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A real-world case study in Val d’Aosta, Italy, demonstrates the model’s applicability and ef-
fectiveness. The study highlights the framework’s ability to incorporate country-specific REC
regulations while optimizing REC configurations. Results show a reduction in external energy
reliance and an increase in shared energy, leading to enhanced energy autonomy and economic
benefits. These findings validate the model’s robustness and scalability, establishing it as a pio-
neering framework for REC planning and policy innovation.
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1 Introduction

The Clean Energy for All Europeans package, introduced by the European Commission
in November 2016 (Capros et al., 2018), includes key directives such as the Renew-
able Energy Directive (RED II) and the Internal Market for Electricity. These directives
aim to promote distributed energy generation, enhance the role of Renewable Energy
Sources (RES) (Frieden et al., 2020), and empower citizens as active participants in
the energy transition (Sokolowski, 2018). As a result, new energy management systems
have emerged, including microgrids (Sanfilippo and et al., 2023), smart cities (Zacepins
et al., 2019), and Renewable Energy Communities (RECs).

A REC is a legally recognized entity that operates independently while comply-
ing with national regulations. It is characterized by open and voluntary participation,
with governance controlled by its members—individuals, small and medium-sized en-
terprises, or local authorities such as municipalities. Unlike traditional energy enti-
ties, RECs prioritize environmental, economic, and social benefits over financial profit
(Vetrò and Brignoli, 2025; Lode et al., 2022).

Figure 1 illustrates the general concept of a REC, which can include different types
of participants. Pure producers, represented by photovoltaic (PV) panels, generate elec-
tricity that is shared among community members. Consumers, depicted as individual
houses, rely on this shared energy for their needs. Additionally, prosumers—buildings
equipped with rooftop PV systems—can generate electricity locally. These prosumers
have the flexibility to consume the energy they produce, share surplus electricity with
other REC members, or feed excess power into the main grid, contributing to a more
balanced and efficient energy distribution within the community.

The adoption of RECs is accelerating across Europe, supported by regulatory frame-
works and financial incentives. A recent study identified nearly 4,000 energy communi-
ties in the EU, involving approximately 900,000 members, with Germany, the Nether-
lands, and Denmark leading the movement (Koltunov et al., 2023). Figure 2 presents an
overview of the transposition status of REC definitions in different European countries.

However, the widespread deployment of RECs, combined with the increasing inte-
gration of variable renewable energy sources, presents challenges for efficient and sus-
tainable electricity grid management. Among the different RES technologies adopted
within RECs, PV systems are the most prevalent due to their modularity, cost-effectiveness,
and ease of integration into buildings and ground installations (Gianaroli et al., 2024).
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Fig. 1. Renewable Energy Community concept.

Fig. 2. Transposition map of REC and Citizen Energy Community definitions – April 2024,
sourced from (REScoop Website, 2024).
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Despite the rapid growth of RECs, there is a need for advanced optimisation strate-
gies to enhance their economic, environmental, and operational performance. Several
business models for RECs have been proposed, differing in governance structures, pric-
ing mechanisms, and energy distribution strategies (Barabino et al., 2023). Furthermore,
the complexity of REC management necessitates sophisticated optimisation approaches
that account for diverse technologies, including PV systems, energy storage, electric ve-
hicles, and heating/cooling systems. Existing studies have addressed optimisation from
two key perspectives:

– Real-time energy management considers optimisation methods that support real-
time control of energy assets to minimise costs, enhance flexibility, and ensure
grid stability. These approaches include demand response programs, local flexibil-
ity markets, and multi-objective energy management frameworks (Cruz-De-Jesús
et al., 2023; Caliano et al., 2022).

– Strategic planning and system design encorporating optimisation techniques which
aid in the long-term planning of RECs by determining optimal infrastructure de-
ployment and energy-sharing mechanisms. Notably, mathematical models incorpo-
rating geographical, meteorological, and demographic data have been developed to
optimize PV installation and maximise economic and environmental benefits (Or-
lando et al., 2023; Lazzari et al., 2023).

From an operational perspective, REC members — producers, consumers, and pro-
sumers — can be modeled as agents within a distributed multi-agent system (Listopad,
2019). Additionally, dynamic system modelling is crucial for simulating complex in-
teractions among energy assets (Mihailovs and Cakula, 2020). In this regard, recent
research has explored methods for assessing REC feasibility under economic and regu-
latory uncertainty (Pagnini et al., 2024; Cutore et al., 2023).

As shown, various works proposed modelling and optimisation approaches in the
context of RES optimal design for REC application. Mathematical modelling in REC,
considering the optimisation, is used to maximise profit based on the number of pro-
sumers and consumers, finding the profitability by comparing the optimal REC and
without REC case (Sassone et al., 2024) however, the optimisation models, do not con-
sider the overall useful time of the investment, as in this work.

2 Objectives

This research is driven by the objectives and broader framework of the PROBONO
project (PROBONO Project, 2022), which aims to foster the development of sustain-
able, energy-positive, and zero-carbon Green Building Neighborhoods across Europe.
The PROBONO project, funded by the European Union’s Horizon 2020 program, fo-
cuses on aligning the interaction between buildings, communities, and stakeholders,
leveraging digitalisation and smart technologies to achieve net-zero emissions and energy-
positive environments.

