
Baltic J. Modern Computing, Vol. 12 (2024), No. 3, pp. 259–269
https://doi.org/10.22364/bjmc.2024.12.3.03

Quantum Algorithm for the Domatic Number
Problem

Andris AMBAINIS, Iļja REPKO

Centre for Quantum Computer Science, Faculty of Sciences and Technology, University of
Latvia

Raiņa bulvāris 19, Riga, LV–1586, Latvia

andris.ambainis@lu.lv, ilja.repko@gmail.com

ORCID 0000-0002-8716-001X, ORCID 0009-0003-3154-1803

Abstract. In this paper we design a quantum algorithm for the NP-complete problem of finding
the domatic number. The DOMATIC NUMBER problem asks to determine the largest integer k,
such that a given undirected graph with n vertices can be partitioned into k pairwise disjoint
dominating sets. This problem finds significant applications, such as in wireless sensor networks,
where the selection of multiple dominating sets balances energy consumption and extends net-
work lifetime. Each node communicates exclusively with designated nodes, and dominant sets
ensure network resilience by enabling seamless replacement in case of node cluster failure. The
importance of this problem lies in its implications for network optimization, highlighting the ad-
vantages of quantum computing in addressing complex combinatorial challenges. We present a
quantum algorithm that solves this problem in time O(2.4143n), which we further improve to
O(2.3845n).

Keywords: domatic number, quantum algorithm, dominating set

1 Introduction

In this paper we have discovered two quantum algorithms to find the domatic number
d(G) for the graph G. The problem was discovered in (Chang, 1994).

These algorithms solve a critical problem in graph theory that affects diverse fields,
including wireless sensor networks (Jiguo, Qingbo, Dongxiao, Congcong and Guanghui,
2014). Efficiently selecting and managing multiple dominating sets in these networks
is crucial for saving energy and extending network lifespan. Quantum computing of-
fers a promising approach to enhance network optimization and analyze data structures
in new ways. This shows how quantum algorithms can tackle complex problems that
traditional computers struggle with.

260 Ambainis and Repko

Previous results. Classically the problem can be solved in time 3n · nO(1) (Fomin,
Kratsch, 2010) using an algorithm similar to Lawler’s dynamic programming algo-
rithm (Lawler, 1976). In the first half of 2005, Riege T. and Rothe J. ”broke through”
the 3n barrier, solving the DOMATIC NUMBER problem for 3 dominating sets in time
Õ(2.9416n) (Riege, Rothe 2005). Later, authors combined the inclusion-exclusion ap-
proach with the Fomin algorithm (Fomin, Grandoni, Pyatkin, Stepanov, 2005) to solve
the problem in time Õ(2.695n) for 3 dominating sets (Riege, Rothe, Spakowski, Ya-
mamoto, 2007).

Nevertheless the best known classical algorithm was presented by Johan M.M. van
Rooij which solved the problem in time O(2.7139n) (van Rooij, 2010).

Until recently, no quantum algorithm was known for this problem. Then, two algo-
rithms were developed independently: the algorithm in this paper (which was developed
and presented as a bachelor’s thesis in June 2023 in University of Latvia (Repko, 2023))
and an algorithm (Gaspers and Li, 2023) which appeared in November 2023. The quan-
tum algorithm of Gaspers and Li is faster, with the complexity of O((2 − ϵ)n) but our
algorithm is simpler.

Main contributions:

– Firstly, we designed an algorithm that solves the DOMATIC NUMBER problem
in time O(2.4143n). This technique combines Lawler’s algorithm for finding the
chromatic number (Lawler, 1976) with Grover’s search (Durr and Høyer, 1996) and
the naive computation of minimal dominating sets using dynamic programming in
time 2n · nO(1).

– Secondly, we developed an algorithm that utilizes the precomputation of improved
minimal dominating sets (Fomin, Grandoni, Pyatkin, and Stepanov, 2008), solving
the DOMATIC NUMBER problem in time O(2.3845n).

– Thirdly, we provided a data structure that precomputes all minimal dominating sets
in time O∗(2n) and allows each set to be obtained in time O(nc).

