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Abstract. This research provides a detailed analysis of small-scale dynamic neural network (NN)

models for human activity recognition using data from smartphones. We evaluate eight dynamic

NN: Finite Impulse Response (FIRNN), Infinite Impulse Response (IIRNN), Gamma Mem-

ory (GMNN), Lattice Ladder (LLNN), Time Delay (TDNN), Recurrent Neural Network (RNN),

Gated Recurrent Unit (GRUNN), and Long Short-Term Memory (LSTMNN), utilizing a publicly

available dataset from Kaggle. The study focuses on comparing these models in terms of higher

accuracy, smallest scale, adaptivity to the task (walking vs running classification), and memory

utilization. Different NN architectures and synapse configurations are evaluated by their accu-

racy and computational complexity. The findings reveal which NN architectures offer the best

performance while being the least computationally and memory demanding. Among the models,

the IIRNN achieved the highest accuracy at 99.86% in the recognition of specified activities. Ad-

ditionally, the TDNN model demonstrated impressive performance with 99.27% accuracy while

requiring fewer computational resources: 2 binary additions, 2 multiplications, and 2 activation

functions.

Keywords: Small-Scale Neural Networks, Time-Varying Signals, Smartphone Sensor Data, Hu-

man Activity Recognition; Accelerometer

1 Introduction

Recognition of human activities such as walking and running using smartphone sen-

sor data plays a crucial role in advancing health and fitness applications. This capabil-

ity holds significant promise for healthcare monitoring, athletic training, and lifestyle

management. Additionally, integrating Human Activity Recognition (HAR) with IoT

technologies paves the way for innovative smart healthcare solutions, demonstrating

the convergence of wearable technology and health monitoring (Gomaa and Khamis,

2023). This synergy is beneficial for developing smart cities and personalized health
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monitoring systems, thereby expanding the influence of HAR technologies (Serpush

et al., 2022). Furthermore, evaluating cognitive-mental abilities such as reaction times,

focus, and anticipation through digital solutions can significantly enhance athletic per-

formance and healthcare outcomes, showcasing the importance of integrating cognitive

assessments with physical health monitoring (Butkevičiūtė et al., 2023).

This study focuses on a comparative analysis of small-scale dynamic NN mod-

els, evaluating their performance, computational requirements, and memory usage in

processing accelerometer data. Unlike studies that concentrate on classifying specific

activities such as walking and running, this research aims to compare various NN ar-

chitectures, including TDNN, FIRNN, IIRNN, GMNN, LLNN, RNN, GRUNN, and

LSTMNN. Each network is assessed for its efficacy in accurately processing time-

sequenced activity data and its adaptability to the task. The central question here ad-

dressed is what the least complex dynamic NN architectures are and their features that

allow one to accurately enough classify walking and running activities using accelerom-

eter data.

The article is structured as follows: the introduction is followed by a review of re-

lated work to situate the research within the existing literature. Section on the proposed

investigation technique presents the dataset preparation, NN selection, NN models, their

complexity, and training procedure. The investigation results encompass investigation

coverage and findings on the four main NNs investigation aspects: recognition accuracy,

computational complexity, adaptability to the task, and memory utilization. Finally, the

implications of the findings are discussed.

2 Related Work

Time-variant data, characterized by its changes over time, is a critical component in

numerous research fields. Studies in this area utilize diverse datasets and applications,

including HAR, financial forecasting, audio data analysis, medical data, environmental

monitoring, and visual data processing.

HAR uses sensor data to recognize human activities, essential for applications in

health monitoring and mobile health apps. This field has grown significantly due to

the implementation of various models of NNs that enhance the accuracy and efficiency

of activity recognition (Kumar et al., 2024). Financial forecasting involves predicting

stock prices and other economic indicators using historical financial data (Li et al.,

2022). Audio data applications, such as speech recognition, have has played a pivotal

role in enabling us to adapt to novel modes of communication: it not only empowers

individuals with disabilities to interact, share knowledge and engage in open conver-

sations, but also holds promise for revolutionizing communication between machines

using natural languages (Kasparaitis and Antanavičius, 2023; Al-Fraihat et al., 2024).

In the medical domain, time-variant data includes longitudinal patient health records,

sensor data from medical devices, and various diagnostic data. These datasets are used

to predict and monitor health conditions such as Alzheimer’s Disease, diabetes, heart

failure, and Parkinson’s Disease (Alhudhaif, 2024; Davidashvilly et al., 2024). Environ-

mental data, including air quality and meteorological data, parking data, and Cal-trans



Accuracy vs Complexity: A Small Scale Dynamic Neural Networks Case 329

Traffic Performance Measurement System data, is crucial for monitoring and forecast-

ing purposes (Zhang et al., 2024; Weerakody et al., 2021).

Various mathematical models have been developed to handle time-variant data, each

with distinct strengths and limitations. Traditional machine learning models such as

generative models (maximum a posteriori, Gaussian mixture or hidden Markov) and

standard machine learning models (support vector machine, random forest, k-nearest

neighbors), linear and autoregressive models (linear regression, autoregressive, autore-

gressive moving-average, autoregressive conditional heteroskedasticity) have been ex-

tensively used. However, these models often fall short in capturing long-term dependen-

cies due to their lack of memory functions, these models are more sensitive to short-

term relationships than long-term dependencies, which can not capture some important

recurring features (Hamzacebi et al., 2019; Jiang et al., 2020). Generative models, for

example, require expert knowledge and preprocessing of text for Automatic Speech

Recognition (ASR), making them less flexible than end-to-end ASR models that rely

on paired acoustics and language data (Hari et al., 2017).

In recent years, deep learning techniques, particularly recurrent NNs, have gained

prominence due to their ability to handle long-term dependencies in sequential data.

