets without losing analysis accuracy or requiring costly 

equipment. 

Table 1. Drone strengths and weaknesses 

Strengths Weaknesses 

- Efficiency: Provides swift data 

collection across large areas. 

- Versatility: Can capture diverse traffic 

scenarios and environments. 

- Cost-Effectiveness: Offers relatively 

lower operational costs compared to 

traditional methods. 

- High Resolution Imaging: Captures 

detailed and high-resolution traffic data. 

- Non-Intrusive: Minimally disrupts 

traffic flow during data collection. 

- Real-Time Monitoring: Allows for real-

time data collection and analysis. 

- Regulatory Constraints: Drone 

application is conditioned by regulatory 

issues. 

- Weather Sensitivity: Susceptible to 

adverse weather conditions affecting 

flight operations. 

- Limited Flight Time: Restricted flight 
duration per battery charge. 

 

This paper addresses the gap of studies when investigating drivers' behaviour by 

presenting a case study that analyses three different types of pedestrian crossings - 

standard zebra crossings, crossings with islands, crossings with slowing curbs, and the 

driver's behaviour while approaching such crossings. Our research aims to contribute 

valuable insights into the dynamic interactions between pedestrian crossings and vehicle 

traffic in urban environments. To achieve this, drone technology is being utilized to 

capture real-time data from selected busy roads in of city Kaunas, Lithuania. Drones 

were chosen as the primary data collection method due to above-mentioned strengths 

over traditional methods. The methodology involves the use of a small drone equipped 

with a camera to film selected busy roads. The drone footage will capture three types of 

pedestrian crossing.  

The dataset generated for this research is analysed using computer vision techniques, 

specifically utilizing Faster R-CNN (Region-based Convolutional Neural Network) for 

object detection, allowing to detect and identify vehicles accurately. For vehicle tracking 

centroid tracking methods is implemented to monitor the movement of detected objects 

over time. This approach enables the calculation of each vehicle’s speed, and the 

observation of how pedestrian crossings affect vehicular behaviour. The analysis will 

extend to examining whether different type of pedestrian crossings impact vehicle speed 

and overall traffic intensity. 
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2. Related Work 

The use of drones for traffic monitoring has been explored in several studies. A 

systematic review of drone-based traffic monitoring systems from a deep learning 

perspective was conducted by Bisio et al. (2022). This work focused on vehicle 

detection, tracking, and counting, which are fundamental building blocks towards 

founding solutions for traffic congestion, flow rate, and vehicle speed estimation. 

Another study by Butilă and Boboc (2022) examined the application of Unmanned 

Aerial Vehicles (UAVs) for civil engineering, especially those related to traffic 

monitoring. The study concluded that this field is still in its early stages and that 

progress in advanced image processing techniques and technologies used in the 

construction of UAVs will lead to an increase in the number of applications. 

The use of Faster R-CNN for object detection in traffic analysis has also been 

explored. For instance, a study by Wang and Peng (2019) designed and implemented an 

object detection system using a Faster R-CNN method that shares full-image 

convolutional features with a detection network. Another study by Datta et al. (2020) 

used Faster R-CNN on their data to analyse the environment around the road and the 

environment around the car. As for vehicle tracking, a real-time wrong-way vehicle 

detection system was proposed, which uses the You Only Look Once (YOLO) algorithm 

to detect vehicles from the video frame and then tracks each vehicle in a specified region 

of interest using a centroid tracking algorithm (Rahman et al., 2020). Another study by 

Bakliwal et al. (2020) presented an algorithm for centroid-based tracking of moving 

objects. 

3. Methodology 

3.1. General workflow 
 

 

Figure 1. General workflow diagram 

To conduct the analysis of traffic flow, real life data of city streets is first collected. The 

data is then used for prediction model training and testing. Open-source VisDrone 

vehicle dataset was used together with our collected data to finetune a CNN model. For 

testing and further analysis, data is georeferenced and split to frames. During the data 
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analysis stage, frames are converted to georeferenced images, vehicles are located, and a 

database is populated with vehicle locations at every time step. 
 

