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Abstract. Effective modeling is essential in both system and software development, serving as a 

key method for facilitating understanding, guiding design, and enabling communication among 

stakeholders. However, traditional universal system modeling languages like UML and SysML 

fall short when it comes to neural network modeling, where the structure, training, and deployment 

processes demand more detailed and specialized representations. Conversely, domain-specific 

languages like Keras, TensorFlow, PyTorch, and tools like Netron and Deep Learning Studio are 

too closely tied to specific implementation environments. This creates a significant challenge: the 

need to develop a universal modeling language specifically for neural networks that is both 

sufficiently simple (requiring a description of around ten pages) and capable of providing a 

detailed description of neural networks and their management. The main contribution of this paper 

is the introduction of such a language, called UM1NN, along with a detailed description and its 

application demonstrated through two important use cases: describing GPT-2 and defining the 

fine-tuning of GPT-2 for Question-Answering. 
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1. Introduction 

As is well known, modeling plays a critical role in both system and software 

development, serving as a foundational technique for understanding, design, and 

stakeholder communication. A good overview of the current state in this field can be 

found in the paper (Michael et al., 2024) with the noteworthy title "Quo Vadis 

Modeling?”.  

The core of modeling is modeling languages. In general, modeling languages can be 

broadly classified into universal modeling languages and domain-specific modeling 

languages. Universal modeling languages are designed to provide a high-level, abstract 

view of various systems, facilitating stakeholder communication and overall system 

design. In contrast, domain-specific modeling languages (DSLs) offer detailed and 

precise tools tailored to the specific needs of particular domains, such as neural 

networks, ensuring effective implementation and management. 

Over the past few decades, several universal system modeling languages have 

emerged, including UML (OMG, 2017; Rumbaugh et al., 2005), BPMN (Shapiro et al., 
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2012; WEB (a)), SysML (Friedenthal et al., 2014; WEB (b)), KerML (OMG, 2024; Pires 

et al., 2024), conceptual modeling (Lukyanenko et al., 2024), and workflows (Aalst and 

Hee, 2022). These languages are primarily oriented towards business system modeling. 

At present, there are no widely recognized direct applications of these languages for 

neural network modeling. A more detailed discussion of the current state of neural 

network modeling will be provided in Section 2. 

The problem addressed in this paper is the development of a universal modeling 

language specifically for neural networks that, on the one hand, is sufficiently simple 

(requiring a description of around ten pages, not the hundreds typically needed for 

languages like UML) and, on the other hand, allows for the detailed description of neural 

networks and their management. This language should be understandable to a typical 

stakeholder and usable as a communication tool among stakeholders. 

The main contribution of this paper is the proposal of such a language, named 

UM1NN (with "1" signifying the initial version of the language). Section 3 provides a 

detailed description of UM1NN, while Sections 4 and 5 demonstrate its application 

through two significant use cases: describing GPT-2 (Section 4) and defining the fine-

tuning of GPT-2 for Question-Answering (Section 5). 

2. Overview of Neural Network Modeling Languages and 

UM1NN's Place 

2.1. Universal Modeling Languages 

The traditional universal system modeling languages mentioned in the Introduction are 

not sufficiently effective for neural network modeling. While these languages provide a 

variety of diagrams and notations to capture different aspects of system design, they are 

not optimized for the unique requirements of neural network modeling. Neural networks 

demand specialized and detailed representations, particularly for defining their structure, 

training processes, and deployment, which are not adequately supported by these 

general-purpose modeling languages. 

2.1.1. Stereotypes and profiles 

One way to make these universal modeling languages (primarily UML) more suitable for 

detailed neural network modeling is through the use of stereotypes and profiles. 

Stereotypes allow the customization of UML elements to represent domain-specific 

concepts. For instance, defining stereotypes like <<ConvolutionLayer>> or 

<<DenseLayer>>.  Profiles are a collection of stereotypes and tagged values that 

cohesively extend UML for a specific domain. However, the introduction of stereotypes 

and profiles creates additional challenges: 

 Complexity and Maintenance: Defining and maintaining stereotypes and profiles 

can become cumbersome, especially as the complexity of neural network 

architectures grows. 

 Limited Expressiveness: Stereotypes and profiles may not capture all the 

nuances and specific details needed for precise neural network modeling. 
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 Performance: Using stereotypes for detailed neural network modeling can lead 

to performance issues in modeling tools. 

Given these challenges, there is a need for a "hard extension" of UML to effectively 

model neural networks. A hard extension involves creating a new modeling language or 

significantly extending an existing one to directly support the requirements of neural 

network design, training, and deployment. 

2.1.2. Our Proposed Solution: UM1NN 

Our proposed modeling language, UM1NN, represents a hard extension of UML, 

specifically UML Activity diagrams, and is tailored for neural network modeling.  

UM1NN is designed to meet the specific demands of neural networks, providing both 

simplicity and comprehensive expressiveness: 

 Simplicity: UM1NN is designed to be easy to understand and use, with a 

concise syntax and a limited set of core concepts. The entire language 

specification can be comprehensively described in about ten pages (see Section 

3), and the description of a neural network in this language is almost self-

explanatory (see Sections 4 and 5).  

 Effective Modeling: UM1NN enables clear, stakeholder-friendly descriptions 

of neural networks, covering their architecture, training processes, 

hyperparameters, and deployment strategies, without aiming for formal 

specifications. 

 Enhanced Communication: UM1NN provides a shared language for 

stakeholders, balancing the need for technical accuracy with accessibility, 

making it easy for both experts and non-experts to understand and communicate 

effectively. 

 

The proposed modeling language UM1NN is, in some sense, domain-specific, but it 

differs from existing DSLs for neural networks in several key points: 

 Versatility: It is not tied to a specific type of neural network. UM1NN can be 

used for all types of neural networks. 

 Framework Independence: It is not tied to any particular neural network 

implementation framework. UM1NN specifies the operation of neural networks 

at a higher level of abstraction (similar to how UML is used for business 

systems). 

According to the authors, this level of abstraction for describing neural networks 

holds an important place, much like UML descriptions for business systems, enabling 

stakeholders to communicate effectively without diving into the technical details of 

programming implementations. 

To provide further clarity, the following sections will explore traditional domain-

specific languages (DSLs) for neural networks and their practical applications. 