RNNs, LSTMNN, and GRUNN have demonstrated superior performance in various

applications, including healthcare and finance (Kosar and Barshan, 2023). For instance,

Deepcare model, which uses Diabetes and Mental Health patient data, achieved a higher

F-score (79) compared to traditional models like support vector machine (66.7) and ran-

dom forests (71.4) (Pham et al., 2016; Weerakody et al., 2021). LSTMNNs, in particu-

lar, are known for avoiding long-term dependency issues, making them highly suitable

for tasks requiring the recall of information over extended periods (Pham et al., 2016;

Hochreiter and Schmidhuber, 1997).

GRUNNs are shown to be less computationally intensive compared to LSTMNNs

due to their simpler architecture, resulting in faster training times. However, LSTMNNs

generally achieve better predictive performance (Weerakody et al., 2021). Specifically,

LSTMNNs demonstrated superior accuracy in capturing long-term dependencies within

the data, making them more effective for complex sequence modeling tasks. Further-

more, innovations like Bi-directional GRUNN have improved the accuracy and re-

liability of HAR systems (Helmi et al., 2023). Additionally, RNNs have been em-

ployed in embedded systems for HAR, utilizing data from accelerometers and other sen-

sors to achieve high accuracy, proving their efficiency in real-time applications within

resource-constrained environments (Alessandrini et al., 2021). This study adopts stream-

lined versions of LSTMNN, GRUNN, and RNN architectures to directly compare their

performance in HAR.

Primary models such as TDNN, FIRNN, IIRNN, GMNN, and LLNN have also

been utilized for handling time-variant data. These models demonstrated good results

by incorporating long-term dependencies of input signals but were not directly com-

pared with latest RNNs, GRUNNs, or LSTMNNs. The inclusion of these primary mod-

els in this study allows for a comprehensive comparison against latest architectures.

TDNNs, known for their implementation simplicity and ability to remember previous

signal input values (Paliwal, 1991). FIRNN and IIRNN models excel in signal pro-

cessing capabilities, while GMNNs are effective in managing long-range dependencies
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in sequences (Lawrence et al., 1995). LLNNs, with their unique lattice-ladder struc-

ture, offer flexibility and learning potential in dynamic environments, making them

suitable for sound and image processing (Back and Tsoi, 1992; Navakauskas et al.,

2014; Navakauskienė et al., 2021).

Convolutional Neural Networks (CNNs) are utilized in computer vision tasks. They

are also used in HAR with datasets such as KU-HAR, UCI-HAR, and WISDM, show-

ing good results with accuracies of 96.86%, 93.48%, and 93.89%, respectively (Akter

et al., 2023). Additionally, models that mix CNNs with LSTMNNs have been effec-

tive in identifying a broad range of activities, reaching an accuracy of 90.89% (Khan

et al., 2022). However, CNNs typically have pooling layers for down sampling, usually

performing average or max pooling to reduce the feature maps spatial resolution (Den-

tamaro et al., 2024). Such a complexity of NN architecture makes it not suitable for this

research due to small size CNNs inability to handle sequential dependencies effectively.

Transformer models (Vaswani et al., 2017) have shown impressive results in natural

language processing and image processing, and are beginning to make progress in time

series forecasting applications, but are not included in this study due to their complexity

and resource-intensive nature. Transformers struggle with feature extraction in time-

series data and have high memory requirements, making them unsuitable for small-scale

NNs (Weerakody et al., 2021). Another drawback of typical transformers for very long

sequences is their memory intensity. Taks needing 1000 s of timestep are particularly

difficult due to their quadratic time complexity, which is higher than that of RNNs (Li

et al., 2019). Despite advancements in attention mechanisms to address these issues,

RNN-based models remain more practical for this study’s scope and objectives.

Analysis of related work shows that from the perspective of dynamic NN models

TDNN, FIRNN, IIRNN, GMNN, LLNN, LSTMNN, GRUNN, and RNN already are

or have potential to be employed in embedded systems for HAR. Thus, it is important

to evaluate their performance in recognition of human activities with high accuracy but

keeping architectures at a small-scale. This study fills a gap in the literature by includ-

ing primary dynamic models and comparing them directly with the latest RNN archi-

tectures. The development and optimization of these models contribute to a broader

understanding of time-variant data applications, including agricultural monitoring and

the integration of IoT systems for real-time data processing (Laktionov et al., 2023).

3 Proposed Investigation Technique

This section describes the methodology used for dataset preparation, the selection of

dynamic NN models, the specifics and complexity of models, and their training process.

The approach is structured to assess the performance of various NN architectures in

classifying time-varying human activity data collected by smartphone sensors.

3.1 Dataset Preparation

The primary dataset used in this study is the KU-HAR dataset, obtained from Kag-

gle (Sikder and Nahid, 2021). This extensive dataset comprises 18 different activities

recorded from 90 participants using smartphone sensors, such as accelerometers and



Accuracy vs Complexity: A Small Scale Dynamic Neural Networks Case 331

gyroscopes. For the purposes of our research, we focused on accelerometer data cor-

responding to walking and running activities, which are crucial for HAR in health and

fitness applications.

Dataset Characteristics. The KU-HAR dataset contains 1945 raw activity samples

and 20,750 subsamples derived from these, captured in both controlled and uncontrolled

settings. The activities range from static postures, like standing and sitting, to dynamic

movements, such as walking and running. Each sample was carefully recorded to ensure

the precision and reliability of the sensor data.

Data Processing. For this study, we used the time domain samples provided in the

dataset, which includes 20,750 subsamples, each representing 3 s of non-overlapping

accelerometer data. The sampling rate of 100 Hz was standartized across all samples

withing all activities.