The article consists of four sections. The first section is the introduction, where
the main problem and contributions are presented. The second section covers the pre-
liminaries, theorems, and techniques important for implementing the algorithm on a
quantum computer. The third section is divided into two parts: the first part describes
the simple algorithm that solves the problem in time O(2.4143n), and the second part
presents an improved version of it that solved DOMATIC NUMBER in time O(2.3845n).
The fourth section presents the conclusions and discusses open problems that may be
addressed in future research.

2 Preliminaries

In this section, the main theorems and the model necessary for the algorithm to work
will be described.
Model. Our algorithms work in the commonly used QRAM (quantum random access
memory) model of computation (Giovannetti, Lloyd and Maccone, 2008), which as-
sumes quantum memory that can be accessed in a superposition.

Quantum Algorithm for the Domatic Number Problem 261

Tools. We will use the following results in our algorithms:

Theorem 1. [Quantum Minimum Finding (1996)] Let a1,. . . ,an be integers, accessed
by a procedure P . There exists a quantum algorithm that finds minni=1{ai} with success
probability at least 2/3 using O(

√
n) applications of P .

Theorem 2. [Minimal dominating sets listing (2008)] For any graph G on n vertices,
all its minimal dominating sets in X can be listed in time O(1.7159n).

Theorem 3. [Classical domatic number finding (2008)] There is a classical algorithm
that solves DOMATIC NUMBER for any graph G(V,E) on n vertices in time O(2.8718n)
and lists all minimal dominating sets contained in a given X ⊆ V in time O(λn+α4|X|)
with the following values for the weights: λ = 1.148698 and α4 = 2.924811.

3 The algorithm

In this section, two quantum algorithms that solve the problem will be described. The
simple algorithm solves the problem in time O(2.4143n), while the improved algorithm
solves it in time O(2.3845n).

3.1 Simple algorithm

Our strategy consists of two parts. Firstly, recursively finding all minimal dominating
sets in the graph G. The naive deterministic algorithm for listing minimal dominating
sets runs in time 2n, up to polynomial factors. Secondly, we use Quantum Maximum
Finding to find the largest partition into sets (Ahuja, Kapoor, 1999). This algorithm
is based on quantum Grover’s search algorithm (Grover, 1996). The analysis of the
domatic number finding algorithm is based on (Ambainis, Balodis, Iraids, Kokainis,
Prūsis and Vihrovs, 2018), Theorem 1 and is similar to Lawler’s classical algorithm for
computing the chromatic number (Lawler, 1976) (Fomin, Grandoni, 2005).

Theorem 4. There is a bounded-error quantum algorithm that solves DOMATIC NUM-
BER in time O(2.4143n).

Proof. The algorithm calculates d(G) for the graph G(V,E) by iterating through all
possible subsets X ⊆ V . The algorithm seeks to find the largest partition into disjoint
dominating sets. The corresponding recursive formula is:

d(X) = max {d(X \D) + 1 | D ⊆ X , D is a minimal dominating set in G} (1)

Note that for X ∈ ∅, d(X) = 0.
By replacing classical maximal value search with the quantum maximum finding

algorithm in d(G), we obtain a quantum speedup for this problem. Quantum maximum
search achieves a quadratic speedup over classical exhaustive search. For each X ⊆ V ,
the quantum algorithm will find max

|X|
i=1{Di} in time O∗(

√
|X|) 1 (Durr and Høyer,

1 The O∗(f(n)) notation hides a polynomial factor in n

262 Ambainis and Repko

1996). Until we have to iterate through all subsets in G, the running time of the algo-
rithm is bounded by:

n∑
i=0

(
n

i

)
iO(1)

√
2i ≤ nO(1)

n∑
i=0

(
n

i

)√
2i = nO(1)(1 +

√
2)n ∈ O(2.4143n)⊓⊔

3.2 Improved algorithm

The main idea of the improved algorithm is to precompute all minimal dominating
sets (MDS) in G(V,E), where |V | = n. The analysis of this algorithm is based on
(Ambainis, Balodis, Iraids, Kokainis, Prūsis and Vihrovs, 2018), Theorems 1, 3, and
has similarities with Lawler’s classical algorithm for computing the chromatic number
(Lawler, 1976).

Theorem 5. There is a bounded-error quantum algorithm that solves DOMATIC NUM-
BER in time O(2.3845n).

