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Abstract. This study addresses a statistics-based testing procedure aimed at optimizing quality 

assurance for custom-made and made-to-measure (CM/M2M) clothing patterns. The procedure 

focuses on identifying machine-detectable issues in patterns before they progress to the expensive 

and time-intensive manual tailoring phase, thereby streamlining the testing cycle and reducing both 

time and costs. By analysing patterns for individuals with similar body measurements and applying 

statistical methods, the study identified potential design errors in pattern pieces based on measurable 

properties such as perimeters, areas, and contour-defining lines. Advanced statistical techniques, 

including residual analysis, Cook's distance, and Mahalanobis distance, were employed to detect 

outliers and pinpoint potential construction errors. Further analysis of line properties using 

predictive models—such as linear regression, random forests, generalized additive models (GAM), 

and rpart decision trees—revealed that a high frequency of outliers often correlates with construction 

anomalies. This research demonstrates that predictive modelling and outlier detection are effective 

tools for identifying errors in CM/M2M pattern construction, contributing to improved garment 

accuracy and production efficiency. 

Keywords: Custom-made Clothing, Made-to-measure, Garment accuracy, Statistical testing, 

Outlier detection, Predictive modelling 

1. Introduction 

Personalized or custom-tailored clothing patterns are created in various contexts — both 

in traditional custom clothing production (the atelier model, where individual 

measurements are taken from the client and the garment is constructed according to these 

specific measurements), as well as in fashion houses (for small-scale clothing collections 

and individually crafted, high-quality designer garments). Additionally, specialized 

companies offer clients the option to purchase custom-designed patterns, often in digital 

formats. 

According to a 2024 report (Sneha, 2024) by Cognitive Market Research, the global 

market for custom-tailored clothing was valued at approximately $50 billion, with a 
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projected average annual growth rate (CAGR) of 10%. Researchers believe that, with the 

rise in digital accessibility, industrially manufactured custom-sized garments will 

gradually replace the current dominance of mass-produced standard-size clothing. This 

shift will significantly alter consumer purchasing habits, clothing production methods, and 

associated global supply chains. People will no longer need to buy off-the-rack clothing 

that only partially meets their preferences or fits their body size; instead, they will be able 

to order any desired garment (in a design of their choice, possibly even self-designed) 

tailored precisely to their measurements and delivered directly from the manufacturer. 

The primary challenge in advancing the custom-made/made-to-measure (CM/M2M) 

clothing segment (McKee, 2024) lies in the objective difficulty of ensuring that garments 

sewn from automatically generated (algorithm-based) clothing patterns really fit the 

individuals for whom they are intended. In traditional custom tailoring, fit verification 

occurs manually — the garment is created, tried on by the wearer, and then altered 

(sometimes in multiple iterations) until it fits perfectly. However, if a pattern is generated 

automatically for a person located at a geographical distance, the fitting and alteration 

phase becomes not only costly (fabric, time) but may also be impractical (if the person is 

unavailable for fittings). 

A solution must be found to ensure that the algorithm used to generate custom clothing 

patterns can, with a high probability, produce a pattern that fits well. Complete verification 

of the algorithm’s accuracy could theoretically be achieved by sewing a garment for every 

person on Earth, but this is, of course, an unrealistic task.  

The study describes how to accelerate the testing/improvement cycle for creating 

personalized products (clothing patterns). In today’s fashion industry, developing such 

products involves a highly manual and iterative quality improvement process 

(sewing/fitting). The testing method described in the study, which is based on statistical 

methods, has the potential to speed up and thereby reduce the cost of the 

testing/improvement cycle for such products, as it allows manual fitting to be deferred 

until automatically identifiable issues have already been resolved. 

The statistical methods described in the study can utilize variables that are either 

already available or can be easily obtained during the product construction process. The 

study concludes that, in practical application, the number of indicators to be tested will be 

significant and that these must be interpretable within the context of their application. 

Therefore, the main challenge of the outlined testing method is to quickly identify and 

exclude from further testing those indicators that are not useful for identifying issues in 

the tested pattern within the context of statistical methods. 