3.2. Model training dataset preparation 

The training dataset was constructed by combining manually created dataset from drone 

footage and open-source VisDrone – DroneVehicle (Sun et al., 2022) dataset. It provides 

a diverse set of images, incorporating a wide range of cars and scenes, enhancing the 

model's ability to learn and generalize across various scenarios. 

A custom dataset consisting of a total of 188 images from various frames, has been 

manually annotated with the aid of the open-source tool, Label Studio. This annotation 

process establishes a robust dataset, providing the model with essential information for 

effective learning and generalization. The inclusion of diverse frames enhances the 

representativeness of the dataset, allowing the model to adapt to various scenarios. This 

systematic dataset preparation is crucial for fostering the accuracy and performance of 

the model during the training phase, enabling it to make informed predictions on new 

and unseen data. 

To enhance the accuracy of the model, we incorporated an extra open-source dataset. 

The DroneVehicle dataset includes a total of 56,878 images captured by the drone, with 

almost an even split between RGB and infrared images. The dataset provides detailed 

annotations for multiple vehicle types. Model training dataset was extended with RGB 

images from the DroneVehicle dataset. 

3.3. Prediction model selection 

In the selection process of a machine learning model, consideration is given to two 

pivotal aspects: the model's efficacy in accurately discerning objects within a given 

dataset and its computational efficiency. In the landscape of object detection models 

based on CNNs, which can be broadly categorized into the two-stage and one-stage 

approaches, the YOLO (You Only Look Once) model stands out as a representative of 

the single-stage network.  The model employs a basic CNN to directly forecast class 

probabilities and bounding boxes from the input image (Redmon et al., 2015). It is 

considered as one of the most common choices in production only because of its simple 

architectural design, low complexity, and easy implementation (Diwan et al., 2023). 

In the statistical Analysis of various YOLO-Based deep learning models study 

(Sirisha et al., 2023) authors provide a detailed understanding of YOLO algorithm 

strengths and weaknesses. While YOLO is recognized for its speed and accuracy in 

object detection, it encounters challenges when it comes to detecting small objects. 

There are several ways to improve the small objects accuracy (Hu et al., 2023 and Ji et 

al. 2023) but it requires additional architecture changes that reduces the speed. 

R-CNN is a region based two-stage convolutional neural network object detection 

algorithm proposed by Girshick (2015). This model comprises two main modules: the 

first module is a CNN known as the Region Proposal Network (RPN). Its primary role is 

to generate region proposals. Operating on a single image input, it produces bounding 

boxes and object confidence scores. Following this, a ROI pooling layer combines the 

extracted feature maps with the bounding box proposals, allowing a classifier to generate 

outputs for both the object class and an associated bounding box that encapsulates it 

(Avola et al., 2021). 
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In the Faster R-CNN and YOLO analysis research (Dong, 2023) the results presented 

by the authors indicate that YOLO exhibits greater speed, yet Faster R-CNN 

demonstrates a superior ability to accurately detect small objects. Furthermore, through 

various experiments in detecting different objects in orthographic images using DOTA 

(Xia et al., 2018) and HRSC2016 (Liu et al. 2016) datasets it is observed that region-

based convolutional neural networks yield high precision results and demonstrates a high 

level of accuracy in detecting small objects. 

Given these criteria, our deliberation led to the selection of Faster R-CNN, a 

convolutional neural network (CNN) architecture known for its commendable balance 

between robust object detection capabilities and computational efficiency. The 

implementation of the car detection model entailed the utilization of Faster R-CNN 

architecture integrated with a ResNet-50 Feature Pyramid Network (FPN) v2 backbone, 

leveraging pre-trained weights. This feature pyramid network is chosen because it is 

designed to provide a better performance and increased accuracy in detecting smaller 

objects. The improvements are shown in the experiments with a significant 9.7% mAP 

increase compared to regular Faster R-CNN (Rath, 2022). The implementation is 

visualized in  

Figure 2. 