Magnitude of accelerometer x, y, and z axis coordinates was computed to prepare

the data for input into NNs. Acceleration magnitude was calculated as follows:

u(n) =
√

x(n)2 + y(n)2 + z(n)2. (1)

Data Partitioning. The subsamples were split into training, validation, and testing

sets with a ratio of 60%, 20%, and 20%. This division ensures that the NN models are

thoroughly trained, validated for parameter tuning, and finally evaluated on new, unseen

data to assess their generalizability and performance.

3.2 Neural Networks Selection

The selection of dynamic NNs for this study was guided by their distinct abilities to

manage time-varying signals and intricate data structures. TDNNs were chosen for

their simplicity in implementation and their capability to retain previous signal input

values (Paliwal, 1991). FIRNN and IIRNN models were selected due to their strong

performance in signal processing tasks. GMNNs were included for their proficiency in

handling long-range dependencies in sequences, which is especially advantageous for

time-varying signals (Lawrence et al., 1995). LLNNs were selected for their unique

lattice-ladder structure, offering enhanced flexibility and learning potential in dynamic

environments (Back and Tsoi, 1992). This structure has been widely applied in the

analysis of sound and image processing (Navakauskas et al., 2014), and its adaptive ca-

pabilities have been demonstrated in the study of complex biological datasets in epige-

netics (Navakauskienė et al., 2021). RNNs were incorporated due to their fundamental

role in learning sequential dependencies within data, which is crucial for modeling cog-

nitive tasks (McClelland and Rumelhart, 1987). GRUNNs, known for their efficiency in

sequence modeling as highlighted by Cho et al. (2014), provide a simplified yet robust

approach to temporal data processing. LSTMNNs were chosen for their ability to mit-

igate long-term dependency issues, making them highly suitable for tasks that require

remembering information over long durations (Hochreiter and Schmidhuber, 1997).
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3.3 Neural Network Models

The forward propagation in each NN model used in this study is specifically tailored

to the experimental conditions and architectures employed here, rather than represent-

ing generic models. This customization is essential for understanding their operational

mechanisms and predictive capabilities. In the following mathematical expressions de-

scribing NN models we denote by NI the total number of NN inputs; ND – the order

of NN synapse (memory, filter, recurrency, etc.); NH – the total number of NN hidden

neurons; ΦHT – the hyperbolic tangent activation function; ΦLS – the logistic sigmoid

activation function; s(l)(n) – the l-th layer recall at the time instance n (note, that s(0)(n)
is NN input obtained by (1)).

The Output Layer Recall. For all eight selected NN models the output layer recall is

calculated similarly and can be expressed by:

s(2)(n) = ΦLS

(

NH
∑

h=1

w
(2)
h s

(1)
h (n)− w̄(2)

)

, (2)

here w
(2) and w̄(2) – the output neuron layer NH weights vector and a single bias.

The Recall of Hidden Neurons. For each considered NN model the recall of hidden

neurons is calculated separately and is provided below.

The hidden neurons of TDNN as synapses use time delay filters, thus the h-th hidden

neuron recall is:

s
(1)
h (n) = ΦLS

(

NI
∑

i=1

w
(1)
ihs

(0)(n− i)− w̄
(1)
h

)

, (3)

here W
(1) and w̄

(1) – NI ×NH size weights matrix and NH biases vector.

The hidden neurons of FIRNN as synapses use finite impulse response filters w
(1)
ih,

thus h-th hidden neuron recall is:

s
(1)
h (n) = ΦLS





NI
∑

i=1

ND
∑

j=1

w
(1)
ijhs

(0)(n− j − i)− w̄
(1)
h



, (4)

here W
(1) and w̄

(1) – NI ×ND ×NH size weights matrix and NH biases vector.

The hidden neurons of IIRNN as synapses use infinite impulse response filters, thus

the h-th hidden neuron recall is:

s
(1)
h (n) = ΦLS

(

NI
∑

i=1

s
(1)
ih(n)− w̄

(1)
h

)

; (5a)

s
(1)
ih(n) =

ND
∑

j=0

b
(1)
ijh(n)s

(0)
i (n− j) +

ND
∑

j=1

a
(1)
ijh(n)s

(1)
ih(n− j) , (5b)
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here s
(1)
ih(n) is the output of IIR filter; b

(1)
ijh(n), a

(1)
ijh(n) are coefficients of feedforward

and recursive parts of IIR filter correspondingly; W(1) and w̄
(1) – NI × (2ND + 1) ×

NH size weights matrix and NH biases vector.

The hidden neurons of GMNN as synapses use Gamma Memory (tuned by η
(1)
ih),

thus h-th hidden neuron recall is:

s
(1)
h (n) = ΦLS





NI
∑

i=1

ND
∑

j=0

w
(1)
ijhs

(0)
ijh(n)− w̄

(1)
h



; (6a)

s
(0)
ijh(n) =

{

s(0)(n− i− 1), j = 0;

η
(1)
ihs

(0)
i(j−1)h(n) +

(

1− η
(1)
ih

)

s
(0)
ijh(n− 1), j ∈ [1, ND],

(6b)

here s
(0)
ijh(n) – the output signal of the j-th tap of the Gamma Memory connecting i-th

input with h-th neuron; W(1) and w̄
(1) – NI × (ND + 1)×NH size weights matrix and

NH biases vector.

The hidden neurons of LLNN as synapses use lattice-ladder filters (controlled by

lattice k
(1)
ih and ladder v

(1)
ih parameters):

s
(1)
h (n) = ΦLS





NI
∑

i=1

ND
∑

j=1

vijhb
(1)
ijh(n)− v̄

(1)
h



; (7a)

{

f
(1)
ijh(n) = f

(1)
i(j−1)h(n) + k

(1)
ijhb

(1)
i(j−1)h(n− 1);

b
(1)
ijh(n) = b

(1)
i(j−1)h(n− 1)− k

(1)
ijhf

(1)
i(j−1)h(n) ,

(7b)

for j ∈ [1, ND], with such initial and boundary conditions

b
(1)
i0h(n) = f

(1)
i0h(n), f

(1)
i(ND−1)h(n) = s(0) (n− i− 1). (7c)

Here f
(1)
ijh(n) and b

(1)
ijh(n) – the lattice forward and errors of backward prediction at the

j-th tap, respectively; K(1) – lattice NI ×ND ×NH size weights matrix; V (1) – ladder

NI ×ND ×NH size weights matrix; v̄(1) – NH biases vector.