The variables used in this testing method can be applied with any personalized garment 

construction system that produces results in vector graphics form. The description and its 

implementation can also be adapted for other CAD systems that create two-dimensional 

construction images from interrelated input data. 

1.1. Problem Identification  

Compared to a typical situation in software testing, quality assurance of a CM/M2M 

product under development faces several specific challenges — both in terms of input data 

and in evaluating the results achieved.  
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The input data for CM/M2M products (garments) consists of body measurements of 

individuals to be clothed where some of these measurements might be specific to the con-

struction method used. Since a CM/M2M product is generally developed with the intent 

to be suitable for a large part of the population (e.g. all adult women), there is a need to 

provide data that covers the potential market of the product’s potential buyers regarding 

the relevant body measurements.  

Regardless of whether the CM/M2M product is offered to the customer as a finished 

garment or merely as a CM/M2M pattern, its quality is ultimately assessed by how well 

the resulting garment fits the individual. In addition to the physical process of tailoring/fit-

ting, there should also be considered that the quality of fit is only partially quantifiable. 

We will discuss these specific aspects of quality assurance for CM/M2M products in 

detail in the following sections and derive an accelerated quality assurance procedure from 

this analysis. 

1.2. Main Idea of Solution  

The procedure presented in the study aims to detect machine-identifiable issues within the 

CM/M2M product before the costly tailoring/fitting process begins. The concept is based 

on the assumption that the CM/M2M patterns for two individuals with similar body 

measurements must also be similar. Assuming it’s possible to generate automated quality 

measurement indicators of “similar” or “different” for patterns, statistical methods are then 

used to identify test cases that deviate from the expected results. 

Although this approach would not allow for assessing the overall quality of the pattern 

in terms of fitting, it holds significant potential to speed up the testing/improvement cycle 

for CM/M2M products. This approach would postpone the expensive and entirely manual 

fitting checks until after addressing the more apparent quality and measurement data issues 

in the patterns, which can be identified automatically. 

2. Quality Control of Patterns 

2.1. CM/M2M patterns used in the study 

The procedure for statistics-based, automated problem identification presented in this 

study (hereafter referred to as the Testing procedure) is derived step by step. Initially, the 

simplest possible variant is applied to a straightforward yet practically relevant example: 

a basic skirt pattern. Even from this simple application, prerequisites for the use of 

statistical methods in quality assurance can be deduced. 

While the first application case utilizes only two characteristics that define the size of 

the patterns, the second application case, involving the basic bodice pattern, also takes the 

shape of the patterns into account, significantly increasing the number of characteristics 

considered. 

To avoid the implicit dependency of the Testing procedure on the construction method 

used by the authors for pattern creation, the procedure is also applied to similar patterns 

from a publicly available CM/M2M product study (Harwood et al., 2020), specifically the 

basic skirt pattern and the basic sweatshirt pattern (including two sleeve variations) 

provided with this solution. For this purpose, the .dxf files generated by this system were 
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first converted into .svg files; the details of this process can be found in (Neimanis et al., 

2025) – refer dxftosvgconverter.zip. 

All the aforementioned examples used in this study are base constructions (patterns 

that serve as base to develop more complex garments) consisting only of one or few pattern 

pieces. They were selected with the goal to derive the Testing procedure but not to 

overload it. The practical application of the Testing procedure in real-life CM/M2M 

product development is foreseen in upcoming research. 

2.2. Input Data used for the study 

In the development of CM/M2M products, body measurements pertaining to the person to 

be clothed serve as input data. Unfortunately, CM/M2M products lack a standardized 

system for determining body measurements — each manufacturer uses its own, distinct 

set of measurements and interpretations (Januszkiewicz, 2021).  

However, we can reasonably assume that each CM/M2M product manufacturer has 

access to their own set of body measurement data and is aware of the quality of their test 

data. Furthermore, it can be assumed that they are able to obtain measurement data from 

new individuals involved in the process (for example, new clients purchasing patterns or 

ordering custom garments online). 