 

 
 

Figure 2. Faster R-CNN explanation 

The model underwent fine-tuning process using a custom dataset created from drone 

footage images and the publicly available DroneVehicle dataset. Training ensued across 

50 epochs, employing specific hyperparameters: a learning rate (lr) set at 0.001, a 

momentum (m) of 0.9, and a weight decay (wd) of 1e-6. The parameters generalized in  

Table 2. 
 

Table 2. Parameters used in model training 

Parameter Value 

FPN ResNet-50 v2 

Optimizer Adam 

Learning rate 0.001 

Weight decay 1-6 

Batch size 8 

Momentum 0.9 
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Epoch 50 

3.4. Urban data collection with georeferencing 

The data collection methodology for this research involves aerial filming using a DJI 

Mini Pro 3 drone positioned at an altitude of 80 meters above a selected urban street. 

The drone is strategically centred above a pedestrian crossing, with its camera oriented at 

a 90-degree angle to the street below. The chosen altitude provides an optimal 

perspective to observe and analyse vehicles and other elements within the urban 

environment, maintaining a 3840x2160 pixel resolution. The utilization of drone 

technology ensures a versatile and dynamic approach to data collection, enabling the 

acquisition of high-quality footage from an overhead vantage point that might be 

challenging to achieve through traditional ground-based methods. 

For georeferencing, the methodology involves using a mapping tool to precisely 

establish the geographical coordinates of filmed frames. To georeference each frame, the 

four corner coordinates of the street are identified using the mapping tool. This approach 

leverages the detailed mapping data provided by the tool to accurately pinpoint the 

geographical location of specific points within the recorded footage. While drone GPS 

data is available for georeferencing purposes, findings indicate that utilizing this 

mapping tool yields superior accuracy. The reliance on the mapping tool enhances the 

precision of spatial referencing, allowing for a more detailed and reliable analysis of the 

vehicle movement captured in the video footage. This georeferencing methodology 

ensures the alignment of recorded frames with real-world geographical coordinates, 

facilitating a robust and geospatially accurate foundation for subsequent analyses and 

interpretations. 

 

 

 

 
 

Figure 3. Coordinate selection for georeferencing using mapping tool 
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This research employs three types of urban crossings: regular crossings, crossings 

with islands, and crossings with speed bumps. Examples of specific locations used in 

this study are provided  

Figure 4 and  

Figure 5. 

 

 
 

Figure 4. Crossing in Location 1 

 
 

Figure 5. Crossing in Location 3 

3.5. Vehicle database 

In the initial step, we extract the pixel coordinates of the located vehicles from the 

georeferenced images. Then, objects are organized into individual moving entities 

through the implementation of the centroid objects tracking technique. This technique 

entails taking an initial set of object detections, assigning unique IDs to each detection, 

and subsequently tracking these objects through the frames. The tracking process utilizes 

Euclidean distance calculations between the centres of detected bounding boxes to 

ensure accurate and continuous monitoring of object movements. The object is 

considered out of the frame when it’s no longer detected for more than 2 frames.  

The pixel values of these vehicles are then converted to real-world coordinates and 

inserted into a database. This straightforward process establishes a comprehensive 

dataset, providing essential spatial information for detailed analyses of vehicular 

dynamics within the urban environment under study. The resulting database serves as a 

data source for further analysis. 
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Figure 6. Database with vehicle info 

3.6. Velocity calculation 

Utilizing the pre-established database, which comprehensively captures the spatial 

coordinates of each vehicle at distinct timestamps, we have implemented a systematic 

approach for querying individual vehicles through SQL based on their unique 

identification (ID). The key metric of interest, vehicle velocity, is calculated by 

examining the changes in spatial positions between consecutive frames. This dynamic 

analysis of spatial changes enables us to derive the velocity (v) of each vehicle with 

precision. The velocity calculation is encapsulated by the following formula, where the 

vehicle's speed is determined by evaluating the spatial disparities over time: 

 

𝑣  =
√(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2

∆𝑡
 

 

where: 

 (x1, y1) and (x2, y2) are the real-world coordinates (latitude, longitude) of the 

vehicle in two consecutive frames. 

