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Abstract. Computer-aided diagnosis (CAD) systems based on machine learning methods are an 

important component of medical practice. Principal Component Analysis (PCA) and Fisher Linear 

Discriminant (FLD) are among the main linear methods for feature extraction and reduction in 

recognition tasks. In this regard, a comparative analysis of the efficiency of the systems constructed 

by PCA and FLD algorithms, respectively, is carried out. As a continuation of our previous research, 

a classification system model for Magnetic Resonance Images (MRIs) of the brain is built using 

FLD. By analogy, the built CAD system detects the presence of a glial tumor, with a subsequent 

two-level and three-level gradation according to the degree of malignancy of the tumor. The input 

images are again not pre-processed and additional wavelet features are used: the normalized energy 

of the subimages and their non-normalized Shannon entropy. The comparative analysis of the pair 

of CAD systems is carried out through the quality measures: F1-score and the Matthews Correlation 

Coefficient. The validation of the obtained results is based on the diagnosis by three independent 

radiologists. 
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1. Introduction 

The high resolution of the images obtained by the magnetic resonance technology makes 

them preferrable for medical imaging of the internal organs of the human body. But the 

vast number of images in medical databases greatly complicates the direct diagnostic 

activity of radiologists and leads to errors in analysing the specific data. Therefore, the 

development of computer-aided diagnosis (CAD) systems is an up-to-date task in the field 

of medical imaging in the relevant diagnostic task. 

The main stages of the operation of such systems are: 

 pre-processing of the image (noise removal, segmentation, etc.); 

 extraction of image characteristics, as well as their eventual reduction; 

 training through marked images; 

 grouping using a specific classifier. 

One of the most important stages in pattern recognition tasks, and therefore in CAD 

systems as well, is the extraction and reduction of identity features. The transition from 

the original sample space to a smaller dimensional space is related to the accuracy and 
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separability of the data. Fisher Linear Discriminant (FLD) and Principal Component 

Analysis (PCA) are the two main Machine Learning (ML) methods for reducing this 

dimensionality by linear projection. The goal of PCA is to find the most accurate 

representation of the data by minimizing the total projection error. The corresponding 

projection subspace is defined by the eigenvectors of the scattering matrix of the samples. 

FLD is a classification method indicating the design direction that maximizes the 

separability of the sample classes and minimizes the internal scatter within the classes, 

more precisely, it maximizes their ratio (Fukunaga, 1990). The analysis and comparison 

of their work efficiency with a certain database is a correctly set task. This problem has 

been mainly addressed in the framework of people identification. Studies whose 

experimental results show the better performance of FLD recognition algorithms 

predominate (Belhumeur et al., 1997). However, in (Martinez and Kak, 2001) experiment 

results are presented showing the superiority of PCA over FLD approaches. This is 

observed when the classes of the sample contain a small number of representatives or the 

sample is obtained by uneven selection. In (Eleyan and Demirel, 2006), two face 

recognition systems based on PCA and FLD algorithms using a neural network for 

classification are proposed. A comparative analysis of the performance of the proposed 

systems and the corresponding conventional systems based on the Euclidean classifier is 

made. In particular, the obtained results confirm the better performance of FLD systems 

in both classifiers. In (Eleyan, 2008), a comparative analysis is made between the PCA 

and FLD algorithms in the context of two approaches to solving the face recognition task: 

the classical approach, considering the whole face, and the method proposed there dividing 

the face into regions. In particular, the obtained results show that the FLD approach is 

more effective than the PCA one on large face databases. For example, based on the 

conducted t-test, within the second approach, this superiority is expressed by more than 

16 % . Recently, interest in these problems has been confirmed in (Mostafa and Hossain,  

2020), where the performance of PCA, FLD and simple projection approaches for face 

recognition is investigated. The conducted experiments determine the average efficiency 

of the three algorithms depending on the dimension of the corresponding projection space. 

In particular, the better performance of PCA is confirmed when the number of images is 

small or the sample is uneven with respect to the underlying distribution. 

Based on previous research (Petrov, 2023), the task is set to conduct a comparative 

analysis of the performance of a pair of CAD systems based on PCA and FLD approaches, 

respectively, for the detection and classification of glial brain tumors. 