In another study (Bicevskis et al., 2024), the authors of this study analyzed the 

possibilities to extract test data from CM/M2M product development data. As result of 

that study a test database with 469 female body profiles was accessible, each profile having 

37 measurements. As discussed in details of that study the data covers a wide range of 

female body types, but the quality of that data is not homogenous. In Section 2.4, we will 

demonstrate what impact low-quality input data can have on the Testing procedure 

described here. 

In order to use the second CM/M2M pattern-generating system (Harwood et al., 2020) 

discussed above (refer Section 2.1), some of the measurement data had to been transferred 

matching the definitions of that second system.  

2.3. Determining the Quality of Patterns  

Determining the quality of patterns as a product is quite complicated at its core, as this 

intermediate product's quality can ultimately only be assessed by a person after trying on 

the clothing made from the pattern (a person visually confirms whether the garment fits 

the specific individual or not). Therefore, the quality of the pattern can only be partially 

determined by quantitatively expressible and measurable indicators, and subjective factors 

play a significant role. 

Garment fitting has been extensively studied, analyzing both its subjective factors (Fan 

et al., 2004), (Hernández, 2018), (Zhang et al., 2011), (Brownbridge et al., 2013) and 

attempting to create objectively verifiable criteria (Sayem et al., 2017). Although there 

have been initial steps toward the digitalization of fitting (WEB (a) (WEB (b)), (WEB (c)), 

there is currently no convincing alternative to the iterative sew/fit approach (Keefe et al., 

2017), (Lagė et al., 2020), which is a significant barrier to the development of CM/M2M 

products (new clothing models) and a crucial cost factor in the overall development of 

such clothing design products. 
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The decision that a garment is "sufficiently well-fitting" is made during a fitting 

process conducted by a person, often under variable conditions (such as the fabric used, 

lighting, available time, etc.). Even if the "sufficiently well-fitting" decision is made by a 

qualified specialist, it will never be entirely free of subjectivity. Given this subjectivity in 

fitting practices, there has yet to be a universally adopted, quantitatively expressible, and 

practically measurable indicator that could serve as the basis for making a "sufficiently 

well-fitting" decision. 

Attempts have been made to overcome subjective factors and evaluate quality with 

quantitative indicators  (De Silva et al., 2024), (Wang et al., 2006), for example, by 

determining the pressure exerted by the garment or measuring the space between the body 

and the garment. However, the practical application of these indicators is challenging — 

their assessment cannot be conducted without additional labor and/or technical equipment. 

In the absence of digital alternatives, it is advisable to apply the manual, costly 

tailoring/fitting process only after automatically detectable issues have been resolved. In 

the following, we will demonstrate how it is possible to identify potential construction 

deficiencies in the CM/M2M product using purely computer-based methods by analyzing 

the properties of the generated patterns.  

2.4. Fault Diagnosis on Piece Level 

To identify potential design errors based on the created patterns, it is first necessary to 

express the dissimilarity of two patterns generated for two individuals. 

Since, in a computer-aided process, we are naturally unable to apply the subjective 

criteria discussed in Section 2.3, we require quantitatively expressible comparison metrics.  

Viewing patterns as sets of two-dimensional images makes comparing them a complex 

task. It is immediately clear that this comparison problem can be reduced to examining 

each pattern piece individually. 

 

 

 
 

Figure 1. Samples of pattern pieces and their outer contours 
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From a purely mathematical perspective, there exist numerous methods to compare 

two graphics in a two-dimensional space; however, we will limit ourselves to those that 

are both professionally justifiable and practically computable. 

Each piece, in the context that interests us in terms of its relevance and applicability 

from a professional perspective, consists of a line describing its outer contour, which 

represents the boundary of the fabric to be cut. The other lines and symbols visible in the 

pattern image merely provide supplementary information for the pattern user and are 

irrelevant in this context. 

Defining the notion of “identical” in terms of pattern use as an abstraction for cut fabric 

is straightforward: two patterns are identical if the shape and size of their outer contour 

lines are the same. 