The hidden neurons of RNN together with forward connections use recurrent ones

that store neurons hidden states:

s
(1)
h (n) = ΦHT





NI
∑

i=1

w
(1)
ihs

(0)(n− i− 1) +

ND
∑

j=1

k
(1)
jhs

(1)
h (n− j)− w̄

(1)
h



, (8)

here W
(1) – forward NI ×NH size weights matrix and w̄

(1) – NH biases vector; K(1) –

recurrent ND ×NH size weights matrix.

The neuron’s state in the hidden neurons of GRU is changed with a candidate state

s̃
(1)
h (n), which is updated using the reset gate s

(1)
Rh(n) and update gate s

(1)
Uh(n) signals,
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thus h-th hidden neuron recall is expressed by:

s
(1)
h (n) = s

(1)
Uh(n)s

(1)
h (n− 1) +

(

1− s
(1)
Uh(n)

)

s̃
(1)
h (n) ; (9a)

s̃
(1)
h (n) = ΦHT





NI
∑

i=1

ND
∑

j=1

w
(1)
ijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)s

(1)
Rh(n)

)

− w̄
(1)
h



; (9b)

s
(1)
Rh(n) = ΦLS





NI
∑

i=1

ND
∑

j=1

w
(1)
Rijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)

)

− w̄
(1)
Rh



; (9c)

s
(1)
Uh(n) = ΦLS





NI
∑

i=1

ND
∑

j=1

w
(1)
Uijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)

)

− w̄
(1)
Uh



, (9d)

here update gate, reset gate and candidate state are represented by: W
(1)
U , W

(1)
R , W(1) –

combined input and hidden state NI × ND × NH size weights matrixes and w̄
(1)
U , w̄

(1)
R

and w̄
(1) – NH biases vectors, correspondingly.

The hidden neurons of LSTM is support gating of the hidden state. Input gate s
(1)
Ih(n),

forget gate s
(1)
Fh(n), output gate s

(1)
Oh(n), and input node s̃

(1)
Ch(n) signals are used to con-

struct memory cell internal state s
(1)
Ch(n). Thus h-th hidden neuron recall is expressed

by:

s
(1)
h (n) = s

(1)
Oh(n)ΦHT

(

s
(1)
Ch(n)

)

; (10a)

s
(1)
Cijh(n) = s

(1)
Fh(n)s

(1)
Ch(n− 1) + s

(1)
Ih(n)s̃

(1)
Ch(n) ; (10b)

s̃
(1)
Ch(n) = ΦHT





NI
∑

i=1

ND
∑

j=1

w
(1)
Cijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)

)

− w̄C
(1)
h



; (10c)

s
(1)
Ih(n) = ΦLS





NI
∑

i=1

ND
∑

j=1

w
(1)
Iijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)

)

− w̄
(1)
Ih



; (10d)

s
(1)
Fh(n) = ΦLS





NI
∑

i=1

ND
∑

j=1

w
(1)
Fijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)

)

− w̄
(1)
Fh



; (10e)

s
(1)
Oh(n) = ΦLS





NI
∑

i=1

ND
∑

j=1

w
(1)
Oijh

(

s(0)(n− i− 1) + s
(1)
h (n− j)

)

− w̄
(1)
Oh



, (10f)

here input, forget, output gate and candidate memory state are denoted by: W
(1)
I , W

(1)
F ,

W
(1)
O , W

(1)
C – combined input and hidden state NI × ND × NH size weights matrixes

and w̄
(1)
I , w̄

(1)
F , w̄

(1)
O and w̄

(1)
C – NH biases vectors, correspondingly.
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3.4 Neural Networks Complexity

Table 1 provides an overview of the computational demands for eight selected NN mod-

els, detailing their operational requirements based on the total number of inputs (NI),

hidden neurons (NH), and synapse order (ND). The complexity of these dynamic NNs

is illustrated by the total number of basic computing elements: bin. additions (N2Σ),

bin. multiplications (N2Π), and act. functions (NΦ). The highest values in each cate-

gory are highlighted with a gray background.

Table 1. Dynamic NNs Complexity in Terms of the Total Number of Basic Computing Elements

NN Total Number of Parameters∗

Model N2Σ N2Π NΦ

TDNN NINH +NH NINH +NH NH + 1
FIRNN NIND +NINH +NH NIND +NINH +NH NH + 1

IIRNN NINH(2ND + 1) + 2NH 2NINHND +NH NH + 1

GMNN NINH

(

ND + 1

2
(N2

D −ND)
)

+

NI(NH − 1) + 2NH

NINH

(

1

2
(N2

D +ND) + 1
)

NH + 1

LLNN 2NINHND + 2NH NINH(2ND + 2) NH + 1

RNN NIND +NINH +NH NIND +NINH +NH NH + 1

GRUNN 3NHND(NI +ND) +ND 3NINH(NI +NDNH) 4NDNH + 1

LSTMNN 4NHND(NI +ND) +ND 4NIND(NI +NDNH) 6NDNH + 1

∗ By the gray background, the biggest values of N2Σ, N2Π and NΦ are outlined.

When examining the number of bin. multiplications and bin. additions, GMNN

stands out for its complexity, reflecting its design to manage detailed temporal data,

which may lead to superior performance in tasks requiring comprehensive historical

trend analysis. LLNN also shows a high number of operations, particularly in bin. ad-

ditions (2NINHND + 2NH), highlighting its ability to process data extensively in both

forward and backward passes through the layers.