2.2. DSLs for Direct Execution in Neural Network Frameworks 

In this section, we focus on domain-specific languages (DSLs) designed to define, build, 

and train neural networks directly within popular machine learning frameworks. These 

languages are primarily intended for coding and execution rather than abstract system 
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design, offering developers the tools needed to specify and run models in real-time 

environments. 

2.2.1. Program Libraries for Deep Learning Models 

When discussing domain-specific languages for neural networks, it's essential to first 

mention the program libraries available in Python for building deep learning models at 

the code level. Several well-established libraries, such as Keras (Chollet and Watson, 

2024; WEB(c)), TensorFlow (Chollet and Watson, 2024; Abadi et al., 2016), and 

PyTorch (Chollet and Watson, 2024, Paszke et al, 2019), provide high-level operations 

for defining and executing deep learning models directly within Python. These libraries 

include built-in support for typical deep learning model elements such as layers (e.g., 

Linear layers, Convolutional layers, Transformer layers) with customizable parameters 

like dimensions, Weight, and Bias tensors. 

Additionally, these libraries simplify the process of training and processing models 

by offering features like dynamic computation graphs and tools for handling complex 

data flows. They allow the user to create executable models efficiently, abstracting away 

much of the boilerplate code associated with neural network training and evaluation. 

However, these libraries focus primarily on building and executing models at the 

code level. They do not provide tools for visualizing the overall structure of the model at 

a higher abstraction level, such as graphical diagrams that might be used to communicate 

a model's architecture more clearly to non-technical stakeholders or during the design 

phase. 

2.2.2. Graphical Modeling Tools for Deep Learning 

An alternative to program libraries are tools that use graphical modeling languages to 

represent deep learning models. Two notable tools in this area are Netron and Deep 

Learning Studio (DLS). Both tools utilize a graphical workflow language that allows 

users to define models visually, using a straightforward sequence of actions, combined 

with facilities for specifying parameters. 

2.2.3. Netron Tool 

Netron (WEB (d)) is an open-source visualization tool for deep learning models. It 

supports a wide variety of formats, allowing models developed in environments (Chollet 

and Watson, 2024) like Keras, TensorFlow, PyTorch, Caffe, and MXNet to be visualized 

in a standardized format. The model's architecture is represented as a series of rounded 

rectangles (representing actions, which correspond to layers), with arrows indicating the 

flow of data between them. Each layer's detailed information—such as input/output 

tensor shapes, parameters, and operations—is displayed, making it easy to inspect the 

model’s components. 

Netron is primarily used to review and verify the structure of existing neural network 

models, providing insights to both technical and non-technical users. However, it does 

not offer features for building new neural network models from scratch. Its main focus is 

on understanding and validating the architecture of pre-trained models. 
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2.2.4. Deep Learning Studio (DLS) 

Deep Learning Studio (DLS) (WEB (e,f)) is a framework designed for building deep 

learning models using a graphical interface. DLS provides a drag-and-drop editor for 

constructing neural networks, represented as workflow diagrams. In this environment, 

layers of the model are visualized as rounded rectangles (actions), connected by lines 

that represent the flow of tensors between layers. The shapes of the tensors being passed 

between layers are also displayed, offering a visual insight into the model’s data flow. 

The editor allows users to select basic layers common to deep learning models, such as 

convolutional layers, pooling layers, and normalization layers. However, the ability to 

construct more complex architectures is somewhat limited compared to full-featured 

coding libraries like TensorFlow or PyTorch. 

2.3. DSLs for Model-Driven Engineering (MDE) of Machine Learning-

Enabled Systems 

While the DSLs discussed in the previous section focus on directly executing machine 

learning models, Model-Driven Engineering (MDE) (Brambilla et al., 2012) offers a 

more abstract and systematic approach to system development. MDE-based DSLs 

describe system architectures, which are then transformed into executable models 

through automated or semi-automated model transformations. This section reviews the 

use of domain-specific languages (DSLs) within MDE for Machine Learning-Enabled 

Systems. These systems typically encompass not only neural networks but also 

workflows for data preprocessing, feature engineering, and broader software system 

integration. DSLs in this context enable automated code generation through model 

transformations, facilitating the development and deployment of comprehensive machine 

learning pipelines. A comprehensive overview of the current state in this field is 

provided by papers from Rädler et al. (2024) and Naveed et al. (2024). Below, we 

highlight key aspects of the current situation in this area. 

2.3.1. Ecore-Based DSLs for Machine Learning 

The Ecore metamodel from the Eclipse Modeling Framework (Steinberg D., 2009) is a 

widely used foundation for defining DSLs within MDE environments, offering high-

level abstractions for the design and integration of machine learning models. Several 

tools extend EMF to support machine learning workflows: 

 EMF-IncQuery (Horvath et al., 2015): This tool facilitates pattern-based 

queries within models, enabling advanced querying capabilities that simplify 

the manipulation and analysis of machine learning workflows. 

 Text-based DSLs (Friese et al., 2008): Custom languages can be developed to 

specify machine learning models and workflows, providing flexible, domain-

specific approaches that help automate processes such as data preprocessing 

and model training. 
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2.3.2. MontiAnna: A DSL for Deep Learning Model Specification 

MontiAnna (Kusmenko et al., 2019; Kirchhof et al., 2022) is a domain-specific language 

specifically designed for deep learning. Built on the MontiCore framework, an MDE 

platform, MontiAnna allows the specification of neural networks and deep learning 

models. It focuses on integrating machine learning into broader system architectures. 

MontiAnna offers both graphical and textual notations, providing flexibility for defining 

neural networks and their associated training processes. Additionally, the framework 

supports model transformations, enabling the generation of executable code from the 

defined models. Essentially, MontiAnna bridges the gap between high-level system 

models and the practical implementation of machine learning components. 

2.3.3. AutoML: A DSL for Automating the Deep Learning Lifecycle 

AutoML (Moin et al., 2022) presents a novel approach to automating the entire machine 

learning lifecycle, from model selection to optimization and deployment. The system 

automates the selection of the most appropriate model architecture (e.g., Fully-

Connected Neural Networks (FCNN) or Long Short-Term Memories (LSTM)) using 

Bayesian Optimization. AutoML simplifies the development of AI-intensive systems by 

automating model and hyperparameter selection, significantly reducing the need for 

manual tuning. This DSL is built on the ML-Quadrat framework and includes a user-

friendly, web-based interface, making it a valuable tool for streamlining ML 

development. 