In this context, the goals of PROBONO closely align with the challenges faced by
RECs, particularly in the transition to renewable energy. One of the critical issues in this
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transition is optimising the performance of decentralized energy production systems, es-
pecially PV installations. Achieving these objectives involves not only determining the
optimal size and configuration of PV systems — considering factors such as fluctuating
energy demand, variable PV output, and differing regulatory frameworks and incen-
tives — but also balancing capital expenditures (CAPEX) and operational expenditures
(OPEX) with the economic benefits of reducing electricity purchases and increasing
energy sales within the REC. Additionally, navigating the complex landscape of local
regulations and incentive schemes, which can greatly impact the economic viability of
RECs, presents further challenges. Without adaptable models, stakeholders often lack
the tools needed to make informed decisions that consider the unique legal and eco-
nomic conditions of their specific locations.

Optimally sizing PV systems not only enhances economic performance but also
minimises excess electricity production, reducing the need to export surplus power to
the grid. This improves self-consumption and resilience while helping to mitigate grid
congestion by preventing overproduction, which can strain local distribution infrastruc-
ture. When PV systems are tailored to match energy demands and grid capacity, they
boost energy efficiency and contribute to a more stable and reliable electrical grid.

The primary objective of this research is to develop a model that can be used both
in a simulation and optimisation tool for RECs. This model is designed to help stake-
holders make informed decisions regarding PV system sizing and energy management
strategies, ultimately supporting the growth and success of sustainable energy com-
munities. By optimising the performance of RECs, this research directly aligns with
PROBONO’s mission to demonstrate how Green Building Neighborhoods can achieve
energy-positive outcomes while benefiting both society and the environment through
innovative, decentralized energy solutions.

The model requires to be adaptable and replicable to various locations and scalable
to different scenarios, if relevant data regarding PV production, budget requirements,
electricity consumption, and local regulations related to shared energy incentives are
available. Through its application, the model will provide valuable insights into how
the integration of REC within local communities can be optimised to enhance both
economic and environmental outcomes.

3 Proposed Approach

This section introduces a model for RECs designed to conduct comprehensive techno-
economic analyses and optimise their benefits. This work builds upon and extends
the findings presented in the conference paper delivered at the 15th Conference on
Data Analysis Methods for Software Systems in November 2024. A REC is a com-
plex system, that requires dynamic management of various interconnected components,
including buildings and their production and consumption. To address this complex-
ity, a multi-method modelling approach is adopted, combining Agent-Based Modelling
(ABM), Discrete Event Simulation (DES), and System Dynamics (SD):

– Each PoD is modelled as an agent with specific attributes, such as installed renew-
able energy systems, electricity generation and electricity demand, and the ability
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to inject or withdraw electricity from the grid. ABM allows for the detailed repre-
sentation of individual behaviours and decision-making processes, capturing their
interactions and contributions to the REC.

– DES considers the dynamic interactions and adjustments among PoDs at each time
step, allowing the system to adapt to real-time changes, such as fluctuations in
energy demand, production, or grid conditions.

– At the community level, SD synthesizes the results from individual agents, treating
the REC as an interconnected system. This approach captures aggregated trends
(e.g., total energy shared, overproduction, overconsumption) and long-term eco-
nomic impacts on the REC.

This model serves dual purposes of simulation and optimisation, offering a robust
framework for analysing and enhancing REC performance over its entire lifetime. It
ensures that the proposed solutions are not only effective in the short term but also
sustainable and economically viable over time.

The simulation lays the foundation for the optimisation process, which determines
the optimal configuration of nominal PV capacities at each PoD. It analyses electric-
ity exchanges at both PoD and REC levels, evaluates financial metrics such as costs,
revenues, incentives, and net benefits under both REC and non-REC scenarios, and
identifies the optimal sizing of PV systems to maximise economic and environmen-
tal benefits. The primary objective is to minimise costs while ensuring uninterrupted
electricity demand coverage within the REC.

4 Model Definition

The aim of the model is to capture the state within a REC consisting of n PoDs in
a generic area. A PoD is a specific location within a REC where electricity is either
consumed, generated, or both. It represents a physical or virtual point in the electrical
grid where energy flow is monitored and managed. It typically corresponds to a build-
ing, household, or any unit equipped with its own electricity meter, which can either
consume electricity from the grid or supply electricity back to it, using a PV system.

The energy demand of the i-th PoD, eDi (t), must be determined for each time period
t. In addition, the PV production at the i-th PoD during each time period t, ePi (t), is
calculated by multiplying the PV production profile for 1 kW, ϕ(t), by the nominal
power of the PV system installed at that PoD, P PV

i as shown in equation 1.

ePi (t) = ϕ(t)× P PV
i (1)

The net energy exchange, eXi (t), represents the net energy flow at PoD i during a
specific time period t. It is calculated as the difference between the energy produced,
ePi (t), and the energy demanded, eDi (t), at the same PoD and time interval, as expressed
in equation 2.

eXi (t) = ePi (t)− eDi (t) (2)

The energy exchange eXi (t) at the i-th PoD during a given time period t can either
result in energy being injected into the grid or withdrawn from it. The energy injected,
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denoted as eIi (t), represents the surplus energy exported to the grid when the production
exceeds the demand. Conversely, the energy withdrawn, denoted as eWi (t), represents
the energy imported from the grid to cover the demand when it exceeds the production.