Proof. We use the same recurrence as in the proof for Theorem 4 to find the domatic
number d(G) for graph G(V,E):

d(X) = max {d(X \D) + 1 | D ⊆ X , D is a minimal dominating set in G}

Note that for X ∈ ∅, d(X) = 0. We preprocess the data to enable quick access to all
minimal dominating sets. Namely, we create a data structure that can answer two types
of queries:

– Given a subset of vertices X ⊆ V , what is the number of minimal dominating sets
contained in X?

– Given X and i, what is the ith minimal dominating set contained in X (in some
fixed ordering)?

Lemma 1. There is a data structure that can be created in time O∗(2n) and, given this
data structure, the queries of the two types can be answered in time O(nc).

If this data structure has been created, we can find the value of d(X) from equation
(1) in time O∗(

√
D(X)) (where D(X) denotes the number of minimal dominating sets

contained in X) using quantum maximum finding from Theorem 1.
We then use this to compute d(X) for all X , in the order of increasing |X|. Since

D(X) = O(λn+α4i), the running time for performing this is of the order at most

nO(1)
n∑

i=0

(
n

i

)√
λn+α4i = nO(1)

n∑
i=0

(
n

i

)
λ

n
2 +

α4i
2 = λ

n
2 (1 + λ

α4
2)nnO(1)

1.148698
n
2 (1 + 1.148698

2.924811
2)nnO(1) ∈ O(2.3845n)

It remains to prove Lemma 1. To store all the sets in memory, we will utilise two
Hasse diagrams denoted as h1 and h2. (A Hasse diagram is a structure with entries for

Quantum Algorithm for the Domatic Number Problem 263

subsets X ∈ V in which the entry for X has pointers to the entries for X−{u}, u ∈ X .)
Each element in h1 will have the data type ‘Node‘, while each element in h2 will have
the data type ‘DNode‘.

struct Node
Set: Set of integer
Subsets: Set of Node
Mds: bool
MinDomSets: DNode
InDNode: List of (A: set, B: set, Ref : DNode)

For an element v, v.Set contains the set X . v.Subsets contains links to ’Node’ struc-
tures for all subsets of X whose cardinality is one less than the one of X . v.Mds is true
if X is a minimal dominating set and false otherwise. v.MinDomSets and v.InDNode
provide links to the entries of Hasse diagram h2 and are described later, after we de-
scribe h2.

The Hasse diagram h2 has elements corresponding to pairs of sets A, B with A,B ⊆
V and max(i ∈ A) < min(j ∈ B). (That is, every element of A must be smaller than
every element of B. The corresponding entry describes the number of minimal domi-
nating sets X with A ⊆ X ⊆ A ∪ B and provides a way to index them. The elements
of h2 will have the data type ‘DNode‘.

struct DNode
A: Set of integer
B: Set of integer
Count: integer
Mds: bool
Subsets: Set of DNode

We say that for each element v1, v2 in h2: v2 ≺ v1 iff

∃b ∈ v1.B : (v2.A = v1.A ∪ b) ∧ (v2.B = v1.B \ {x ∈ v1.B|x ≤ b})

In h2, the fields have the following content. A,B represent vertex sets in v1, while
Subsets contains links to all v2 with v2 ≺ v1. We mark Mds as True iff A is minimal
dominating set. Count contains the number of X with v1.A ⊆ X ⊆ v1.A ∪ v1.B.

We note that if X is such that v1.A ⊂ X ⊆ v1.A ∪ v1.B, then X satisfies v2.A ⊆
X ⊆ v2.A ∪ v2.B for exactly one v2 with v2 ≺ v1. Namely, this will be the node v2
with v2.A = v1.A ∪ {c} where c is the smallest element of v1.B and v2.B = {x|x ∈
v1.B ∧ x > c}. Thus, the set of X with v1.A ⊂ X ⊆ v1.A ∪ v1.B is a disjoint union
of the sets of X with v2.A ⊆ X ⊆ v2.A ∪ v2.B for all v2 ≺ v1. All those v2 are
enumerated by the Subsets field.

Lastly, we describe the references from h1 to h2. There are two types of them.
The first type, denoted as MinDomSets, finds the element of type DNode that refers

to i-th MDS within h2. Node.MinDomSet = DNode iff Node.Set = DNode.B and
DNode.A = ∅.