2.3.4. Key Conclusions 

Traditionally, MDE-based DSLs are formal languages that, at a given level of 

abstraction, can generate executable models through automated or semi-automated 

transformations. However, the proposed modeling language, UM1NN, is semi-formal. 

This raises the question: how does UM1NN relate to MDE-based DSLs? One potential 

research direction (outlined in the Conclusion section) is the exploration of methods to 

generate executable models from system descriptions written in semi-formal languages, 

leveraging Large Language Models (LLMs) such as ChatGPT. In this sense, we see a 

clear connection between UM1NN and traditional MDE approaches for Machine 

Learning-Enabled Systems. 

3. Description of the UM1NN Modeling Language 

UM1NN uses only one type of diagram, called UM1NN Activity Diagrams. The main 

concept in UM1NN, the UM1NN System Model, is defined as a set of thematically 

related UM1NN Activity Diagrams. An Activity Diagram represents a behavior 

composed of individual elements called actions. An action represents a single step within 

an activity. Therefore, defining the UM1NN language entails defining UM1NN Activity 

Diagrams (hereafter referred to simply as UM1NN diagrams). 
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3.1. UM1NNcore 

As previously mentioned, in defining UM1NN, we will use UML Activity Diagrams as a 

foundation. The purpose of this section is to explain exactly what we are adopting from 

UML Activity Diagrams. Figure 1 shows a typical UML Activity Diagram taken from 

the official UML documentation (OMG, 2017). This diagram includes all the elements 

that we (with slight modifications) will directly incorporate into our modeling language 

UM1NN. (The official UML AD contains many other elements, but we will not use 

those.) However, this incorporation will come with one change: instead of Object Nodes, 

we will introduce a new type of node, which we will denote similarly but call a Data 

Node. An Object Node, according to UML AD semantics, is essentially a container that 

can hold many objects until they are processed by a subsequent action. In contrast, a 

Data Node (or Data Element) is analogous to a variable in programming languages, 

which can hold only one value at any given time, and this value can be used by multiple 

actions. To specify precisely which actions can modify and which can use the value of a 

data element, we will introduce dashed arrows as shown in Figure 2. We will retain the 

UML AD control flow arrows in our modeling language, but they will serve only to 

represent control flow (Fig.3, as an equivalent notation of Fig.2, we consider only as 

'syntactic sugar'). Figure 2 also shows that action symbols can have a "Short 

Description" section in addition to their name, and data symbols can have a "Type 

Definition" section along with the name and "Short Description." 

 

 
 

Figure 1. UML Activity Diagram. 

 

       To make UM1NN diagram notation more concise, we will agree on several defaults. 

First, using UML AD terminology, we will employ the <<separate execution>> 

semantics, meaning that a separate execution of the activity is created for each 

invocation. Second, when multiple control arrows converge into an action symbol, we 

will assume a merge symbol by default (and thus will not draw this symbol). Third, we 

will also omit the decision symbol (diamond); instead, we will agree that if an action 

symbol has more than one outgoing control arrow, each of these arrows must have an 

attached guard condition. 
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                     Figure 2. Dashed arrows.                      Figure 3. Equivalent representation of Fig. 2. 

 

The resulting modeling language will be called UM1NNcore, and it will contain the 

following graphical elements: 

 Activity diagram symbol (optional) 

 Action symbol 

 Data element symbol 

 Control flow arrow (solid arrow) 

 Control flow arrow with guard condition 

 Data flow arrow (dashed arrow) 

 Fork and Join symbols 

 Start and End symbols 

 (Decision and Merge symbols by default) 

 

The UML Activity diagram shown in Figure 1 can be equivalently represented as an 

UM1NNcore diagram, as shown in Figure 4. 

 

 
 

Figure 4. UM1NN Activity Diagram. 
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The following sections will focus on significantly extending UM1NNcore with new 

features tailored for neural network modeling applications, which could not be directly 

"borrowed" from UML AD. 

3.2. Data Elements 

In UM1NN Activity Diagrams, data elements play a crucial role in representing the 

information that flows through and is manipulated by the neural network. In UM1NN, 

data elements are classified into two main categories: Flow Data and Internal 

Parameters, providing a structured approach to represent the different types of 

information in the neural network.      

3.2.1. Flow Data  

Flow data in neural networks represent dynamic information traveling through the 

network (e.g., input data and intermediate results).  Flow data elements (see elements X 

and Y in Figure 5) are represented by rectangular frames with black borders and white 

background and can appear multiple times within a single UM1NN Activity Diagram. 

Each occurrence of a flow data element with the same name operates independently. 

This independence allows for flexibility, as actions in the diagram can use different data 

elements with the same name without causing conflicts. 

 

 
 

Figure 5. Action’s dashed arrows. 

3.2.2. Internal Parameters 

Internal parameters are essential to the internal workings of the neural network. These 

include components like weight matrices and biases, which are adjusted during training 

to optimize the network's performance. In UM1NN diagrams, internal parameters (see 

elements P, R, S in Figure 5) are represented as rectangles with bold red borders to 

distinguish them from flow data elements. Internal parameters differ from flow data 

elements in that they maintain a consistent value across all diagrams in the UM1NN 

System Model. This means that if multiple internal parameters share the same name, 

they are automatically synchronized—any change made to one element is propagated to 
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all others with the same name. This ensures value consistency throughout the system 

model. Additionally, internal parameters can also have version labels for their values. 

Internal parameters are typically used to represent model parameters (e.g., weights 

and biases) and hyperparameters (e.g., learning rate, batch size) and are depicted with 

bold red borders and colored backgrounds: orange for model parameters and green for 

hyperparameters (see Use Cases figures). 

By integrating these concepts, UM1NN provides a structured way to represent and 

differentiate between the different types of data that flow through and govern the 

behavior of neural networks. 

3.3. Pre-built Components 

UM1NN Activity Diagrams can also include nodes that represent pre-built 

components. These nodes are graphically depicted as rounded rectangles with bold 

red borders and labeled with type = "Component" (see element C in Figure 5). These 

elements can be used in two ways: 

 Action using the pre-built component: This refers to actions that utilize the 

pre-built component. A dashed arrow connects the pre-built component node 

to the action that makes use of it (see element C in Figure 5). 