If eXi (t) is positive, it is considered as energy injected, eIi (t), and eWi (t) is set to
zero. Conversely, if eXi (t) is negative, it is considered as energy withdrawn, eWi (t), and
eIi (t) is set to zero. This ensures that, for any given time period t, the energy exchange
is exclusively categorized as either injected or withdrawn. Mathematically, this can be
expressed as shown in equation 3.

eIi (t) = max(eXi (t), 0) eWi (t) = max(−eXi (t), 0) (3)

The energy shared by the i-th PoD, ēi(t), during a given period corresponds to the
energy made available from the PoD i for the REC. This is calculated as shown in
equation 4.

ēi(t) = min(eIi (t), e
W
i (t)) (4)

This equation is essential because it quantifies the actual contribution of each PoD to
the shared energy pool of the REC. By using the minimum between the energy injected
and the energy withdrawn, the model ensures that only the surplus energy, which is
effectively available for sharing, is accounted for. This avoids overestimating the shared
energy, as it limits the contribution to the actual availability of energy at the PoD. This
calculation is critical for balancing the energy flows within the REC. It determines
the total energy shared, directly influencing the financial benefits derived from shared
incentives or reduced energy costs. Furthermore, it ensures the equitable distribution
of shared energy across all PoDs, aligning individual contributions with the overall
objectives of the REC. By accurately representing the energy available for sharing, this
equation promotes efficient energy management and supports the collective operation
of the REC. It also serves as a foundational component for aggregating and analysing
energy contributions across all PoDs in the REC.

By aggregating the energy contributions from all PoDs, the REC quantifies the total
energy shared and exchanged during a period t. This includes the aggregated energy
injected into the grid, withdrawn from the grid, and shared within the REC. The total
values are calculated by summing the respective energy components across the number
of PoDs n, as represented in equation 5.

eI(t) =

n∑
i=1

eIi (t), eW (t) =

n∑
i=1

eWi (t), ē(t) =

n∑
i=1

ēi(t) (5)

This aggregated perspective allows the REC to evaluate its collective energy perfor-
mance, effectively balancing energy flows between injection, withdrawal, and sharing.
It provides a comprehensive view of the energy dynamics within the community, serv-
ing as a foundation for accurate accounting and reporting of energy exchanges.

The financial transactions associated with energy exchanges in the REC include
both the revenue from selling injected energy and the cost of buying withdrawn energy.
The revenue from selling the injected energy, denoted as r(t), is calculated by multi-
plying the energy injected into the grid, eI(t), by the market sell price at time t, pS(t).
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Similarly, the cost of buying the withdrawn energy, denoted as c(t), is calculated by
multiplying the energy withdrawn from the grid, eW (t), by the purchase price at time
t, pB(t). These relationships are expressed in equations 6.

r(t) = eI(t)× pS(t) c(t) = eW (t)× pB(t) (6)

The equations formalized so far express the dynamics of energy and financial ex-
changes as continuous functions of time, enabling detailed analysis at any specific mo-
ment within the study duration. However, for practical and comparative purposes, these
time-dependent equations need to be annualized, in order to align the analysis with
standard accounting practices. This ensures that the CAPEX and the OPEX are ap-
propriately accounted for the financial statements. Specifically, CAPEX is reflected in
the balance sheet as an asset and is typically amortized or depreciated over its useful
life. In contrast, OPEX is included in the income statement, representing the periodic
operational costs incurred during the study duration. This involves aggregating the re-
sults over each year of the study to obtain yearly metrics such as total energy injected,
withdrawn, or shared, as well as the corresponding revenues and costs.

The total energy demanded, injected and withdrawn by the REC during a given year
y, denoted as ED

y , EI
y and EW

y respectively, is obtained by summing the energy values
over all periods within that year. This is represented mathematically in equations 7.

ED
y =

∫
y

eD(t) dt EI
y =

∫
y

eI(t) dt EW
y =

∫
y

eW (t) dt (7)

The revenue from selling injected energy and the costs for buying withdrawn energy
at the REC level during a specific year y are obtained by integrating the respective
instantaneous values over the year. These are expressed in equations 8.

Ry =

∫
y

r(t) dt Cy =

∫
y

c(t) dt (8)

The capital expenditures for each PoD, CAPEXi, is computed individually, taking
into account the cost of the PV system per kW, CPV

kW , multiplied by the installed PV
power in the i-th PoD as shown in equation 9.

CAPEXi = CPV
kW × P PV

i (9)

The cumulative capital expenditure of the REC is aggregated across all PoDs. The
total CAPEX represents the sum of the individual capital expenditures of each PoD, as
shown in equation 10:

CAPEX =

n∑
i=1

CAPEXi (10)

OPEXy , represent the yearly costs incurred to maintain and operate the REC, in-
cluding maintenance, administrative expenses, and other operational fees. The yearly
OPEXy is calculated as a percentage f of the total capital expenditure (CAPEX) for
each PoD, aggregated across all PoDs, as shown in equation 11.
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OPEXy = f · CAPEX (11)

The yearly cash-flow, denoted as Fy , represents the net financial balance of the REC
during year y, incorporating several factors: operating expenditures OPEXy , the cost of
energy purchased Cy , the revenue generated from selling injected energy Ry , and any
incentives from the country to the REC Iy . This is given by equation 12:

Fy = OPEXy + Cy −Ry − Iy (12)

The term OPEXy includes the yearly operational costs required to maintain and
manage the REC, such as maintenance and administrative expenses. The cost of energy
purchased, Cy , accounts for the expenses incurred from withdrawing energy from the
grid to satisfy the REC’s energy demand. Revenue, Ry , represents the income generated
by selling surplus energy injected into the grid, benefiting from market prices or other
mechanisms. State incentives, Iy , are financial supports or subsidies provided annually
by governmental or local authorities. These incentives are typically tied to renewable
energy policies, aiming to encourage the adoption of sustainable practices. They may
vary depending on the country or region and are calculated based on the REC’s opera-
tional characteristics, such as the amount of energy shared or injected into the grid, or
compliance with specific regulatory requirements. By incorporating Iy , the cash-flow
model reflects both market-based earnings and additional policy-driven benefits.