264 Ambainis and Repko

The second type of reference, called Ref, is stored in the IsDNode list. For every N
of Node objects, the IsDNode list maintains pairs of sets denoted as (A,B). These pairs
satisfy the condition that A ∪ B = N.Set. Furthermore, it is required that an object of
type DNode has been previously instantiated within h2. This prevents the occurrence
of duplicates in h2.

Next we describe Algorithm 1 that find i-th minimal dominating set in polynomial
time. The algorithm 1 consists of two parts.

In the first part, we identify the subset S in the Hasse diagram h1 in time O(n2)
using function FINDSUBSET.

In the second part, the algorithm refers to DNode object in h2 using Node MinDom-
Set. After this, the search for the i-th subset in h2 starts. We check all Subsets of the
current DNode element until the sum of all previous Count values is less than i. When
this sum equals or exceeds i, the algorithm descends one level lower. This process con-
tinues until DNode Mds is not True. When navigating h2, this search is confined to a
maximum of n Subsets, at most n times, for each element in B. Therefore the second
part operates in time O(n2).

Algorithm 1 Finding the i-th minimal dominating set among subsets of S
Input: S - subset of V , i - index for the minimal dominating set
1: function FINDSUBSETMINDOMSETBYINDEX(S: set, i: integer)
2: S ← FINDSUBSET(S).MinDomSets ▷ S: DNode
3: while S.Mds = False do ▷ Search in h2

4: c← 0
5: for subset in S.Subsets do ▷ subset: DNode
6: if c+subset.Count ≥ i then
7: S ← subset
8: i -= c
9: c← 0

10: break
11: else
12: c← c+ Count
13: return S.A

For the purpose of precomputation all minimal dominating sets for G, we execute
Algorithm 2. This precomputation algorithm is designed to store all subsets of V within
the h1. The naive algorithm for finding the i-th minimal dominating set of S in h1

requires exponential time to visit all subsets of S. Consequently, we introduce h2 and
the procedure D to calculate the count of minimal dominating sets that include the
elements of set A and potentially some elements from set B:

D(A,B) =


∑k<n

i=0 D(A ∪ bi, {bi+1, . . . , bk}) , if A is not MDS and B ̸= ∅
1 , if A is MDS
0 , otherwise.

B = {b0, . . . , bk} = {b | ∀i, j ≥ 0(i < j → bi < bj)}

Quantum Algorithm for the Domatic Number Problem 265

To obtain all MDS for subset S we run D(∅, S).

Algorithm 2 Precomputation of minimal dominating sets
Input: G(V,E) - input graph.
Output: h1, h2 with precomputed MDS.

1. Generate all subsets of V and place them within the h1.
2. Execute the algorithm for generating minimal dominating sets from Theorem 2. When a

certain set D is returned:
2.1. Find D in h1, using Function FINDSUBSET.
2.2. Mark Mds as True in found D node in h1.

3. Execute Procedure PRECOMPUTEMINDOMSETS.

The procedure PRECOMPUTEMINDOMSETS is implemented in Algorithm 3, which
creates h2 using h1. For each subset S ⊆ V , the algorithm executes D(∅, S) and stores
each term of D(∅, S) in h2. To find all subsets of V we run Function GETSUBSETS.
While ∀a(a ∈ A → ∀b(b ∈ B → a < b)) holds true, we state that A ⊆ {0, . . . ,m−1}
and B ⊆ {m, . . . , n − 1}. Consequently, there are 2m ways to choose A and 2n−m+1

ways to choose B, with n ways to choose the value of m. Therefore, Algorithm 3 runs
in time O∗(n · 2m2n−m+1) = O∗(2n). Now, we just need to demonstrate that the
auxiliary functions for the Algorithm 3 will operate in polynomial time.

Note that the Algorithm 3 requires exponential space O∗(2n).