In (Petrov, 2023), a model is proposed of a two-level CAD system for classifying MRIs 

of the brain. The classification system uses image descriptors extracted from the PCA 

projection space. In fulfillment of the given task, a model of an analogous system is built 

through the FLD approach. The comparative analysis is performed with the same samples 

of training and test images, keeping the quality measures: F1-score and the Matthews 

Correlation Coefficient (MCC).  

In the rest of the section, some concepts and publications are introduced in order to 

clarify the content of the sections to come. Timely diagnosis of any tumour entity is 

extremely important for the outcome of the treatment of the disease. Brain tumours are 

grouped depending on their origin, place of occurrence, aggressiveness of development, 

etc. The subject of this work is the task of the classification of glial tumours arising in the 

auxiliary cells (glia) of the cerebral cortex. Depending on the type of its germ cell, the 

considered tumours are divided into Astrocytomas, Oligodendrogliomas and 
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Ependymomas. According to their malignancy and distribution in body tissues, the World 

Health Organization (WHO) groups them into four classes (Torp et al., 2022): 

 Grade I are usually benign and surgically removable tumours; 
 Grade II includes astrocytomas, oligodendrogliomas, and oligoastrocytoma 

(mixed cell type); 
 Grade III comprises of anaplastic astrocytomas, anaplastic oligodendrogliomas, 

and anaplastic oligoastrocytoma; 
 Grade IV contains the most aggressive glial tumour called glioblastoma 

multiforme. 
The tumours of the first two classes are defined as low-grade gliomas (LGG) and those 

from the last two classes are high-grade gliomas (HGG). 

There are numerous publications that have proposed various variants of CAD system 

architectures. In connection with this work, we will give a brief review of two recent 

overview studies that present sufficiently the engineering methodologies for brain tumour 

diagnosis. 

In (Toufiq et al., 2021), a systematic study of brain tumour classification systems 

presented in recent years is conducted. The main components of the CAD system are 

described, as well as the techniques that accompany them. The used classifiers are 

examined in detail, and a comparative analysis is made between the supervised and 

unsupervised clustering methods. The review of the brain tumour classification systems 

in use contains 79 sources. The second publication is (Kaifi, 2023), in which the types of 

brain tumours and the ways of their detection through imaging methods are presented. An 

in-depth analysis of the software used in CAD systems is done. A number of brain tumour 

segmentation and classification methods using the techniques of machine learning and 

deep learning is reviewed. The corresponding results for the obtained accuracy of these 

methods are presented, as well as the medical bases used. The literature review contains 

127 sources and presents the latest achievements in the field under consideration. In 

addition, let us note the existence of some CAD systems for the classification of brain 

tumors, in which the preprocessing step is not performed (Sarhan et al., 2020; Petrov, 

2023). 

The rest of the document is organized as follows:  in the next section, the main steps 

of Fisher's linear discriminant analysis for extracting the classification features are given; 

in Section 3, the problem between sample size and data dimensionality for clustering is 

discussed; the methodology of the proposed system is discussed in the fourth part; and the 

results of the conducted experiments, their evaluation and the announced comparative 

analysis are the subject of Section 5. The paper ends with some concluding remarks. 

2. Fisher′s Linear Discriminant 

We will now briefly discuss FLD as a supervised feature extraction method in the 

projection space. The considered MRIs can be represented as a one-dimensional vector of 

its pixels by sequentially connecting the rows (columns) of the N N  matrix of these 

pixels, as 𝑥𝑖 = [𝑝1, 𝑝2, . . . , 𝑝𝑑]
𝑇 , where 

2 .d N  Then the training sample containing n  

images from the K  class can be written in the form  
1

, ,
n

i i i
X x l


  where ,d

ix R  and 

the labels  1,2,..., .il K  If  |1 , ,k i k iX x i n l k     then 1
K
k kX X U  and 
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K

k

k

n n



  where .k kn X  To formulate Fisher's criterion (Fukunaga, 1990), it is 

necessary to define the following two matrices: the within-class scatter matrix – 

  
1

;

k

K
T

w k k

k x X

S x x 

 

      (1) 

and the between-class scatter matrix – 

  
1

,

K
T

b k k k

k

S n    


       (2)  

where k  and   are respectively the mean values of the k -th grade data and the entire 

training sample. 