Finally, the total costs with REC, denoted as T , are calculated as the sum of the
initial investment CAPEX and the discounted yearly cash flows Fy over the project
lifespan Y . This is expressed in equation 13:

T = CAPEX +

Y∑
y=1

Fy ·Dy (13)

Here, all cash flows are adjusted to their present value using the discount factor Dy ,
ensuring that the financial evaluation reflects the time value of money over the REC’s
lifetime. The yearly discount rate, Dy , is used to account for the time value of money
in year y, ensuring that cash flows are appropriately adjusted to their present value. The
adjusted yearly discount rate is computed as shown in equation 14. d represents the
annual discount rate, which reflects the cost of capital.

Dy =
1

(1 + d)y
(14)

Now that the model for calculating costs with REC has been established, comparing
these costs with those without REC allows for the evaluation of the economic benefit of
implementing PV installations and constituting the REC.

The yearly costs without REC, T ′
y , are determined by integrating the energy demand

eD(t) multiplied by the price of energy pB(t), as calculated in equation 15.
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T ′
y =

∫
y

eD(t) · pB(t) dt (15)

The total costs in the scenario without REC, denoted as T ′, are obtained by sum-
ming the discounted yearly costs T ′

y over the entire study duration. The discount factor
Dy is applied to adjust each year’s costs to their present value. This is expressed in
equation 16.

T ′ =

Y∑
y=1

T ′
y ·Dy (16)

By comparing the costs with REC and the costs without REC, the economic benefit
of implementing PV installations and constituting the REC can be evaluated. This com-
parison highlights the financial advantage provided by reduced operational costs and
the potential earnings from energy sharing in the REC scenario.

5 Simulation

The mathematical model defines the energy and financial dynamics of the REC, pro-
viding a theoretical support for analysing its performance. This model has been im-
plemented and further developed in the AnyLogic Software Platform (AnyLogic Com-
pany, 2024) to create a functional simulation environment. AnyLogic allows for the
integration of different simulation paradigms within a single tool, such as Agent-Based,
Discrete Event, and System Dynamics. Beyond its modelling capabilities, AnyLogic is
also favored for its problem-solving orientation.

The simulation enables the practical application of the model, allowing for detailed
analyses of REC behaviour under various scenarios. The tool aims to provide a time-
based simulation, allowing for a detailed analysis of the REC’s behaviour on an hourly
basis. Each PoD has its own PV system and electricity demand, with only the electricity
aspect of the REC being considered for simplicity.

The simulation operates with a time period t set to hourly intervals, reflecting the
granularity of the input data. This hourly resolution ensures the accurate representation
of fluctuations in electricity demand, PV production, and market prices. AnyLogic’s
flexibility has been utilized to integrate ABM and DES, effectively capturing the in-
teractions within the REC. Each PoD is modelled as an agent, with attributes such as
installed PV capacity, hourly electricity demand, and interactions with the REC and the
grid.

The model is customisable by the user through an interface and an Excel file, pro-
viding flexibility to adjust the REC’s structure and the characteristics of each PoD. In
the simulation, every PoD is modelled as an agent, with its electricity demand speci-
fied hourly for an entire year sourced from an input Excel file. The Excel file is struc-
tured across multiple sheets. The first sheet contains information about the PoDs, with
each row representing a PoD and providing details such as a unique identifier, year of
construction, and available surface area for PV installation. The second sheet contains
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columns for each consumer, with each column being the electricity demand of the cor-
responding PoD. This setup offers users flexibility by enabling them to dynamically set
the composition of their REC and the electricity demand of each PoD before running
the simulation..

During the simulation, the model captures key energy flows, including energy de-
mand, eDi (t), energy injected into the grid, eIi (t), energy withdrawn from the grid,
eWi (t), and energy shared within the REC, ēi(t), on an hourly basis. They are calcu-
lated using AnyLogic’s time-based modelling capabilities. Event-driven logic handles
updates to external factors, such as changes in market prices or policy incentives, en-
suring the simulation remains responsive to dynamic conditions.

When the simulation is executed, the model transfers all input data from the Excel
file to its internal datasets and variables. For each PoD, this includes unique charac-
teristics, hourly electricity demand, and hourly PV production for a unitary 1 kW in-
stallation. The electricity production of each PoD is calculated based on its installed
PV capacity, P PV

i , and the PV production profile, ϕ(t), which can either be provided as
part of the input data or obtained dynamically via the PVGIS API. If the PVGIS API is
used, the profile is based on specific assumptions such as polycrystalline panels, 14% of
losses, and historical data from 2005 to 2020, averaged to simulate a generalized year.