Algorithm 3 Implementation of the PRECOMPUTEMINDOMSETS Procedure
Input: P : Node - pointer on h1 head element
1: procedure PRECOMPUTEMINDOMSETS ▷ Creates h2

2: for subset in GETSUBSETS(P.Set) do ▷ Subsets in h1

3: A← ∅
4: B ← subset.Set = {x | ∀i, j ≥ 0(i < j → xi < xj)}
5: N ← new DNode(
6: A,B,Count : 0,Mds : ISMDS(subset), Subsets : ∅)
7: subset.MinDomSets← N
8: INSERTDNODEREF(A,B)
9: D(A,B)

Prior to adding an element to the h2, Algorithm 3 performs a verification step by
invoking the FINDDNODE function. This function checks for the presence of the current
element within h2. Unless each a ∈ A and b ∈ B, a < b, the size of the IsDNode list will
be at most O(n). Therefore FINDDNODE operates in polynomial time. If the element is
found, the Count attribute of the corresponding DNode instance is incremented by the
value from the current subset. In cases where the element is not found, the algorithm
adds reference Ref from h1 to h2 using INSERTDNODEREF function. After that it
computes the Count value via a recursive formula for the D function.

266 Ambainis and Repko

10: procedure D(A,B = {x | ∀i, j ≥ 0(i < j → xi < xj)})
11: if ISMDS(A) then
12: return 1
13:
14: for k = 0; k < |B|; k++ do
15: A ← A ∪ {xk}
16: B ← {xk+1, xk+2, . . . , xn}
17: R← FINDDNODE(A,B) ▷ Type: DNode
18:
19: if R = ∅ then
20: N.Subsets add new DNode(
21: A,B,Count : 0,Mds : False, Subsets : ∅)
22:
23: INSERTDNODEREF(A,B)
24: N.Count += D(A,B)
25: else ▷ Computed early
26: N.Subsets add R
27: N.Count += R.Count
28: return 0
29:
30: function GETSUBSETS(node: Node)
31: if node = ∅ then
32: return
33: yield node ▷ Type: Node
34: for subset in node.Subsets do
35: GETSUBSETS(subset)
36:
37: function INSERTDNODEREF(A: Set, B: Set)
38: S ← FINDSUBSET(A ∪B) ▷ Type: Node
39: S.InDNode add (A,B)
40:
41: function ISMDS(S: Set)
42: S ← FINDSUBSET(S) ▷ Type: Node
43: if S = ∅ then ▷ No such set in diagram
44: return False
45: return S.Mds
46:
47: function FINDDNODE(A: set, B: set)
48: S ← FINDSUBSET(A ∪B) ▷ Type: Node
49: for (A,B, Ref) in S.InDNode do
50: if A = A and B = B then
51: return Ref ▷ Type: DNode
52: return ∅

Quantum Algorithm for the Domatic Number Problem 267

Before calculating each term of the recursive function D for (A,B) = (∅, S), the
Algorithm 3 checks whether the set A is MDS using the ISMDS function. If the current
set A is MDS, then the algorithm will return 1. Otherwise, it will call the function D
until B ̸= ∅.

Next we describe how to implement FINDSUBSET, using Algorithm 4. Note that
each set contains no more than n edges from current node to it subsets. When navigat-
ing the Hasse diagram h1, our search is confined to a maximum of n sets. Therefore
Algorithm 4 runs in time O(n2).

Algorithm 4 Finding subsets in Hasse diagram h1

Input: D - subset, G - pointer on h1 head element
1: function FINDSUBSET(D : set)
2: S ← G
3: while S.Set ̸= D do
4: if S.Subsets = ∅ then ▷ No such set in diagram
5: return ∅
6: for s ∈ S.Subsets do
7: if D ⊆ s then
8: S ← s
9: break

10: return S

4 Conclusion and open problems

The DOMATIC NUMBER problem holds significant importance in graph theory and
finds practical applications in network optimization. The quantum algorithm for this
problem recursively searches for minimal dominating sets within a graph. At each re-
cursion level, sets are excluded from the current vertex set until all vertices are covered.
The algorithm determines the maximum recursion level where each excluded set re-
mains dominating.

Our findings revel that the one of the best-known classical algorithm solves the
problem with a time complexity of O(2.7139n) (van Rooij, 2010) using a dynamic
programming approach. Quantum maximum search provides a quadratic speedup for
enumerating all minimal dominating sets, thereby achieving a faster solution to the
DOMATIC NUMBER problem.