 Δt is the time interval between the two frames. 
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(a) (b) (c) 

 
Figure 7. example procedure of velocity analysis. Vehicle movement is displayed in the (a) figure 

with its speed (b) before the crossing. Results are shown in the graph (c). 

 

It is essential to note that real-world conditions can introduce errors in the position 

data. Factors such as drone position changes, vibrations, and the inherent limitations of 

the car detection algorithm may contribute to inaccuracies. High wind can lead to a 

greater deviation in velocity calculations from the actual speed. These sources of error 

should be considered when interpreting the velocity results. However, in this research, 

the data were gathered during periods of calm weather with minimal or no wind, and 

movement influence was not considered. 

 

Results 

3.7. Model performance results 

In a comparative analysis between different FPN architectures ( 

Figure 8), ResNet50 v2 demonstrates a notable performance advantage over Mobile Net 

V3 Large and ResNet50 v1. The evaluation, based on total loss during validation, reveals 

that ResNet50 v2 outperforms its predecessors by approximately 13% compared to 

ResNet50 V1 and approximately 27% compared to Mobile Net. This improvement 

underscores the efficacy of the enhancements introduced in ResNet50 v2, which 

contribute to a more robust and accurate model, making it a preferable choice for 

detecting smaller objects more accurately. 
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Figure 8. Total loss comparison between different FPN 

 

 

The model was initially fine-tuned on the VisDrone dataset. However, to improve the 

model's performance on certain aspects, a custom annotated dataset was used for further 

enhance the model performance in certain situations - car detection on crosswalk, 

overlapping from trees etc. The accuracy difference when the model was trained with 

only VisDrone and using VisDrone and annotated dataset is displayed in  

Figure 9. 
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Figure 9. Total loss comparison when model trained with and without annotated dataset 

 
 

During the training phase, the model performance was evaluated using different loss 

values:  

 Total Loss: the overall error or discrepancy between predicted and true 

values, comprising all individual losses. 

 Classifier Loss: measures the error in class predictions made by the model. 

 Bounding Box Regression Loss: indicates the error in predicting the 

coordinates of bounding boxes around objects. 

 RPN Box Loss: reflects the error in the region proposal network's bounding 

box predictions. 

 Object Detection Loss: represents the error in detecting and classifying 

objects within the image. 

In the training process over 50 epochs, the model has demonstrated commendable 

performance, as reflected in the consistently low and acceptable loss values across 

various components ( 

Figure 10). The achieved Total Loss of 0.222 indicates robust learning and effective 

parameter adjustments. Notably, the Classifier Loss, Bounding Box Regression Loss, 

RPN Box Loss, and Object Detection Loss contribute collectively to the model's success. 

These results suggest that the model is successfully capturing intricate patterns in the 

data, showcasing its ability to predict class labels, bounding box coordinates, and handle 

region proposal intricacies. While these outcomes are promising, it is advisable to further 

assess the model's generalization by evaluating other available FNP architectures. 
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Figure 10. Prediction model losses over epochs 

 
The pre-processing pipeline designed for training a car detection model encompasses 

a series of transformations. The augmentation sequence involves several operations, 

strategically chosen to enhance the diversity and robustness of the dataset. The 

introduction of a random-sized box crop, set with a probability of 0.4, plays a crucial 

role in maintaining the integrity of car bounding boxes during random cropping and 

resizing. This operation is essential for preserving accurate spatial information and 

ensuring that the model learns to detect cars across various scales. Additionally, 

Horizontal Flip and Vertical Flip operations, each with a 0.5 probability, are applied 

independently to introduce variations in viewpoint by flipping images horizontally and 

vertically. This variation aids the model in handling different perspectives, enhancing its 

ability to generalize effectively. The augmentation strategy also incorporates random 

brightness and contrast operations with probabilities of 0.2, contributing to the 

introduction of diverse lighting conditions and colour variations within the dataset. 