 Direct use: The pre-built component can also be directly used as an action, 

represented as shown in Figure 6 (further details will be discussed in the next 

section). 

 

 
 

Figure 6. Component Call Action. 

3.4. Actions 

In UM1NN, actions represent individual steps or operations within an activity. These 

actions can be classified into four categories based on their function and scope: Formal 

Actions, Informal Actions, Subdiagram Call Actions, and Component Call Actions. 
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3.4.1. Formal Actions 

Formal actions are well-defined operations with specific inputs and outputs. These 

actions typically involve mathematical operations essential to neural networks, such as 

tensor operations and matrix manipulations. 

 Examples: Matrix multiplication, convolution, pooling, normalization. 

 Graphical Notation: Formal actions are depicted as rounded rectangles with 

a yellow background (see Fig. 7). 

3.4.2. Informal Actions 

Informal actions represent higher-level processes that might encompass multiple steps or 

operations. Unlike formal actions, informal actions are more abstract, and their inputs 

and outputs may not be as clearly defined. These actions often describe broader 

processes in the neural network. 

 Examples: Backpropagation, gradient descent, preparation of input data. 

 Graphical Notation: Informal actions are represented as rounded rectangles 

with a white background (see Fig. 8). 

 

              
Figure 7. Formal Action.                     Figure 8. Informal Action. 

 

 

The boundary between Formal Actions and Informal Actions can sometimes be 

fluid, depending on the stakeholder's level of expertise. For example, an action like 

backpropagation might be considered "formal" to someone with deep knowledge of 

neural networks, but "informal" to someone less familiar with the process. One useful 

criterion to distinguish between these two types of actions is whether an advanced model 

like ChatGPT-4 can fully understand the action based solely on its name and short 

description (recall that action symbols in UM1NN diagrams contain both a "Name" and 

a "Short Description" section). If the action can be explained in detail by ChatGPT-4 

based on this information alone, it is typically considered formal. In contrast, if the 

action is more abstract and requires broader contextual understanding, it leans towards 

being informal. 

3.4.3. Subdiagram Call Actions 

Subdiagram call actions refer to another diagram that is logically part of the current 

diagram. These actions allow for modularity by breaking down complex processes into 

smaller, manageable diagrams. Input and output parameters are clearly indicated, 

ensuring the proper flow of data between the main diagram and the subdiagram. 

 Graphical Notation: Subdiagram call actions are represented as rounded 

rectangles with a double border and display both input and output 

parameters, as well as the corresponding internal parameters (see Fig. 9). 
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Figure 9. Subdiagram Call Action. 

 

3.4.4. Component Call Actions 

Component call actions represent the use of pre-built, sophisticated models or 

components. These actions are abstract in nature, meaning the internal workings of the 

component are hidden from the diagram, focusing instead on well-defined inputs, 

outputs, and exposed internal parameters. Component call actions are often used when 

applying pre-trained models or neural network architectures. 

 Examples: Fine-tuning a pre-trained GPT-2 model, using ResNet for feature 

extraction, employing BERT for text encoding. 

 Graphical Notation: Component call actions are depicted as rounded 

rectangles with bold red double borders. They also include input, output, 

and any exposed internal parameters (see Fig. 6). 

3.4.5. One More Remark 

Consider Figure 5, which illustrates a possible usage of dashed arrows in relation to 

Action A: 

 X ---> A means that A uses the value of the flow element X. 

 A ---> Y means that A modifies the value of the flow element Y. 

 P ---> A means that A uses the value of the parameter P. 

 C ---> A means that action A utilizes the component C. 

 A ---> R means that A modifies the value of the parameter R. 

 A --{version=W}--> S means that A modifies the value of the parameter S and 

assigns it the version label "W" (recall that internal parameter values can also 

be assigned version names). 

 

This example demonstrates how UM1NN diagrams visually depict interactions 

between actions, flow elements, parameters, and components, ensuring clear tracking of 

value modifications and usage. 

3.5. Dashed and Solid Arrows Between Flow Data Elements 

Let us introduce a new type of operational mechanism between flow data elements 

(nodes) – the so-called dashed arrow mechanism (Fig. 10). If there is a dashed arrow 
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from data node X to another data node Y of the same type, it means that if any action at 

any point in time changes the value of node X (remember, X is formally a variable), this 

new value is immediately transferred to node Y. This mechanism allows us to freely 

supplement the existing activity diagram with new identical data nodes, but with 

different names. This, in turn, gives us the ability to graphically define both the graphical 

call mechanism and the diagram detailing mechanism (see the next section). 

                     
  

Figure 10. Dashed arrow.           Figure 11. Diagram fragment.              Figure 12. Equivalent 

                                                                                                                   representation of Fig. 11. 

 

In many cases, it is natural to combine the control flow mechanism (control arrows, 

which are solid arrows) with the data flow mechanism (dashed arrows). Let's assume we 

have a fragment of an activity diagram corresponding to Fig. 2.  Let's agree that it can 

equivalently be depicted as in Fig. 3.  In this drawing, it is seen that the control arrow 

simultaneously serves as a data transfer arrow. At this level, it is just "syntactic sugar." 

However, let's add additional semantics to this construction: we will consider that the 

control token does not go "directly" to action B, but first to data node X, and from there 

further to action B. Let's combine this mechanism with the previously mentioned 

"dashed arrow" mechanism. As a result, the diagram fragment shown in Fig. 11 can 

naturally be depicted as in Fig. 12. In this case, the control token from action A first goes 

to data element X, then from data element X to data element Y, and finally from data 

element Y to action B. Now let's note that the control arrow from data element X to data 

element Y simultaneously serves the role of the "dashed arrow" – it instantly transfers 

the value of element X to element Y. As a result, our language will have two types of 

arrows between flow data elements: dashed and solid. Both types of arrows ensure the 

transfer of element values, but the solid arrow additionally ensures the transfer of control 

tokens. 

Additionally, we will allow dashed arrows from internal parameters to flow data 

elements, with the same semantics as in the case of flow elements. 

We will use these constructions in the next section for fragmentation call mechanism. 
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3.6. Graphical Call 

First, let us note that a UM1NN System Model typically contains a single diagram called 

the Main Diagram, which serves as the central point of the model. This diagram, whose 

name starts with the word "Main," uses the call mechanism to invoke other diagrams 

within the model, known as subdiagrams, or predefined components.  