The simulation operates for an entire year (8,784 hours to accommodate leap years,
or 8,760 hours for non-leap years), providing results that can be extrapolated over the
REC’s lifetime for comprehensive investment analysis.

Outputs from the simulation include aggregated energy metrics, yearly financial
performance indicators, and optimisation results for PV capacities. These outputs are
stored in AnyLogic’s datasets and visualized through its built-in analytics tools. The
model’s outputs include yearly energy metrics, such as total energy injected, EI

y , with-
drawn, EW

y , and shared, Ēy , as well as financial metrics like yearly cash-flow, Fy ,
cumulative capital expenditure (CAPEX), and operating expenditure (OPEXy). Addi-
tionally, the model provides insights into the REC’s overconsumption, overproduction,
and overall energy sharing behaviour.

The simulation results form the basis for optimising the nominal power of each PV
system in the REC. By analysing the interplay between incentives, costs, and energy
production, the model supports decision-making aimed at maximising financial incen-
tives while minimising operational costs, ensuring the economic and energy efficiency
of the REC.

6 Optimisation

For the optimisation, the AnyLogic experiment employs advanced meta-heuristics and
the OptQuest solver (OptQuest Website, 2024) to perform optimisation procedures,
leveraging AnyLogic’s optimisation features. This procedure is specifically designed
to handle complex systems with numerous decision variables that present analytical
optimisation challenges.

Built on the simulation, the optimisation aims at determining the optimal configura-
tion of installed PV at the PoD level. The optimisation seeks to maximise REC benefits
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by finding the best combination of installed PV that balances production, demand, and
energy sharing within the REC. Key objectives include:

The optimisation problem is mathematically formulated as:

max
x

[T ′ − T (x)] (17)

with x = P PV
i ∀i = 1, . . . , n (18)

The optimisation aims to maximise the economic benefit of the REC by minimising
the total costs associated with REC operations T (x) relative to the costs in a non-REC
scenario T ′. This approach provides a decision-support tool for determining the opti-
mal PV capacity at each PoD to balance investment costs, energy flows, and financial
incentives while achieving maximum savings.

The optimisation begins with initializing the input data, which includes:

– Energy-related data: Hourly electricity demand profiles and hourly PV production
per kW at the PoD site.

– Economic data: Hourly energy prices, hourly purchasing costs, and other relevant
financial parameters.

The input parameters, specifically the range of PV capacities, are also defined. The
minimum value is set to zero (representing no installation), and the maximum value
corresponds to the highest feasible capacity based on physical constraints.

The optimisation employs advanced meta-heuristics and the OptQuest solver (Op-
tQuest Website, 2024) to perform an optimisation process based on AnyLogic’s optimi-
sation feature. The optimisation layer operates atop the simulation iteratively. The ob-
jective function, expressed in equation 17, is analogous to the Net Present Value (NPV)
of the investment, with a notable enhancement: unlike traditional NPV calculations that
consider only CAPEX as the first-year cash flow, the proposed formulation incorporates
both revenues and OPEX in the first year. This approach reflects the assumption that
installations occur at the beginning of the investment period.

The meta-heuristic optimisation layer addresses the complexity of the problem,
characterized by a large number of decision variables and interdependencies. The pro-
cess is visualized in Figure 3, which depicts the flowchart of the optimisation steps. The
steps are:

1. Simulation Execution: The simulation runs using initialized input parameters and
data, calculating the REC Benefits.

2. Evaluate Stopping Criteria: The optimisation process assesses whether the pre-
defined stopping criteria—such as reaching the maximum number of iterations,
achieving convergence thresholds, or applying a budget constraint to exclude finan-
cially unfeasible solutions and ensure alignment with the investor’s capacity—have
been satisfied. If these conditions are met, the process terminates and determines
the optimal sizes for the installed PV panels. Otherwise, it updates the input param-
eters and continues.

3. Update Input Parameters: PV capacities are iteratively adjusted within the de-
fined range to refine the solution and improve the objective function.
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4. Optimal Design Identification: The solution yielding the maximum REC Benefits
is selected, ensuring feasibility and adherence to constraints such as continuous
electricity demand coverage and financial limits.

Fig. 3. Flowchart depicting the optimisation process.

This dual-layer optimisation offers flexibility for addressing both economic and
operational objectives in REC design. By integrating simulation with meta-heuristic
optimisation, the methodology ensures a robust and adaptable solution tailored to the
specific characteristics and constraints of REC. The proposed approach is particularly
suited for evaluating and optimising REC performance over its lifetime, delivering prac-
tical insights for stakeholders and policymakers.

7 Experimental Work

The case study is situated in the Aosta Valley, Italy, a region that benefits from the
well-defined national regulations and incentives for renewable shared energy (Gianaroli
et al., 2024). Additionally, collaboration with C.E.G. enabled the use of energy smart
meter data from multiple locations. The data on PV production have been obtained
from the PVGIS website (PVGIS, 2024). The selected coordinates were 45.739° N and
7.426° E, corresponding to the Aosta Valley at an elevation of 528 meters, as provided
by the website. The solar radiation database employed PVGIS-SARAH2. The mount-
ing type chosen was Fixed, with optimised slope and azimuth values obtained from
the website for the location: Slope: 31 degrees (optimum), Azimuth: -20 degrees (opti-
mum). Furthermore, the PV technology considered was crystalline silicon with a 1 kW
system, with system losses set at 14.0% as the default value from the interactive tool.
The dataset comprises 8,760 hourly values for the years 2005-2020, with an additional
8,784 values for the leap years (2008, 2012, 2016, and 2020), accounting for the extra
day. To obtain an annual average, the hourly values were averaged across all years.