TDNN is characterized by its relatively low complexity, with bin. additions and

bin. multiplications scaling linearly with the number of inputs and hidden neurons. This

makes TDNN a good choice for simpler, real-time applications. FIRNN, with its higher

order synapse filters, introduces more complexity than TDNN but remains efficient in

terms of binary operations, making it suitable for tasks requiring finer temporal resolu-

tion. IIRNN, while more complex due to its infinite impulse response filters, balances

its computational load with enhanced capability to model long-term dependencies, of-

fering a middle ground between simplicity and detailed sequence handling.

The LSTMNN uses the highest number of act. functions (6NDNH+1), indicating its

intricate design aimed at effective memory management. GRUNN, on the other hand,

uses fewer act. functions (4NDNH+1), simplifying some aspects of LSTM’s complexity

while still maintaining strong sequence processing capabilities. GMNN, LLNN, and

RNN utilize the same number of act. functions (NH + 1), suggesting these models
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are more straightforward and potentially more suitable for real-time applications like

smartphone-based human activity recognition.

3.5 Neural Networks Training

The various NNs in this study were trained using gradient descent methods specifically

tailored to their architectures.

TDNN introduces time delays deeper into the structure of NN, requiring modifi-

cations to standard NN training algorithms. As proposed by Waibel et al. (1989), the

backpropagation (BP) algorithm is adapted for this purpose.

FIRNN training utilizes a variant of the BP algorithm specifically adapted for finite

impulse response filters, referred to as temporal BP with gradient descent (Wan, 1990).

The training involves updating FIR weights based on the gradient descent method, ac-

counting for the delay elements within the network.

IIRNN training employs BP through time (BPTT) specifically tailored for IIRNN

(Campolucci et al., 1999). This method involves unrolling the network through time for

each sequence and updating the feedforward weights and IIR filter coefficients based

on the gradients calculated throughout this temporal expansion, effectively handling the

recursive components of the network.

GMNN employs stochastic gradient descent with BP, with updates applied to both

network weights and the Gamma memory parameters (de Vries and Principe, 1992).

LLNN utilizes a simplified stochastic gradient descent with temporal BP, accounting

for its lattice-ladder synapse structure (Navakauskas et al., 2014).

RNN uses BPTT (Werbos, 1990), unrolling the network through time for each se-

quence to update weights based on gradients computed across this temporal expansion.

Both LSTMNN and GRUNN also use BPTT (Vlachas et al., 2020). LSTMNN in-

corporates BP through structures that consist input, forget, and output gates, whereas

GRUNN uses a similar approach but with simplified update and reset gates.

The Glorot/Xavier weight initialization method was adopted to maintain consis-

tent training conditions and optimize weight scaling across different network architec-

tures (Glorot and Bengio, 2010). For initializing hidden layer weights, it is:

W = 2r rand(NI, NH)− r ; (11a)

r =

√

6

NI +NH

, (11b)

here rand(·) – a matrix of random numbers, in the range [0, 1], generator; r – the range

for the uniform distribution.

The training process was halted upon meeting early-stopping criteria such as when

the maximum number of epochs was reached or when the validation loss ceased to

improve over several epochs (Prechelt, 1998).

4 Investigation Results

This section presents the investigation coverage and the results of NNs accuracy and

complexity evaluation in human activity recognition tasks.
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4.1 Investigation Coverage

During the investigation, the size of the NN models was varied while maintaining a

fixed three-layer setup.

For FIRNN, IIRNN, LLNN and GMNN, the number of inputs NI ranged from 1 to

10, the synapse order ND ranged from 1 to 10, and the number of hidden neurons NH

ranged from 1 to 10, resulting in 10× 10× 10 = 1000 architectures for each model.

For TDNN, GRUNN, LSTMNN, and RNN, the synapse (recurrency) order ND var-

ied from 1 to 10, and the number of hidden neurons NH ranged from 1 to 10, resulting

in 10× 10 = 100 architectures for each model.

Each NN architecture was initialized and trained 100 times to avoid suboptimal

local minima. The architecture with the highest accuracy of these trials was used for

further evaluation. In total, this resulted in 440,000 different NN implementations.

To analyze how training duration of various NN models differ, we investigated the

distribution of the number of epochs required for each NN model to achieve the high-

est accuracy as shown in Fig. 1. This analysis was conducted over 100 training runs

for each NN model. The IIRNN shows a high median around 140 epochs with signif-

icant variability, indicated by a tall box, suggesting less efficient training. The RNN

has a low median of 3 epochs, with minimal spread and few outliers, highlighting its

efficiency and stable training performance. Similarly, the LSTMNN exhibits a low me-

dian of 4 epochs with limited variability, reinforcing its efficient training process. The

GRUNN shows the highest median around 180 epochs, indicating it requires the most

epochs for training, accompanied by substantial variability and numerous outliers, re-

flecting poor training efficiency.

The TDNN has a median of 4 epochs with slightly higher variability than RNN and

LSTMNN, yet still demonstrates efficient training. The FIRNN displays a low median

of 5 epochs with slight variability, maintaining its status as one of the efficient networks.

The LLNN shows a higher median around 10 epochs with considerable variability and

many outliers, indicating less efficient training compared to others. Lastly, the GMNN

Fig. 1. Training duration analysis of eight dynamic NN models achieving highest accuracy during

100 runs.
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network has a low median of 4 epochs with a compressed box towards the bottom,

suggesting stable and efficient training performance.

4.2 Neural Networks Evaluation

A comprehensive evaluation of various NN models utilized for HAR was performed. In-

vestigation was focused on the four main aspects: recognition accuracy, computational

complexity, adaptability to the task, and memory utilization. Key assessment metrics

included accuracy, the number of bin. additions, bin. multiplications, act. functions,

weights, and delays, inputs, hidden neurons, and memory allocation size.