 
Figure 13. UML AD with parameters. 

 

 
 

Figure 14. UM1NN AD with input and output parameters. 

 

 

In this section, we will examine the UM1NN subdiagram call mechanism.  First, let's 

introduce the concept of an "Activity Diagram with Input and Output Parameters" (so 

that we have a use for the call mechanism). In UML AD, parameters are represented as 

shown in Fig. 13. However, this representation and its usage in graphical call notation 

present several inconveniences (in practice, we often need to switch from graphical to 

textual form). In the UM1NN language, we will take a different approach. First, we will 

introduce a new notation for input and output parameters: they will be depicted as flow 

data nodes (anywhere in the diagram), with slightly modified graphical symbols 

(InArrows, OutArrows) as shown in Fig. 14 (input parameters X and Y, output 

parameter Z). In fact, these symbols are introduced only for better visual clarity, as we 

will consistently follow one rule regarding parameters: input parameter nodes should not 

have incoming arrows, and output parameter nodes should not have outgoing arrows. 

Therefore, in the graphical notation of a call action (see Fig. 15), specific symbols for 

input and output nodes can be replaced with the standard data node symbols. 
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Figure 15. Subdiagram Call Action in the context of a Parent Diagram. 

 

 

Now the most important part: the values of input parameters at the call action can be 

defined with the help of incoming dashed arrows from the corresponding data elements 

(nodes) that represent these values. Similarly, for output parameters, the dashed arrows 

will be outgoing (see Fig.15). In this notation, a call is represented not by the "fork" 

symbol as in UML AD, but as an action symbol with a double frame, from which dashed 

arrows indicate the output parameters of the called activity, and incoming dashed arrows 

indicate the input parameters. The name of the action with the double frame must match 

the name of the activity diagram we want to call. This activity diagram (which we want 

to call) must be from the same UM1NN system model in which this call occurs. We 

assume here that the activity (in the form of an action diagram) called through the call 

operation contains exactly one start symbol and exactly one end symbol. Under these 

conditions, the semantics of the call operation are clear. 

Next, consider the case when the called diagram is only a fragment of a larger 

activity diagram and therefore might not contain start and end symbols directly. Recall 

the solid arrow mechanism introduced in the previous section, which serves both as a 

control flow and data element value transfer mechanism. This means that if we consider 

a large diagram W (Fig. 16) that logically contains a fragment S, we can depict this 

fragment S as a separate diagram (Fig. 17), where X can be considered as the start 

symbol and also as the input parameter symbol, and Y can be considered as the end 

symbol and also as the output parameter symbol. As a result, we can represent the 

original diagram W in a much more compact form using the new type of call operation 

(Fig. 18). This is a very convenient mechanism to logically divide large diagrams into 

manageable fragments (widely used in the section on GPT). 
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          Figure 16.                                    Figure 17.                                         Figure 18. 

     “Large” diagram.                       Fragment as separate                      “Large” diagram in more 

                                                                 diagram.                                        compact form. 

 

3.7. Data element types and operations 

For data elements, end-users can define any specific data types and their corresponding 

operations. However, it is up to the end-user to explain these to potential stakeholders. 

For applications in the field of neural networks, our language UM1NN will introduce the 

most crucial data type at its core - tensors. 

More precisely, UM1NN proposes the following syntax for defining data element 

types, referred to as tensor types: 

 

<dtype> Tensor <shape> (with "Float" as the default <dtype>) 

 

If we specify a particular <dtype> (for example, Float) and a specific shape (for 

example, (1024, 512)), we then define a specific data element type: 

 

Float Tensor (1024, 512) 

whose values will be matrices of Float elements with 1024 rows and 512 columns. 

Other examples include:  

 Tensor () - alternatively called Scalar 

 Tensor (25) - alternatively called Vector (25) (semantics: a vector of length 25, 

with element indexing starting at 0) 

 Tensor (3, 5) - alternatively referred to as Matrix (3, 5) or 3 x 5 (semantics: a 

matrix with 3 rows and 5 columns, with row and column indexing starting at 0) 
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 Tensor (2, 3, 5) - tensors with shape (2, 3, 5) (element indexing starts at 0 for 

any dimension). 

 

We also use the notation simply 

 

Vector (without specifying the shape) – this means a vector of any length. 

 

In these examples, we used the default dtype = float. If, for instance, we wanted to 

consider vectors of length 25 with Integer type elements, we would write  

 

Integer Vector (25). Similarly, Integer Scalar, Integer Matrix (3, 5), etc. 

 

Regarding operations with tensor-type data elements, PyTorch offers about 100 

operations. We will list only the main ones here, in a slightly simplified syntax (noting 

that there is no uniform official syntax for tensor operations). 

Let 𝑐 be a scalar of type float, 𝑢 and 𝑣 be vectors of equal length with the same 

element type, specifically float, and 𝐴 and 𝐵 be matrices with identical shape and 

element type, also float. Basic operations: 

 u + v - This represents the vector addition of 𝑢 and 𝑣. Each corresponding 

element of the vectors is added together. 

 u - v - This is the vector subtraction of 𝑢 from v. Each corresponding element of 

𝑢 is subtracted from the corresponding element in 𝑣. 

 A + B - This indicates the matrix addition of 𝐴 and B. Each corresponding 

element of the matrices is added together. 

 c * v - This refers to the scalar multiplication of the vector v by the scalar c. 

Each element of v is multiplied by c. 

 c * A - This represents the scalar multiplication of the matrix A by the scalar c. 

Each element of A is multiplied by c. 

 A + v - Assuming the number of columns in 𝐴 equals the length of the vector v, 

this expression would typically denote broadcasting the vector v across each 

row of A and then adding v to each row of 𝐴. In PyTorch, this is handled 

automatically if 𝑣 is shaped correctly. 

 A * B - This is the element-wise multiplication of 𝐴 and B. Each element in 𝐴 is 

multiplied by the corresponding element in B. This operation is known as 

Hadamard product. 

 concat(A, B) - This function concatenates matrix B to the right of matrix A, 

forming a new matrix whose width is the sum of the widths of 𝐴 and B, with the 

same number of rows. In PyTorch, this is performed using torch.cat([A, B], 

dim=1). The concat operation can also be applied to three or more matrices, for 

example, concat(A, B, C, ...). 