The collected one year of real-measured data consists of electricity power curves
from three PoDs located in Northern Italy. The dataset includes the following infor-
mation: sample date, PoD identification, daily-packed sample values of consumption
profiles, and energy measurement type. Data preprocessing has been necessary to con-
vert the raw data format into a tabular dataset. The time resolution from 15 minutes has
been converted into hourly averages to align with other data sources, such as market
energy prices. Data cleaning involved removing duplicates and filtering the PoDs with
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the highest number of data points in the studied time frame. The three selected PoDs,
shown in Figure 4 have 300 days of real-measured data from June 2023 to June 2024,
and represent: a larger consumer, a medium consumer, and a smaller consumer. In cases
of missing data due to gaps (less than 1% of the overall dataset), data imputation was
performed to create a complete one-year set of energy consumption values. The K-
Nearest-Neighbor model has been used as the imputer, one of the standard benchmark
methods studied in the literature (Kim et al., 2017).

Fig. 4. Exemplary hourly-averaged power profiles.

Table 1. PoD profiles statistics [W].

PoD min max avg std-dev
1 33 461 96 52
2 0 6477 1067 1005
3 0 2392 1024 334

Since the case study discussed in this paper is located in Italy, the annual incentive
is based on the computation of the hourly Italian Premium Tariff (TIP) (Gestore dei
Servizi Energetici, 2024b) over the course of a year. The financial incentive associated
with energy sharing inside the REC is calculated through two main terms, v1(t) and
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v2(t), in equation 19, which represent different contributions to the total revenue. These
terms depend on the energy shared by each PV plant, ēi(t), during the period t.

Iy =

∫
y

v1(t) + v2(t) dt (19)

The first term, v1(t), is calculated using TIPi(t), as shown in equation 20. For each
PoD i, TIPi(t) reflects a time-dependent incentive parameter that accounts for market
prices and other regulatory adjustments. Its calculation is provided in equation 21 and
incorporates several factors, including capacity thresholds, market conditions, regional
corrections, and governmental contributions.

v1(t) =

n∑
i=1

ēi(t)× TIPi(t) (20)

TIPi(t) = {min
[
CAPi,TPi +max(0, 180− pB(t))

]
+ FCR} × (1− Fi) (21)

The parameters CAPi and TPi depend on the installed PV capacity of the i-th PoD
and are divided into three categories summarized in Table 2.

Table 2. TIP table in C/MWh.

PPV
kW CAP C/MWh TP C/MWh

P < 200 120 80

200 ≤ P < 600 110 70

P ≥ 600 100 60

The parameter CAPi represents the maximum allowable incentive for the i-th PoD
based on its installed PV capacity, as defined in Table 2. TPi denotes a baseline incentive
that is adjusted based on the electricity market price, pS(t), at time t. If pS(t) is below
180 C/MWh, an additional incentive proportional to the difference (180 − pS(t)) is
added to TPi. This adjustment ensures that lower market prices do not adversely impact
the financial viability of energy sharing within the REC. The term FCR is a regional
correction factor. This factor is set to 10 C/MWh for RECs in Northern regions and 4
C/MWh for those in Central or Southern regions. Finally, the entire expression is scaled
by (1 − Fi), where Fi represents the percentage of governmental contribution toward
the capital expenditure of the i-th PoD. For simplicity, Fi is assumed to be zero in this
analysis, meaning no adjustments are made for governmental contributions.

This formulation ensures that TIPi(t) dynamically adjusts to market conditions,
regional differences, and capacity thresholds, providing a tailored incentive for each
PoD in the REC. The energy purchasing price pB has been set as 282.90 C/MWh, as
the average of the gross domestic energy price in 2023 (Autorità di Regolazione per
Energia Reti e Ambiente, 2023).
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On the other hand, the second term, v2(t), represents an additional financial incen-
tive associated with energy sharing and is directly linked to the avoidance of transmis-
sion losses. It quantifies this benefit, providing a financial acknowledgment of the value
created through local energy sharing. This term is calculated using a fixed coefficient,
Ktr, which applies uniformly to all PoDs, as shown in equation 22. Since Ktr is applied
uniformly across all PoDs, this term scales proportionally with the total energy shared
within the REC, ē(t), ensuring that larger RECs or those with higher energy-sharing
capacities receive greater incentives for avoiding transmission losses.

v2(t) =

n∑
i=1

ēi(t)×Ktr (22)

The coefficient Ktr is set at a constant rate of 10.57 C/MWh, based on 2023 reg-
ulatory values (Gestore dei Servizi Energetici, 2024a). This incentive mechanism is
designed to reward RECs for reducing energy transmission distances by sharing energy
locally within the community.

No specific requirement for checking whether the investment exceeds a certain bud-
get was included, as the objective was to compare the total costs with and without the
REC. This approach was chosen due to the lack of information about the users and their
budget. Furthermore, by not setting a maximum acceptable cost, it allowed for the de-
termination of whether the optimal solution provided by the model was the maximum
legal capacity of 1MW or an alternative option with lower power levels.