Highest Accuracy Neural Networks. Table 2 presents only those NNs that attained

the highest accuracy across all architectures within each model. Some models having

several entries with the same highest accuracy value are distinguished by additional

subscripts. The main objective of the analysis is to identify architectures that not only

achieve top accuracy (rows in the table are primarily sorted in decreasing accuracy or-

der) but also balance computational efficiency, minimizing the number of bin. additions,

bin. multiplications, and act. functions (complementary sorting of rows in the table in

increasing number of parameters order).

Table 2. Highest Accuracy Achieving Dynamic Neural Networks and Their Complexity

Neural Total Number of Parameters∗∗ Highest
Network∗

N2Σ N2Π NΦ NW ND ACC, %

IIRNN1 612 549 10 5 603 99.86

IIRNN2 644 595 8 5 637 99.86

IIRNN3 920 850 11 7 910 99.86

RNN1 14 14 5 6 44 99.77

RNN2 19 19 7 7 84 99.77

TDNN1 35 35 6 6 35 99.77

TDNN2 40 40 6 7 40 99.77

TDNN3 49 49 8 6 49 99.77

TDNN4 63 63 10 6 63 99.77

GMNN 1503 1512 4 10 597 99.75

LLNN1 1638 1782 10 10 189 99.75

LLNN2 1820 1980 11 10 210 99.75

LSTMNN 490 480 61 10 490 99.66

FIRNN 35 35 6 5 80 99.58

GRUNN1 196 189 29 7 196 99.55

GRUNN2 306 297 37 9 306 99.55

∗ The gray background outlines the NNs with highest ACC or lowest parameter values.
∗∗

N2Σ – bin. additions; N2Π – bin. multiplications; NΦ – act. func.; NW – weights; ND – delays.

IIRNN1, IIRNN2, and IIRNN3 all achieved the highest accuracy of 99.86%. How-

ever, they required a significant amount of computational resources. The least resource-
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intensive of the three still required 604 bin. multiplications, 549 bin. additions, and

10 act. functions. Although RNN1 required the fewest bin. multiplications (14) and

bin. additions (14) and achieved the second highest accuracy (99.77%). Although RNN2

had similar accuracy, it needed marginally more computational resources, with 19 bin.

multiplications and 19 bin. additions. GMNN and both LLNN configurations also reach-

ed high accuracy at 99.75%. Despite GMNN having the fewest act. functions (4),

it required a large number of other parameters, with 1512 bin. multiplications and

1503 bin. additions, indicating significant computational demand. LLNN1 and LLNN2

also demanded extensive computational resources, with 1782 and 1980 bin. multiplica-

tions, and 1638 and 1820 bin. additions, respectively, demonstrating a trade-off between

accuracy and computational load. Notably, LSTMNN achieved a high performance with

an accuracy of 99.66%, but it required the most act. functions, totaling 61.

Close to the Highest Accuracy Neural Networks. Computational complexity data

of an expanded range of NN architectures is presented in Fig. 2 on the next page. The

main objective of the analysis is to relax the demands on accuracy (lowering acceptable

accuracy level or looking for the simplest complexity NN architecture) to get insights

on trade-off between computational complexity and accuracy across investigated NN

models.

The graph on the lest side in Fig. 2(a) primarily focuses on the computational

complexity between the number of act. functions and bin. multiplication operations

across various NN models, while also showing bin. additions in a 3D perspective. It

includes 19 TDNN, 24 FIRNN, 3 IIRNN, 2 GMNN, 9 LLNN, 22 RNN, 6 LSTMNN,

and 2 GRUNN architectures. Cubes denote the NN architectures with the highest accu-

racy, while spheres represent those within 99.9% of the highest accuracy attained by the

leading IIRNN1 network. A dense cluster of FIRNNs, TDNNs and RNNs at the bottom

of the graph indicates these networks require fewer act. functions. IIRNN, GMNN, and

LLNN exhibit a moderate number of act. functions, with differing bin. multiplication

needs. GRUNN shows a moderate increase in both bin. multiplications and act. func-

tions, indicating a higher but manageable computational load. However, LSTMNNs are

characterized by the highest number of act. functions.

The graph on the right side in Fig. 2(a) focuses on the computational complex-

ity between the number of bin. multiplications and bin. additions, while also showing

act. functions in a 3D perspective. LLNN shows a noticeable linear relationship, with an

increase in bin. multiplications generally corresponding to an increase in bin. additions.

FIRNN, TDNN, and RNN configurations cluster towards the lower end of the graph,

while GRUNN and LSTMNN occupy the middle range, with GRUNN showing slightly

lower computational needs than LSTMNN. In contrast, IIRNN, and LLNN are spread

across the range, indicating variable computational requirements. GMNN stands out,

reflecting the highest demands for both bin. multiplications and additions.

To explore a broader spectrum of our implemented NN architectures, we established

a new threshold of 99% accuracy across all NN models. This threshold enables us to in-

vestigate deeper relationships between computational parameters and identify smaller,

less resource-intensive architectures that maintain high accuracy.
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(a) Neural network architectures achieving an accuracy rate of 99.9% of the highest accuracy

attained by the leading IIRNN1 network

(b) Neural network architectures achieving an accuracy rate of 99% or higher

Fig. 2. Computational complexity analysis of an expanded range of NN architectures. The per-

spectives offered include: on the left side – the relationship between bin. multiplications and

act. functions, and on the right side – the relationship between bin. multiplications and bin. addi-

tions. Cubes (instead of spheres) denote the NN architectures with the highest accuracy.