Our newly presented quantum algorithms demonstrate the power of quantum com-
puting to accelerate classical algorithms and achieve improved time complexity with
relatively straightforward implementation. Combining dynamic programming with quan-
tum algorithms improves the evaluation of the DOMATIC NUMBER algorithm.

A key achievement in this work includes Theorem 4 and 5. Employing the Quan-
tum Maximum Finding algorithm, we have demonstrated algorithms that solve the DO-
MATIC NUMBER problem in time O(2.4143n), which we have further improved to

268 Ambainis and Repko

O(2.3845n). Gaspers and Li (2023) have independently developed a quantum algo-
rithm with the complexity of O((2− ϵ)n).

It would be interesting to explore whether there exists an algorithm that can further
improve this complexity. However, limitations include the requirement for exponential
space, which may not be practical for large-scale graphs. This presents a crucial area
for further research.

Acknowledgment. AA was supported by QuantERA ERANET Cofund project
QOPT (Quantum algorithms for optimization).

References

Ahuja, A., Kapoor, S. (1999) A Quantum Algorithm for finding the Maximum Quantum Physics
at arxiv.org/abs/quant-ph/9911082

Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prūsis, K., Vihrovs, J. (2018). Quan-
tum Speedups for Exponential-Time Dynamic Programming Algorithms, Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1783-1793.
doi:10.1137/1.9781611975482.107

Chang., G.J. (1994) The domatic number problem, Elsevier, 125, issues 1-3. doi: 10.1016/0012-
365X(94)90151-1

Durr, C., Høyer, P. (1996). A Quantum Algorithm for Finding the Minimum, preprint, available
at arXiv:quant-ph/9607014

Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A. (2005) Bounding the number of mini-
mal dominating sets: A measure and conquer approach. Algorithms and Computation 3827.
doi:10.1007/11602613 58

Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A. (2008). Combinatorial bounds via mea-
sure and conquer: Bounding minimal dominating sets and applications. ACM Transactions
on Algorithms 5(1), 9:1-9:17. doi:10.1145/1435375.1435384

Fomin, F.V., Kratsch, D. (2010). Exact Exponential Algorithms. Springer p.36.
doi:10.1145/2428556.2428575

Gaspers, S., Li, J.Z. (2023). Quantum Algorithms for Graph Coloring and other Partitioning,
Covering, and Packing Problems. preprint, available at arXiv:2311.08042

Giovannetti, V., Lloyd, S., Maccone, L. (2008). Quantum Random Access Memory. Phys. Rev.
Lett. 100, p. 160501. doi: 10.1103/PhysRevLett.100.160501

Grover, L. (1996). A Fast Quantum Mechanical Algorithm for Database Search. Proceed-
ings of the 28th Annual ACM Symposium on the Theory of Computing. p.2112-229. doi:
10.1145/237814.237866

Jiguo, Y., Qingbo, Z., Dongxiao, Y., Congcong. C., Guanghui, W. (2014). Domatic partition in
homogeneous wireless sensor networks. Elsevier doi: 10.1016/j.jnca.2013.02.025

Lawler, E.L. (1976). A note on the complexity of the chromatic number problem. Information
Processing Lett. 5, 66–67, doi: 10.1016/0020-0190(76)90065-X

Repko, I. (2023). Quantum Algorithms for Domatic Number Finding Problem. preprint, available
at https://dspace.lu.lv/dspace/handle/7/63279, last viewed <14.02.2024>

Riege, T., Rothe, J. (2005) An Exact 2.9416ˆn Algorithm for the Three Domatic Number Problem.
Mathematical Foundations of Computer Science 3618. doi: 10.1007/11549345 63

Riege, T., Rothe, J., Spakowski, H., Yamamoto, M. (2007) An improved exact algorithm
for the domatic number problem Information Processing Letters 101, p.101-106. doi:
10.1016/j.ipl.2006.08.010

Quantum Algorithm for the Domatic Number Problem 269

Van Rooij, J.M.M. (2010). Polynomial Space Algorithms for Counting Dominating Sets and the
Domatic Number. Algorithms and Complexity, Lecture Notes in Computer Science 6078, pp.
73-84. doi: 10.1007/978-3-642-13073-1 8

Received February 14, 2024 , revised June 16, 2024, accepted August 16,2024