The optimisation has been applied to the specified input data. In this particular case,
the selected optimisation engine is Genetic, with the number of iterations set to 10,000.
The objective is to find the optimal combination of nominal PV capacity installed on
each PoD (ranging from 0 to 1 MW, as per Italian regulations, in increments of 1 kW)
to maximise the REC benefits while ensuring continuous electricity coverage for all
buildings.

No replacement costs have been factored in, as the lifetime of the PV system is
24 years, while the project’s lifespan is considered to be 20 years. d is the discount
rate, which has a default value of 7%, while the default percentage value p for OPEX
calculation has been assumed equal to 1 [%].

7.1 Results

Three distinct scenarios have been defined, each with a different hourly energy price.
Scenario 1 corresponds to 2023, the most recent year for which data is available, with
an average hourly energy price of 128 C/MWh over the entire year. Scenario 2 reflects
the maximum average hourly energy price over the past six years, which occurred in
2022, at 308 C/MWh. Scenario 3 represents the minimum average hourly energy price
over the same period, recorded in 2020, at 38 C/MWh. This approach allows for a
comparison under consistent conditions between the most recent year, as well as the
highest and lowest price years, to study the benefits of installing a REC under both high
and low energy price conditions with the actual incentives regulation.

The hourly energy price data, sourced from the Italian Energy Market Agency (Mer-
cato Elettrico, 2023), correspond to the entire years mentioned earlier and are based on
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Fig. 5. Hourly Energy Prices in C/MWh for different scenarios.

the North market segment. A sample of this data, representing January 1st, is shown in
figure 5.

First, the three scenarios without REC were first executed and the results are pro-
vided in Table 3. The analysis confirms that the results are closely aligned across the
scenarios since the model has been constructed with identical inputs except for varia-
tions in the hourly energy price, which, being the selling price of electricity, does not
affect the case without REC. Indeed, no yearly electricity selling is observed in any
scenario, as the case without REC does not permit PoDs to sell electricity. Scenario
3 exhibits a slightly higher total cost compared to Scenarios 1 and 2. This difference
arises due to 2020 being a leap year, including an additional day (February 29), which
marginally increases the yearly buying value and total costs.

Table 3. Comparison of all the scenarios No REC (Yearly).

Buying [C] Selling [C]

Scenario 1 5,333 0
Scenario 2 5,333 0
Scenario 3 5,344 0

The Table 4 highlights how variations in average energy prices influence the energy
dynamics within the REC. The optimisation results for Scenario 1 converge to a nominal
power of 1 kW for Power 1, 7 kW for Power 2, and 4 kW for Power 3. As the average
energy price increases, the nominal power of each PoD rises or remains constant across
all PoDs. However, the total installed power across the REC increases overall. This
increase in installed power results in a reduction in yearly electricity buying, decreasing
from 4246 kWh in Scenario 3 to 3765 kWh in Scenario 1 and 3636 kWh in Scenario 2.
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Table 4. Comparison of all the scenarios with REC.

Scenario Nominal Power [kW] Electricity [kWh]
P1 P2 P3 Buying Shared

Scenario 1 1 7 4 3,765 337
Scenario 2 1 9 5 3,636 284
Scenario 3 0 4 2 4,246 370

Table 5. Comparison of all the scenarios REC Benefits.

REC Benefit [C]

Scenario 1 7,309
Scenario 2 8,656
Scenario 3 4,179

This aligns with the principle that higher installed power reduces the need to buy energy
externally. Conversely, as the average energy price increases, the energy shared within
the REC decreases. This is due to greater self-consumption by individual PoDs, leading
to less energy available for sharing among them, which in turn reduces the incentives
received.

In Table 5 the REC benefits shown. They are highest when the average energy price
is maximum, decreasing as energy prices drop, from C8656 in Scenario 2 to C7309 in
Scenario 1, and finally to C4179 in Scenario 3. This demonstrates that RECs are more
financially advantageous in scenarios where average energy prices are higher.

8 Conclusions and Future Work

This paper presents a multi-method model for simulating and optimising RECs. Devel-
oped as part of the PROBONO project, this model represents a significant advancement
in the design and management of RECs by enabling detailed performance analysis. Sim-
ulation offers detailed insights into electricity demand, production, and energy sharing,
alongside evaluating the economic performance of RECs over time. Optimisation iden-
tifies the best renewable energy configurations to maximise REC participation benefits
while minimising costs.

The model’s adaptability and scalability make it suitable for diverse applications,
ranging from small to large-scale systems. It allows for adjustments to parameters such
as geographical location, PV capacity, and energy prices, ensuring applicability across
different regions and regulatory environments. Furthermore, the model’s ability to sim-
ulate dynamic agent strategies based on national regulations improves decision-making
and extends its potential for widespread deployment.

A dedicated tool has been developed to implement the model, allowing users to
apply it effectively in diverse contexts and scenarios, bridging the gap between the
theoretical framework and practical implementation. Validated through a case study in
northern Italy, this tool successfully optimises PV sizes across various energy price
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scenarios, showcasing the model’s applicability and effectiveness in balancing self-
consumption and energy sharing within RECs. The study underscores the critical role
of strategic planning in REC configurations to maximise both economic and environ-
mental benefits, with higher energy prices further enhancing the financial advantages of
REC participation.