 A @ B - If the number of columns in matrix A equals the number of rows in 

matrix B, then 𝐴@𝐵 represents the traditional matrix multiplication of 𝐴 and B 

(also called dot product). In PyTorch, this operation is denoted by the @ 

operator or by using torch.matmul(A, B). 
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 v @ A - If 𝑣 is a vector of length 𝑁 and 𝐴 is a matrix of shape 𝑁×𝑀, then 𝑣@𝐴 

represents the matrix multiplication of the vector 𝑣 with the matrix 𝐴 (also 

called dot product). This operation results in a new vector of length 𝑀. In 

PyTorch, this can be performed using the @ operator or torch.matmul(v, A). 

 u.dot(v): This represents the dot product of vectors 𝑢 and 𝑣. It is the sum of the 

products of the corresponding elements of the vectors. In PyTorch, this can be 

computed using torch.dot(u, v). 

 A^T - This denotes the transpose of the matrix A. In matrix A, rows and 

columns are swapped, and in PyTorch, this is simply accessed with A.T. 

 

These operations, extensively used in Sections 4 and 5, are crucial in our modeling 

language. They can be selected as predefined by end-users from a broader list of 

operations, which must be accompanied by clear explanations of each operation for 

stakeholders in the model documentation. 

3.8. Specific Data Type: Tensor Set 

Let's start with an example of a Tensor Set type data element shown in Fig. 19. It 

represents the entire set of weight and bias tensors used in GPT-2_Large. Similarly, Fig. 

20 depicts another Tensor Set type element - the GPT-2_Large Hyperparameter Set. In 

this case, it is not a set of arbitrary tensors but rather a set of scalar tensors. 

 

                         
Figure 19. Tensor Set example.             Figure 20. Another Tensor Set example. 

 

 

These examples demonstrate the typical use of a Tensor Set for specifying specific 

collections of inner parameters in the UM1NN system model. Tensors have the concept 

of shape. Let's also introduce the concept of shape for a Tensor Set: it will be a set of 

pairs where each pair's first element is the tensor name, and the second element is the 

tensor's shape. 

A tensor with a specific (fixed) shape has the concept of Value. Similarly, we can 

define the Value concept for a Tensor Set with a fixed shape as the values of the tensors 

it contains. Thus, when describing actions, we can use the term "assign values to a tensor 

set type element." For example, setting the "GPT-2_Large Model Parameter Set" 

involves assigning the pre-trained tensor values (weights and biases) to this set. 

Let us also agree that in UM1NN diagrams, to indicate that a specific tensor (for 

example, "EmbeddingMatrix") belongs to a Tensor Set type element (for example, 

"GPT-2_Large Model Parameter Set"), we will use the same background color for both 

elements (in this case, orange). 
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3.9. Additional note on dashed arrows between data elements. 

As mentioned in Section 3.5, if X and Y are nodes of the same type (for example, Integer 

Vector (1240)), a dashed arrow from node X to node Y means that any change in the 

value of node X is instantly transferred to node Y (i.e., X and Y, as variables, have the 

same value at any given moment). Since in Section 3.5 (see Fig. 10, Fig. 11, Fig. 12) we 

combined the dashed arrow with the control arrow (i.e., transformed it into a solid 

arrow), we will also apply the aforementioned automatic data transfer mechanism to 

solid arrows between data nodes. 

For tensor-type data nodes, we will slightly extend this automatic value transfer 

mechanism: When a matrix 𝐴 with m rows and n columns (i.e., a tensor A(𝑚,𝑛)) and a 

vector 𝑉 of length 𝑛 (i.e., a tensor 𝑉(𝑛)) are connected by a dashed or solid arrow 

(represented graphically), the notation 𝑉→𝐴(5,:) specifies that the values of vector 𝑉 

replace the values of the 5th row of matrix 𝐴. This action is symbolized by an arrow 

pointing from 𝑉 to 𝐴, indicating the direction of data transfer. Similarly, the reverse 

operation is denoted as (5,:)→𝑉, where the 5th row of matrix 𝐴 is used to update the 

values of vector 𝑉. See Fig. 21 and Fig. 22 for applications of these notations. This 

notation enables clear and concise representation of data flow between specific elements 

of matrices and vectors within the model. 

  
       

       Figure 21. Concurrency example.                Figure 22. Another concurrency example. 
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3.10. Representing and Managing Concurrency 

By concurrent activities, we mean activities that can execute independently and 

potentially in parallel with each other. In UML Activity Diagrams (AD), this is achieved 

through the use of fork and join nodes, which enable parallel execution and 

synchronization of these activities. In our language, we also adopt the fork-join 

mechanism, but with an additional requirement that each fork node corresponds to 

exactly one join node, and between them are independent concurrent activities (Fig. 21, 

Fig. 22, Fig. 23). 

If the number of concurrent activities between the fork and join nodes is small, it is 

easy to represent them in our graphical modeling language. However, in neural network 

scenarios, it is typical to have a large number of concurrent activities, making it 

impractical to draw all of them directly. These activities often differ only slightly, 

specifically by the value of an integer parameter that appears in the definitions of actions 

and/or data elements. The aim of this section is to propose a special type of graphical 

loops (called concurrency graphical loops) for defining such uniform concurrent 

activities. 

                  
                  Figure 23. Concurrent activities.                        Figure 24. Concurrency loop. 

 

 

First, let's agree that integer-type variable parameters will be denoted by lowercase 

Latin letters, for example, i, j, etc. Next, if we want to indicate that a letter, such as i, 

should be interpreted as a loop parameter in a syntactic loop, we will represent it in the 

form _i<space>, _i<underscore>, _i+1<space>, or _i+1<underscore>. The notation 

of Fig. 23 using this type of loop is shown in Fig. 24. If the range of the parameter i is 

small, the cyclic construction can be omitted. However, in neural network models, the 

range of the aforementioned parameter values is usually very large - several hundred or 

thousand, and the use of these loops is essential. The GPT model discussed in Section 4 

relies heavily on the extensive use of concurrency graphical loops. 

By the way, our concurrency graphical loops share similarities with UML graphical 

loops that use expansion regions (OMG, 2017: WEB (j)), but offer different capabilities. 