Fisher's criterion gives the optimal direction of projecting the original features in a 

low-dimensional subspace in which the between-class scatter is as large as possible and 

the within-class scatter is the smallest possible. If the subspace for the FLD is determined 

by the set of vectors 

1 2,[ , ..., ] , min( , 1),d p
pW w w w R p d K   ¡    (3) 

then the solution is obtained by maximizing the function 

 
 
 

det
.

det

T
b

T
w

W S W
J W

W S W
     (4) 

The matrix (3) is constructed from the generalized eigenvectors w  by  , ,b wS S  

corresponding to the generalized eigenvalues ,
T

b

T
w

w S w

w S w
   i.e. 

  .b wS w S w       (5) 

In the case where matrix wS  is invertible, equation (5) can be written as a standard 

equation for finding eigenvectors and eigenvalues of matrix 
1

w bS S
– 

1 .w bS S w w        (6) 

Under binary classification ( 2K  ), the optimal design direction can be obtained 

directly from equation (6′) – 

 1
1 2 .ww S         (6′) 

The representation of the original data kX  in the space 
pR  generated by the vectors  

 1,..., ,pw w is given by the formula (7) – 

, 1,..., .T

k kY W X k K       (7)  

Next, each test image tx  needs to be projected in an analogous way into space .pR  

The distribution of tx  is based on the Minimum Distance Classifier (MDC) by assigning 

it the label ,
k

l   where 
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 arg min .p

T

k t
k

k w x
R

  
¡

    (8) 

3. The Small Sample Size Problem 

The problem of the small sample size (SSS) is a major challenge when using FLD. If the 

dimensionality of the original data exceeds their number ( d n ), then the within-class 

scatter matrix is singular –  det 0.wS   Numerous methods have been developed to 

overcome the SSS problem, which appears in tasks from various fields, such as face 

identification, text recognition, bioinformatics, seismology, etc. A detailed overview of 

these methods can be found, for example, in (Sharma and Paliwal, 2015). Two such 

methods, which are used in this work, are presented. 

3.1. The Moore-Penrose pseudoinverse matrix  

A brief description of the Moore-Penrose (MP) pseudo-inverse for the matrix 

.d d
wS R  ¡  is given in (Wu, 2017).  For this purpose, the spectral decomposition 

(diagonalization) 
T

wS U U   is used, where   is a diagonal matrix containing the 

eigenvalues of ,wS  and the columns of the orthogonal matrix U  contain their respective 

eigenvectors. Let   1 2, ,..., ,
Т

ddiag     then its MP pseudo-inverse is set as 

1 2, ,..., ,
Т

ddiag             
 where 

 

1

0 0
,

i

i

i

if

otherwise











 


     (9) 

and the MP pseudo-inverse of wS  is .
w

TS U U    It should be noted that, if wS  is not 

singular, then 
1

w w
S S   . 

3.2. Robust FLD Model 

In (Deng et al., 2006), the Robust Fisher Linear Discriminant Analysis (RFLDA) method 

is proposed for the case of a singular (or close to singular) matrix wS . Again, the spectral 

decomposition of the within-class scattering matrix is considered, and its eigenvalues are 

sorted – 1 2 ... d      , as well as their corresponding eigenvectors. In this case, the last 

eigenvalues of the matrix can compromise the results of the discriminant analysis, so in 

RFLDA they are replaced by a certain unified value. Based on statistical analysis, the 

number d 
 of the main eigenvalues is determined, and the remaining  d d   are either 

very small or equal to zero. After conducting experiments, the authors propose the 

determination of d 
 by minimizing the function  
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so that its values remain within the interval  0.9,0.99 .  The remaining  d d   

eigenvalues are then replaced by 
1

1
.

d

j

j dd d
 







 