Next steps involve expanding the model’s use across the PROBONO Living Labs
to assess its adaptability in different contexts. Integration of additional technologies,
such as heat pumps, wind turbines, biomass, and hydrogen systems, will advance the
model towards multi-sector integration. Geographic factors and advanced energy man-
agement systems, including district heating and storage solutions, will further enhance
its capabilities. Future studies will also explore the interaction between multiple RECs
to optimise energy production and consumption on a larger scale, increasing efficiency
and resilience.
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trica Gignod, Italy, for providing the data used in the real use case. This research was
conducted within the framework of The Integrator-centric approach for realising in-
novative energy-efficient buildings in connected sustainable green neighbourhoods, a
project funded by the European Union’s Horizon 2020 Research and Innovation pro-
gramme under Grant Agreement No 101037075. The authors acknowledge that this
output reflects only their views, and the European Union cannot be held responsible for
any use that may be made of the information contained herein.

References

AnyLogic Company (2024). Anylogic. https://www.anylogic.com/.
Autorità di Regolazione per Energia Reti e Ambiente (2023). Scheda tecnica:

L’aggiornamento delle condizioni di tutela, 4° trimestre 2023 nel dettaglio. Available at
https://www.arera.it/fileadmin/allegati/schede/230928st.pdf.

Barabino, E., Fioriti, D., Guerrazzi, E., Mariuzzo, I., Poli, D., Raugi, M., Razaei, E., Schito,
E., and Thomopulos, D. (2023). Energy communities: A review on trends, energy system
modelling, business models, and optimisation objectives. Sustainable Energy, Grids and
Networks, 36:101187.

Caliano, M., Delfino, F., Somma, M. D., Ferro, G., Graditi, G., Parodi, L., Robba, M., and Rossi,
M. (2022). An energy management system for microgrids including costs, exergy, and stress
indexes. Sustainable Energy, Grids and Networks, 32:100915.

Capros, P., Kannavou, M., Evangelopoulou, S., Petropoulos, A., Siskos, P., Tasios, N., Zazias,
G., and DeVita, A. (2018). Outlook of the eu energy system up to 2050: The case of scenar-
ios prepared for european commission’s “clean energy for all europeans” package using the
primes model. Energy Strategy Reviews, 22:255–263.
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abile. Accessed: 2024-12-08.

Gianaroli, F., Preziosi, M., Ricci, M., Sdringola, P., Ancona, M. A., and Melino, F. (2024). Ex-
ploring the academic landscape of energy communities in europe: A systematic literature
review. Journal of Cleaner Production, 451:141932.

Kim, M., Park, S., Lee, J., Joo, Y., and Choi, J. K. (2017). Learning-based adaptive imputation
method with knn algorithm for missing power data. Energies, 10(10).

Koltunov, M., Pezzutto, S., Bisello, A., Lettner, G., Hiesl, A., van Sark, W., Louwen, A., and
Wilczynski, E. (2023). Mapping of energy communities in europe: Status quo and review of
existing classifications. Sustainability, 15(10).

Lazzari, F., Mor, G., Cipriano, J., Solsona, F., Chemisana, D., and Guericke, D. (2023). Opti-
mizing planning and operation of Renewable Energy Communities with genetic algorithms.
Applied Energy, 338:120906.

Listopad, S. (2019). Architecture of the hybrid intelligent multi-agent system of heterogeneous
thinking for planning of distribution grid restoration. Baltic Journal of Modern Computing,
7(4):487–499.

Lode, M., te Boveldt, G., Coosemans, T., and Ramirez Camargo, L. (2022). A transition perspec-
tive on Energy Communities: A systematic literature review and research agenda. Renewable
and Sustainable Energy Reviews, 163:112479.

Mercato Elettrico (2023). Italian Electricity Market Website.
https://www.mercatoelettrico.org/It/Default.aspx.

Mihailovs, N. and Cakula, S. (2020). Dynamic system sustainability simulation modelling. Baltic
Journal of Modern Computing, 8(1):192–201.

OptQuest Website (2024). Optimizing AI/ML hyperparameters with SimWrapper and OptQuest.
https://bit.ly/optquest.

Orlando, M., Bottaccioli, L., Quer, S., Poncino, M., Vinco, S., and Patti, E. (2023). A framework
for economic and environmental benefit through renewable energy community. IEEE Systems
Journal, 17(4):5626–5635.

Pagnini, L., Bracco, S., Delfino, F., and de Simón-Martı́n, M. (2024). Levelized cost of elec-
tricity in renewable energy communities: Uncertainty propagation analysis. Applied Energy,
366:123278.

PROBONO Project (2022). PROBONO Project Website. https://www.probonoh2020.eu/.
PVGIS (2024). Pvgis official website. https://re.jrc.ec.europa.eu/pvg tools/en/.
REScoop Website (2024). Transposition tracker: Rec cec definitions.
Sanfilippo, S. and et al. (2023). Microgrid design optimization in benin within the leopard project:

Evaluating the impact of inaccurate load profile estimation. In Proceedings of the 2023
3rd International Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME).

Sassone, A., Ahmed, S., and D’Angola, A. (2024). A profit optimization model for renewable
energy communities based on the distribution of participants. In 2024 IEEE International
Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Com-
mercial Power Systems Europe (EEEIC / I&CPS Europe), pages 1–6.



220 Sanfilippo et al.

Sokolowski, M. M. (2018). European law on the energy communities: A long way to a direct
legal framework. European Energy and Environmental Law Review, 27(2):60–70.
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