Finally, one more clarification about data flow semantics in the case of fork and join 

nodes. First, we syntactically exclude the case where dashed arrows enter or exit fork or 

join nodes. However, it is permissible for solid arrows to enter or exit fork and join 

nodes, which can connect not only to action nodes but also to data nodes. In such cases, 

these arrows serve both control transfer and data transfer functions. Consider Fig. 21. In 
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this diagram, a solid arrow goes from data node X to the fork node, and from there to 

actions Head1 and Head2. Since this arrow originates from data node X, it means that it 

carries the value of node X with it. This, in turn, implies that actions Head1 and Head2 

can directly use node X in defining their operations. A similar situation occurs with the 

join node—solid arrows "carry" the values of data elements X1 and X2 through this 

node. A more complex situation is shown in Fig. 22. Here, the row transfer mechanism 

for matrices mentioned in previous Section is used. Additionally, it demonstrates our 

agreement on flow data elements from Section 3.2—each new occurrence of a data 

element, even with the same name, is treated as a separate data element. Therefore, we 

repeat the data element named X three times (not X1, X2, X3), and similarly, Y three 

times (not Y1, Y2, Y3). This allows us to make the call mechanism significantly more 

versatile. For example, in this case, the Normalize activity is defined only for the pair 

(X, Y), but Normalize (X1, Y1), Normalize (X2, Y2), Normalize (X3, Y3) are obtained 

through the graphical parameter transfer mechanism (data and control transfer arrows 

S[0,:]->X, S[1,:]->X, S[2,:]->X). 

Thus, the main constructions of the UM1NN language are outlined. The next section 

will cover a few more technical additional features. 

3.11. Additional Features 

In modeling languages, comments play an important role. In UM1NN, two types of 

comments and their respective notations are provided: 

 Element Comments: Similar to UML, any diagram element can have an attached 

comment (rectangle with a folded corner), as shown in Fig.14. 

 Fragment Comments: UM1NN also allows adding comments to an entire diagram 

fragment. This is done by drawing a dashed rectangle around the fragment and 

including explanatory text inside the rectangle using quotation marks (" "). This text 

typically serves as a meaningful name at a higher level of abstraction, explaining the 

defined content of the fragment (see, for example, Fig.16). 

 

Additionally, neural network models often consist of many similar fragments. 

Therefore, in some cases, it is useful to use ellipses in the usual intuitive sense. In our 

proposed modeling language, such use of ellipses is allowed (see, for example, Fig. 16, 

17, 18, 23), provided that the potential reader (stakeholders) can understand or infer their 

meaning in the given context. 

3.12. Concluding Remark 

The proposed neural network graphical modeling language provides a comprehensive 

framework for describing the detailed structure and operations of neural networks, 

including training processes and tensor-based data manipulations. In the following 

sections, we will utilize this modeling language to represent two significant use cases: 

the GPT model and the Fine-Tuning model for Question Answering based on GPT. To 

facilitate understanding, each section will be accompanied by a natural language 

explanation of the key concepts behind GPT-2 and Fine-Tuning, generated with the 

assistance of ChatGPT-4. 
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4. Use Case 1: GPT-2 Large Description in UM1NN Language 

GPT-2_Large (Farris et al., 2024; Alammar, 2019) is a powerful language model 

designed to generate coherent and contextually relevant text from input data. Its 

functionality relies on multiple interconnected components, each handling distinct 

phases of the text generation process. This structure is represented in the UM1NN 

modeling language, spanning from Fig. GPT-1 to Fig. GPT-9, where each diagram 

illustrates a specific aspect of the model’s workflow. Below is a brief overview of these 

models. 

4.1. Main Model of GPT-2_Large (Fig. GPT-1) 

The Main Model manages the overall context processing and data flow. It receives a 

sequence of token IDs as input and produces the predicted next token in ID form. Key 

stages include: 

 Embedding and Positioning: Converts token IDs into embeddings and adds 

positional information to prepare the input for the Transformer. 

 Call Transformer Model: Invokes the Transformer to generate a probability 

distribution over possible next tokens. 

 Select Predicted Token: Chooses the token with the highest probability from 

the Transformer output. 

 
 

Figure GPT-1. 
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4.2. Transformer Model (Fig. GPT-2) 

The Transformer Model (Turner, 2024; Alammar, 2019) is the core component, 

consisting of 36 sequential blocks. Each block performs: 

 Multi-Head Attention: Allows the model to focus on different parts of the 

input. 

 First Add & Normalize: Stabilizes the attention output for the next step. 

 Feed-Forward Processing: Transforms the data further. 

 Second Add & Normalize: Finalizes the block before passing data to the next 

one. 

 

 
 

Figure GPT-2.                                            Figure GPT-3. 
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4.3. Multi-Head Attention Model (Fig. GPT-3) 

This model handles the attention mechanism (Vaswany et al., 2023), enabling the 

Transformer to focus on multiple parts of the input sequence simultaneously. It includes: 

 Individual Head Models: Each head processes a segment of the input data. 

4.4. Individual Head Model (Fig. GPT-4) 

Each attention head computes attention scores for a subset of the input sequence: 

 Calculate Head Output: Produces the attention output for this head. 

 

 
 

Figure GPT-4. 
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4.5. Calculate Head Output Model (Fig. GPT-5) 

The core mechanism for attention is based on the Scaled Dot-Product Attention 

introduced by Vaswani et al. (2017; 2023) in their seminal paper “Attention is All You 

Need.” It consists of the following steps: 

 Dot-Product Calculation: Computes the dot product between the query and 

key matrices to determine the relevance scores for each query-key pair. 

 Softmax Normalization: The attention scores are normalized across each row 

(for each query) using the softmax function, converting them into a probability 

distribution that represents the attention weights. 

 Output Generation: The normalized attention scores are used to weight the 

value vectors. This weighted sum of values produces the output for the specific 

attention head. 

 

The outputs from all heads are then aggregated to form a more comprehensive 

understanding of the input sequence. 

 

 
 

Figure GPT-5. 
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4.6. First Add & Normalize (Fig. GPT-6) 

This model stabilizes the data after the attention step by: 

 Residual Connection: Adds the original input to the attention output. 

 Normalization (Fig. GPT-9): Normalizes the result to improve stability before 

passing it to the feed-forward layer. 