The Fig. 2(b) expands the analysis to a wider range of NN models (all achieving

an accuracy rate of 99% or higher): 71 TDNN, 248 FIRNN, 142 IIRNN, 55 GMNN,

360 LLNN, 92 RNN, 58 LSTMNN, and 15 GRUNN. This broader dataset reveals that

the linear dependency between the number of bin. multiplications and bin. additions

is not exclusive to LLNN; it is also evident in FIRNN, GMNN, IIRNN, LSTMNN,

and GRUNN. Furthermore, a linear trend is observed for LSTMNN and GRUNN in

terms of act. functions with respect to both bin. additions and bin. multiplications. This

suggests a more generalizable relationship across different NN architectures, highlight-
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ing consistent computational patterns and dependencies that could inform optimization

strategies for various NN designs.

Finally, to visualize not only the best accuracy achieving NNs but also the small-

est architecture NNs, with the current threshold set at 99% accuracy we looked for the

smallest architectures (sorting then according to the smallest number of bin. additions,

bin. multiplications, act. functions, weights, and delays). Table 3 provides a compre-

hensive comparison of NN structures that achieve an accuracy of 99% or higher while

maintaining minimal computational complexity within each NN model.

Table 3. Neural Network Architectures with Minimal Computational Complexity Achieving 99%

or Higher Accuracy

Neural Total Number of Parameters∗∗ Highest

Network∗

N2Σ N2Π NΦ NW ND ACC, %

TDNN 2 2 2 2 1 99.27

GMNN 3 2 2 5 1 99.35

FIRNN 3 3 2 2 1 99.26

RNN 1 3 2 3 1 99.18

LLNN 6 8 2 3 1 99.27

GRUNN 7 6 5 7 1 99.23

LSTMNN 9 8 7 9 1 99.35

IIRNN 44 34 3 2 42 99.29

∗ The gray background outlines the NNs with highest ACC or lowest parameter values.
∗∗

N2Σ – bin. additions; N2Π – bin. multiplications; NΦ – act. func.; NW – weights; ND – delays.

The FIRNN model demonstrates exceptional efficiency, achieving an accuracy of

99.27% with the lowest parameter counts: 1 bin. addition, 2 bin. multiplications, 2 act.

functions, 2 weights, and 1 delay. The RNN achieves a similar accuracy of 99.18% with

slightly higher parameter requirements. TDNN also shows a high accuracy of 99.24%

with modest computational complexity. The LLNN model, while achieving 99.27% ac-

curacy, requires more parameters, particularly in bin. additions and multiplications.

GRUNN achieves 99.23% accuracy but with a considerable increase in the number

of parameters. LSTMNN, achieving the highest accuracy of 99.35%, also requires the

highest number of parameters among the simpler networks. Finally, the IIRNN struc-

ture, with an accuracy of 99.29%, demands a significant number of parameters, indi-

cating a higher computational complexity. This table highlights the trade-off between

computational complexity and accuracy across different NN models.

Adaptability of Neural Networks to the Task. Table 4 presents NNs that achieved

99% or higher accuracy, architectural parameters, specifically the number of delays,

inputs, and hidden neurons. The main objective of the analysis is to get insights on NN

models intrinsic flexibility to adapt to the given HAR task.

For RNNs, it is noticeable that most of the most accurate architectures vary in terms

of the number of hidden neurons, ranging from 2 to 10. However, the number of delays
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Table 4. Summary of Neural Network Architectures that Achieved 99% or Higher Accuracy

Neural Total Number of Parameters∗

Network Inputs, NI Delays, ND Hidden Neurons, NH

TDNN 1, 2, 5, 6 , 7, 8 1 1 – 5 – 10

FIRNN 1, 2 1 – 5 – 10 1 – 5 – 10

GMNN 1 – 9 1 – 3 – 10 1 – 10

IIRNN 3, 4, 6 , 7 2 – 9 , 10 4, 5 – 10

LLNN 2 – 9 – 10 1 – 9 – 10 1 – 10

LSTMNN 1 – 2 – 6 1 – 10 1

RNN 1 1 – 4 – 10 2 – 6 – 10

GRUNN 1, 2 1 – 7 – 10 1

∗ The gray background outlines the architecture parameters of the NNs that

achieved the highest accuracy.

varies across the entire tested range (from 1 to 10). The most accurate architecture for

RNNs has 1 input, 4 delays, and 6 hidden neurons. In FIRNNs, the optimal choice is to

use 1 or 2 hidden neurons, as adding more tends to decrease the network’s performance

for this task. The number of inputs and delays for FIRNNs does not significantly affect

performance, as they are spread across all tested variations (from 1 to 10). The most

accurate architecture for FIRNNs has 2 inputs, 5 delays, and 5 hidden neurons.

For GMNNs, it is suggested to use between 1 and 6 hidden neurons. A clear linear

relationship between the number of inputs and delays is noticeable, suggesting that

using the same number of delays and inputs for a single structure, varying from 1 to

10, is beneficial. The most accurate architecture for GMNNs has 9 inputs, 3 delays, and

10 hidden neurons. For IIRNNs, it is recommended to use 3, 4, 6, or 7 inputs with 4 or

more hidden neurons and 2 or more delays. The most accurate architecture for IIRNNs

has 6 inputs, 9 delays, and 5 hidden neurons.

LLNNs show that there should be at least 2 inputs, and the number of delays should

be equal to or greater than the number of inputs. The number of hidden neurons for

LLNNs does not matter much, as the most accurate architectures are equally spread

across all tested variations (from 1 to 10). The most accurate architecture for LLNNs

has 9 inputs, 9 delays, and 10 hidden neurons. For LSTMNNs, the number of delays is

less important than the number of inputs. It is noticeable that when the number of inputs

exceeds 6, the number of good architectures decreases significantly. The most accurate

architecture for LSTMNNs has 2 inputs, 10 delays, and 1 hidden neuron.

For GRUNNs, using 1 input with 1 to 10 delays is suggested. The most accurate

architecture for GRUNNs has 2 inputs, 7 delays, and 1 hidden neuron. For TDNNs,

most of the most accurate architectures appear when there are 1, 2, 5, 6, 7, or 8 inputs.