  Thus, the matrix wS  is evaluated 

by  

,T

wS U U        (11) 

where  1,..., , ,..., ,
T

d
diag    

        and the design directions are set by the 

generalized eigenvectors of  , .b wS S 
 

4. Methodology 

In this part, the methodology of the proposed system is explained. Its design is presented 

in Fig.1. At first, the brain MRIs selected in the training sample are divided into normal 

and abnormal, according to the absence or presence of a glial tumour. In the next step, the 

abnormal images are grouped into two or three classes, depending on the extent of the 

glial tumour present. 
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Figure  1. Block diagram of the proposed system. 
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4.1. Tumour Detection Stage 

Let the training sample of MRIs that enter the input of the CAD system be 
2

1

,k

k

X X


U  

where  |1 ,k i k iX x i n l k     and .k kn X  The required image features are 

extracted using FLD. Projecting the original data X  into space R  is performed according 

to equation (7). For the classification stage, it is necessary to determine the centroids 
T

kw   of each of the two classes ,kX 1, 2k  . Next, the image received for classification 

tx  is projected in an analogous way in R  and its belonging to one of the two classes is 

determined by MDC and the corresponding weighted metric. 

4.2. Tumour Classification Stage 

Let aX  be the array of MRIs with malignant entities obtained at the first stage of the 

operation of the CAD system. Then the training sample for the second classifications will 

have the type 
1

,
k

K

a a

k

X X


U  where 2 3K K    and  |1 , ,
k ia a k iX x i n l k   

,
kk an X  1,..., .k K  In addition to FLD, the Discrete Stationary Wavelet Transform 

(DSWT) is also used to extract the required image features (Mallat, 1998). The detailed 

wavelet coefficients are indicators of the local peculiarities of the signals, therefore only 

the three sub-bands LH, HL and HH are considered in this work (see Fig.2). 
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Figure  2. MRI decomposition by DSWT. 
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The extracted energy and entropy features are added to those obtained by FLD to 

construct the image descriptor vector. For the second part of this vector, the normalized 

energy of the sub-image 
sr

P  –  2 2

,

, ,
s sr r

q m

E d D q m   is used, where the corresponding 

wavelet coefficients are indicated by 
sr

D . The resulting energy characteristics are 

 , 1, 2,3
sr

E r   and 1,..., ,s L  where L  is the maximum decomposition level. The third 

part of the descriptor contains the entropy features   ,
sr

H  1, 2,3,r   1,..., ,s L  where 

   2 2

,

, log ,
s s sr r r

q m

H D q m D q m    is the unnormalized Shannon entropy of the subimage 

.
sr

P  

Similarly, the feature vector of a random test image ,tx  is obtained, and its belonging 

to the corresponding class is again determined by MDC. The metric used in formula (8) is 

the Normalized Euclidean Distance (NED). 

5. Comparative Analysis and Discussions 

In the proposed system, supervised learning is carried out, allowing to take into account 

the possible errors of the classifier. The performance of the CAD system is evaluated by 

the measures F1-score and MCC, which are predetermined by the goals set in this work. 

The first one is the harmonic mean of precision and recall, proportional to the quality of 

the classifier. The second measure reflects the relationship between the observed and 

predicted data using the entire confusion matrix and is unaffected by the dimensionality 

of the classes. Besides, it should be noted that, when conducting the comparative analysis 

of the performance of the pair of CAD systems, the values of the quality measures were 

obtained using the expert opinion of three radiologists.  

5.1. Accuracy in Tumour Detection 
 

The presented results needed to perform the requested comparative analysis were obtained 

with the same collection of 340  brain MRIs (Petrov, 2023), 200  of which represent the 

training sample. T1-weighted (T1W), T2-weighted (T2W) and T2-sensitive (T2F) images 

were used, each of 256 256  pixels in size in DICOM format. The training samples were 

labelled by three independent experts, the sample itself being balanced. The data were 

obtained from the following publicly available medical databases (Pedano et al., 2016; 

Scarpace et al., 2019; Erickson et al., 2017) and from the Imaging Department of Dr Stefan 

Cherkezov Hospital of Veliko Tarnovo. Fig. 3 shows MRIs containing glial tumours of 

the following types: astrocytoma, oligodendroglioma and gliobastoma. 