These transformations collectively aim to expose the model to a wide range of scenarios, 

improving its adaptability and robustness ( 

Figure 11). 
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Figure 11. Accuracy improvements after transformations are performed during the training 

3.8. Data 

Testing data was collected from various locations in Kaunas. This diverse sampling 

across the city aids in gaining a better understanding of vehicular behaviour in different 

locations. Average length of a video from a single location is about 8 minutes. 

 
 

Table 3. Locations used for the testing 

Location Location image Crossing type Video length 
Vehicle 

count 

Location 1 

 

With speed 

bump  
10 min. 105 

Location 2 

 

With speed 
bump  

10 min. 43 

Location 3 

 

With island 10 min. 73 

Location 4 

 

Regular 7min 24s. 55 

Location 5 

 

Regular 4min 29s. 29 

 

3.9. Velocity analysis 

The velocity calculation methodology developed earlier is employed, and the pre-

established database is leveraged to perform velocity analysis for all the gathered 

locations. The analysis focuses on the key metric of interest, vehicle velocity, which is 
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derived by scrutinizing spatial position changes between consecutive frames. This 

approach is applied to the pedestrian crossing influence study, identifying specific 

crossing locations through Google Maps. This allows for the observation of fluctuations 

in vehicle speed over recorded periods. The automated analysis assesses speed variations 

both before and after the crossing, and the comprehensive results are presented in Table 

4. 

 
Table 4. Velocity analysis results 

Location 

Average vehicle 

speed whole 

distance 

Average vehicle 

distance until 

crossing 

Average vehicle 

distance after 

crossing 

Speed 

difference until 

crossing 

Location 1 31.87 km/h 33.9 km/h 32.7 km/h -9.28 km/h 

Location 2 26.10 km/h 27.8 km/h 27.05 km/h -5.64 km/h 

Location 3 43.06 km/h 42.36 km/h 44.37 km/h -0.46 km/h 

Location 4 32.66 km/h 33.05 km/h 33.87 km/h -1.12km/h 

Location 5 29.46 km/h 18.32 km/h 28.81 km/h -7.3km/h 

 
Velocity analysis for the whole distance was done for location 1, location 3 and 

location 4 crossings (Figure 12). It can be observed that the average speed of the cars 

decreases before the crossing with a bump and increases right after the crossing. Similar 

behaviour is evident with the regular crossings, where the analysed vehicles start to slow 

down once they enter the crossing. There is different behaviour caused by crossing with 

island. Vehicles usually increase velocity before the crossing and then slow down. 

 

 

   
Figure 12. Speed distribution between different types of crossings 

4. Discussion 

In our proposed methodology, the use of drones to film urban traffic offers a promising 

approach to analyse vehicle traffic patterns. However, it is crucial to recognize a 

potential limitation affecting the accuracy of vehicle speeds derived from drone footage. 

The movement of the drone itself introduces a degree of variability that can impact 

velocity calculations. In addition to drone-related factors, real-world conditions should 

be considered also, including high wind, drone position changes, vibrations, as well as 

inherent limitations in the car detection algorithm. While data in this study were gathered 

during periods of calm weather with minimal or no wind, and movement influence was 

excluded from analysis, it is important to acknowledge these potential sources of error 

when interpreting the velocity results. Additionally, the reliance on manual coordinate 

selection via Google Maps, while offering a viable alternative for data collection, may 
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not always guarantee accuracy due to outdated satellite images. Despite this limitation, it 

stands out as a superior method when compared to the GPS system of the DJI Mini 3 

drone. Also considering the potential impact of changing environmental conditions, it 

may be worthwhile to explore the effectiveness of augmenting the annotated dataset with 

additional images. It could also contribute to the stability of speed calculations in 

varying environmental conditions. For the further framework testing, more data could be 

gathered. It also has the potential to be tested in different scenarios. 

5. Conclusions 

The findings from this study have the potential to impact urban planning and traffic 

management strategies. Insights into how pedestrian crossings influence traffic intensity 

can inform the design and optimization of pedestrian infrastructure, leading to safer and 

more efficient urban transportation systems. Additionally, the study may contribute to 

the development of intelligent traffic management systems that could predict the 

intensity of the traffic in different environment settings. 
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