Memory Utilization of Neural Networks. The memory utilization patterns of differ-

ent NNs architectures are shown in Fig. 3. Each graph illustrates the relationship be-

tween memory usage and accuracy (ACC, %) for a specific NN architecture. Each dot

in the graphs represents a different configuration of the respective architecture, varying
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Fig. 3. Memory utilization of dynamic NN models, each achieving at least 99% accuracy. The

graph shows the relationship between memory usage (sum of weights, delays, and coefficient-

adjusted activation functions) and accuracy across different architectures.

in the number of inputs, delay elements, or hidden neurons. The main objective of the

analysis is to identify memory allocation needs for each NNs architecture as also as to

get insights on memory usage influence on the overall NNs accuracy.

Memory utilization in these NNs consists of several components. The total memory

is the sum of the number of weights and the number of delays, with equal memory

allocation needed for each weight and delay. Additionally, act. functions contribute to
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memory usage. They are evaluated as lookup tables, and their memory contribution

is not directly equivalent to weights or delays. Therefore, the memory allocated for

act. functions is multiplied by a specific coefficient to account for their different impact

on overall memory usage.

In Fig. 3 RNN graph when memory allocation increases from approximately 0 to

80 units, the accuracy generally trends upwards from 99.2 to about 99.8%. This suggests

that RNNs benefit from increased memory, enhancing their ability to learn and retain

temporal dependencies, thereby improving performance.

The FIRNN graph shows that accuracy peaks around 100 units of memory usage and

then declines. Accuracy ranges from 99.0% to 99.6%, indicating an optimal memory

size for FIRNNs. Beyond this point, more memory doesn’t lead to better accuracy and

may even reduce performance. This suggests a critical balance in memory allocation

for FIRNNs.

The GMNN graph shows a clear positive correlation between memory and accu-

racy up to a certain threshold. Memory usage ranges widely from 0 to 15,000 units,

with accuracy improving from 99.0% to about 99.8%. This indicates that GMNNs use

large memory capacities to manage detailed temporal data effectively, enhancing per-

formance in tasks requiring comprehensive historical analysis.

The IIRNN graph shows a high but stable accuracy range from 99.0% to 99.86%,

with memory usage from 0 to 6,000 units. Accuracy doesn’t vary much with mem-

ory changes, suggesting IIRNNs maintain high performance across different memory

levels. This stability indicates efficient memory usage in IIRNNs. A noticeable feature

in the IIRNN graph is the distinct horizontal lines formed by data points at specific

accuracy levels: 99.0%, 99.25%, and 99.75%. These lines suggest that certain configu-

rations of IIRNNs consistently achieve these accuracy levels regardless of variations in

memory usage. This pattern indicates that while memory allocation is crucial, there are

other factors within the IIRNN architecture that strongly influence its accuracy, leading

to these stable performance bands.

The LLNN graph shows a slight positive trend in accuracy with increasing memory

usage, ranging from 0 to 6,000 units. Accuracy improves from 99.0% to about 99.8%,

implying LLNNs can benefit from more memory, but less dramatically than other ar-

chitectures. Moreover, there are noticeable horizontal lines at accuracy levels such as

99.1%, 99.3%, 99.4%, and 99.5%. These lines indicate that LLNNs also have config-

urations that consistently achieve these accuracy levels. The presence of these lines

suggests that while memory usage impacts performance, certain LLNN configurations

can maintain specific accuracy thresholds, highlighting a degree of robustness in their

design.

The LSTMN graph shows memory usage from 0 to 2,500 units, with accuracy im-

proving from 99.0% to about 99.8%. This positive correlation indicates that LSTMNs

effectively use more memory to maintain long-term dependencies, which is crucial for

tasks requiring extended temporal context.

The GRUNN graph shows a notable positive correlation between memory usage and

accuracy, with memory ranging from 0 to 1,000 units. Accuracy increases from 99.2%

to about 99.6%, showing that GRUNNs use more memory to improve performance.
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This architecture’s ability to manage and update memory states dynamically adds to its

efficiency.

The TDNN graph shows a broader distribution of memory usage from 0 to 300 units,

with accuracy ranging from 99.2% to 99.8%. There is a slight positive trend, indicating

TDNNs benefit from more memory to some extent. However, the variability suggests

other factors also affect their accuracy.

5 Conclusions

This study explored eight different models of small-scale dynamic neural networks to

identify the least complex architectures capable of accurately classifying walking and

running activities using accelerometer data. Based on the analysis of 440,000 distinct

NN implementations, the following key points were observed:

1. Among the configurations tested, the IIRNN, especially IIRNN1, achieved the high-

est accuracy of 99.86%. with the least computational demand in terms of bin. addi-

tions and bin. multiplications.

2. The TDNN demonstrated an excellent balance by providing a high accuracy of

99.27% while requiring lowest computational complexity in terms of bin. additions

and bin. multiplications making it highly suitable for real-time applications.

3. Despite its higher computational demands, the GMNN exhibited strong perfor-

mance, achieving 99.35% accuracy with the fewest number of act. functions (2).

4. Among the NN models analyzed, FIRNNs and TDNNs stand out for their ability

to achieve high accuracy with minimal architectural complexity. FIRNNs perform

optimally with 1 or 2 hidden neurons, 2 inputs, and 5 delays, while TDNNs excel

with 1 or 2 inputs and 6 hidden neurons, making both networks highly suitable for

tasks requiring efficient, real-time processing.

5. Notably, the IIRNN and LLNN graphs show distinct horizontal lines at certain

accuracy levels, indicating that these networks achieve stable and consistent per-

formance across a range of memory usages. This robustness makes them reliable

choices for applications where maintaining high accuracy regardless of memory

constraints is essential.
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