4.7. Feed-Forward Model (Fig. GPT-7) 

A fully connected network that further processes the normalized data. It includes: 

 Linear Transformation: Adds non-linearity with an activation function 

(GELU). 

 Second Linear Transformation: Projects the data back to the original 

dimension, preparing it for the next step. 

 

 
 

Figure GPT-6.                                             Figure GPT-7. 
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4.8. Second Add & Normalize (Fig. GPT-8) 

Similar to the first, this model stabilizes the output of the feed-forward network. It 

includes: 

 Residual Connection: Adds the original input to the feed-forward output to 

retain information. 

 Normalization (Fig. GPT-9): Ensures consistent scaling before passing the 

data to the next Transformer block or final output. 

 

 

 

Figure GPT-8 
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Figure GPT-9 

5. Use_Case 2: Fine-Tuning GPT-2 for Question-Answering 

Fine-tuning GPT-2 for question-answering tasks (Radford et al., 2019) involves adapting 

the pre-trained GPT-2 model to generate accurate answers for a specific dataset or task. 

This fine-tuning process includes several stages: loading the model, processing data in 

batches, calculating gradients, updating model parameters, and generating answers. This 

process is represented in the UM1NN modeling language in Figures FT-1 through FT-

4, where each diagram (model) is responsible for a distinct phase of the workflow. 

Below is a brief explanation of these models in natural language. 

5.1. Main Model of Fine-Tuning GPT-2 for Question-Answering (Fig. FT-1) 

The Main Model of Fine-Tuning GPT-2 for Question-Answering governs the entire 

fine-tuning process. This high-level model manages the key stages, ensuring efficient 

data flow and invoking other submodels to handle specific tasks. It includes the 

following stages: 

 Load GPT-2 Model: Initializes and loads the pre-trained GPT-2 model. 

 Collect Data: Gathers task-specific question-answer data for fine-tuning. 

 Tokenize Data: Converts the text data (questions and answers) into tokens that 

GPT-2 can process. 

 Batch Processing: Invokes the Batch Processing Model to handle individual 

batches of tokenized data. 
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 Evaluation: Evaluates the model's performance using a validation dataset after 

each epoch to assess improvements or determine when to stop the fine-tuning 

process. 

 
 

Figure FT-1 
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5.2. Batch Processing Model (Fig. FT-2) 

The Batch Processing Model focuses on processing each batch of tokenized data. It 

includes the following key actions: 

 Process Current Batch: Handles the batch of tokenized data. 

 Compute Gradients: Invokes the Gradient Calculation Model to compute 

gradients for the current batch. 

 Parameter Update: Updates the GPT-2 model's weights and biases based on 

the gradients received from the Gradient Calculation Model. 

 

 
 

Figure FT-2 
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5.3. Gradient Calculation Model (Fig. FT-3) 

The Gradient Calculation Model is responsible for calculating the gradients for the 

current batch. It includes the following key actions: 

 Generate Predictions: Invokes the Answer Generation Model to generate 

predictions for the current question and calculate the loss, which is used for 

gradient calculation. 

 

 

Figure FT-3 
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5.4. Answer Generation Model (Fig. FT-4) 

The Answer Generation Model is responsible for processing the current query and 

generating a predicted answer. It includes the following key action: 

 Process Current Query: For each question in the batch, generate the model's 

predicted answer. 

 

Within the Answer Generation Model, during training, formatting is introduced to 

the sequences by adding a delimiter token, such as <|endoftext|>, to clearly mark the end 

of both the question and the answer. This ensures that the model knows when to stop 

generating responses. 

 If the model does not generate the <|endoftext|> token, limit the generated 

sequence to a maximum length of n+3 tokens (where n is the number of tokens 

in the expected answer, with a buffer of 3). 

 Generate the answer: The model generates an answer, stopping either when 

the <|endoftext|> token is produced or when the sequence reaches the n+3 limit. 

 Loss Calculation (in Parent Gradient Calculation Model): The loss is 

calculated based on the tokens generated up to either the <|endoftext|> token or 

the maximum sequence length, whichever occurs first. 

 

This approach ensures that the sequence generation is controlled and aligned with the 

expected output format. 

 
Figure FT-4 
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6. Conclusion 

In this paper, we introduced UM1NN, a universal modeling language specifically 

designed for neural networks. We demonstrated its utility through two key use cases: a 

detailed description of the GPT-2_Large model and the fine-tuning process for question-

answering tasks. These examples highlight UM1NN’s capability to model complex 

neural network structures and operations while also showcasing its broader applicability 

to Machine Learning-Enabled Systems. 

UM1NN goes beyond neural network modeling by providing a structured and user-

friendly approach for modeling complex workflows that integrate machine learning 

components into larger systems. It effectively represents not only the neural networks 

themselves but also the surrounding systems and processes, making it a valuable tool for 

managing systems where machine learning plays a significant role. Its graphical 

representations enable clear communication among stakeholders from diverse 

backgrounds. 

The graphical representations of UM1NN diagrams in this paper were created using 

the ontology graphical editor OWLGRED (Barzdins et al., 2010; WEB (g)), which 

supports the symbol styling mechanism needed to imitate our graphical language. 

Similar results can be achieved using freely available tools like Dravio (WEB (h)) and 

others. 

Looking ahead, a potential direction for future research is to explore whether a 

detailed system described using UM1NN can be automatically translated into executable 

code with the assistance of advanced language models like ChatGPT-4 or its successors. 

Developing a robust serialization method for UM1NN would be crucial for this 

endeavor. Such a method would convert graphical representations into a format that is 

easily interpretable by both humans and language models, potentially enabling these 

models to generate implementation code based on the comprehensive system 

descriptions provided in UM1NN. Promising insights for this line of research are offered 

in recent papers (Combemale B., 2023; Petrovic N., 2023; WEB (i)), which discuss 

ChatGPT in software modeling. 

This advancement could simplify the implementation of complex machine learning 

systems, making it easier for stakeholders to move from high-level design to executable 

code. Such automation would streamline the development process and enhance 

collaboration between domain experts and developers. 

In conclusion, UM1NN offers a promising framework for modeling neural networks 

and Machine Learning-Enabled Systems. Further refinement and extension of this 

language could support more complex architectures and workflows, making it a practical 

tool for both system design and implementation in various applications. 
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