When using the F1-score and MCC measures to evaluate binary classifications and 

their corresponding confusion matrices, their sensitivity to the balance of the dataset 

should be considered. MCC uses all elements of the confusion matrix, making it robust to 

unbalanced samples. 
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Figure  3. Glial tumors: a) low-grade astrocytoma; b) low-grade oligodendroglioma; c) high-grade 

astrocytoma; d) high-grade oligodendroglioma; e) gliobastoma. 

 

 

The results of the comparative analysis in the tumour detection stage are presented in 

Table 1. Its data show that the FLD methods outperform the PCA method by an average 

of 3.23%  and 11% , respectively, for F1-score and MCC. Furthermore, the RFLDA 

method shows better classification than the FLD–MP method in both evaluation metrics. 

 

Table 1. Values of the performance measures of the classifier for tumour detection 

 

Methods 
Performance  metrics 

MCC F1-score 

PCA (Petrov, 2023) 0.82 0.93 

Proposed FLD - MP 0.89 0.95 

Proposed RFLDA 0.93 0.97 

        (d)                                               (e) 

(a)                                                    (b)                                                       (c) 
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5.2. Accuracy in Tumor Classification 

In this part, the performance of the CAD system in categorizing the glial tumour grade is 

investigated. The training sample is obtained from the original one, keeping the malignant 

tumour MRIs. The test set contains 100  slices of low-grade and high-grade gliomas. 

The results of the comparative analysis for the second classification are presented in 

Tables 2 and 3. The data show that for these classifiers too, the FLD methods perform 

better, on average by 3.8%  (F1-score) and by 3.2%  (MCC). Again, the better performance 

of the second method is confirmed. The data from the additionally performed three-level 

classification show the superiority of the RFLDA method over the FLD-MP method, with  

 

Table 2. Indicators in the two-stage classification of the tumor 

 

Methods 
Performance  metrics 

MCC F1-score 

PCA (Petrov, 2023) 0.78 0.92 

Proposed FLD - MP - MP 0.8 0.95 

Proposed RFLDA 0.81 0.96 

 

Table 3. Indicators in the three-stage classification of the tumor 

 

Methods 
Accuracy in tumour grading [%] 

II grade III grade IV grade 

Proposed FLD - MP 88 79 91 

Proposed RFLDA 91 85 94 

 

 

 

the corresponding percentage expression being 3.4%  (for II grade), 7.6%  (for III grade) 

and 3.3%  (for IV grade). 

5.3. Discussions 

The objective set in Section 1 and the descriptors used justify the comparative analysis 

between the PCA and FLD methods in the tasks of glial tumours detection and clustering. 

These are two projection methods of ML to reduce the dimensionality of the original data 

space. PCA maximizes the accuracy of the samples in the projection space while 

preserving the variance of the original data. FLD is a supervised classification method that 

tries as much as possible to preserve the necessary information to separate the classes. 

The basis for the comparative analysis is that in the present work both methods are 

used to determine the centroids of the classes. From the data presented in the above tables, 

it can be seen that the classifiers based on FLD methods are more efficient than those using 

PCA. The values in each of these tables are obtained by averaging the results of twenty 

tests with data randomly generated from the respective test samples. From a computational 
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point of view, the mathematical implementation of the FLD algorithm requires a 

significant amount of RAM, even for images with a resolution of 256 256  pixels. An 

additional difficulty is the singularity of the scattering matrix wS  due to the SSS problem. 

6. Concluding Remarks 

Because FLD is a direct class separation method and PCA is a method representing data 

as a whole, the former is usually assumed to be superior in recognition tasks. This 

hypothesis is also confirmed by the comparative analysis carried out in the previous 

section. But as it was stated in Section 1 there are cases when PCA outperforms FLD in 

some tasks. For example, if there is a small-size training sample (unrepresentative) or if it 

is unevenly distributed across classes (unbalanced). The proposed analysis can be 

extended by examining the performance of the methods: as a function of the sample size; 

at different class distributions or at additional wavelet features obtained with other 

multiscale transformations. 
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