Note: By default, we assume that the orientation of comparable pieces on the fabric 

(i.e., the grainline direction) will always be the same across different input data sets, 

meaning that comparable pieces will not be rotated. 

However, if we want to determine how “different” two pieces are, we quickly realize 

that quantifying their difference with a single number is not feasible. Even a simple piece 

like a rectangular belt demonstrates this; the shape and size of the belt can only be 

described using at least two numbers (e.g., length and width). This simple rectangular 

example highlights that it’s impossible to define a single universally applicable value to 

characterize the difference between two pattern pieces. Therefore, we will examine 

differences based on various indicators, guided by both the application context and the 

practical consideration that these indicators must also be computable. 

When searching for parameters that can characterize a piece, we intuitively consider 

its Perimeter (the length of the outer contour) and the Area (surface) it encompasses. These 

two parameters are advantageous, both because they are clearly suitable in this context (as 

the size of a person increases, more fabric is required, leading to larger Perimeters and 

Areas) and because they can be easily obtained — either directly from the CM/M2M 

pattern-generating system or, in any case, from vector data found in the file representing 

the pattern. 

This leads to the following research question: 

 

Research question 1: How and under which requirements potential errors in the 

construction of a CM/M2M pattern can be identified using quantitatively measurable 

properties of pattern pieces? 

 

To initially focus on the approach, we chose a pattern-making program of medium 

complexity (base pattern for skirts) as the first application example, whose quality is good 

based on practical experience. The same data, which was already used in the validation of 

input data (refer section 2.2), was used as input data here. Thus, patterns were generated 

for 469 datasets of different quality, and the length of the Perimeter and the Area for the 

two pieces FRONT and BACK were calculated. 
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Figure 2. Base skirt pattern sample 

 

The results were analyzed using the statistical programming language R (R Core Team, 

2024). It was calculated how much the Perimeter and Area of each piece correlate with 

the measurements used to generate them. The Area showed a higher correlation than the 

Perimeter. The Pearson correlation coefficient (R Core Team, 2024) for the BACK piece 

Area was 0.955, while for the FRONT piece it was 0.956. Lower results were found for 

the correlation of measurements with the Perimeter of the pieces: FRONT - 0.614, BACK 

– 0.865. 

 

 
 

Figure 3. Correlation of the Area of the skirt’s piece FRONT 

with the measurements 
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Figure 4. Correlation of the Area of the skirt’s piece BACK 

with the measurements 

 

 

 

 
Figure 5. Correlation of the Perimeter of the skirt’s piece FRONT 

with the measurements 
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Figure 6. Correlation of the Perimeter of the skirt’s piece BACK 

with the measurements 

 

A statistical model was repeatedly created and trained for each piece and dependent 

variable (Perimeter or Area).  

Initially using a linear regression approach (the lm() function (R Core Team, 2024)), 

followed by use of predictive models with resampling and hyperparameter tuning (the 

train() function (Kuhn, 2008)) the predicted results were compared with the actual ones 

and iteratively improved.  

The summary indicators of each model (Residual Standard Error, Coefficient of 

Variation, R², Adjusted R², F-statistic, p-value) were also recorded, and the maximum, 

minimum, and average deviations from the regression line were calculated. 

 

 

 
 

Figure 7. Main statistical indicators of the Area and Perimeter  

regression models for the FRONT and BACK pieces 

 

 
 

Figure 8. Deviation indicators from Area and Perimeter  

regression lines for the FRONT and BACK pieces 
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The finally reached indicators are visible in the above table (Remark: the red and green 

arrow icons indicate the model’s performance compared to the previous iteration). The 

according R script is available in (Neimanis et al., 2025) – refer R scripts.zip. 

 

Various approaches to identifying outliers were tested:  

(i) Residuals (WEB (d)) – differences between predicted and observed values. The 

highest 2% were marked as outliers. The results were visualized with a Q-Q plot(Wilk 

and Gnanadesikan, 1968), and points (profiles) far from the blue line can be considered 

outliers. 

 

 
 

Figure 9. Visualization of the residuals  

for the Area of FRONT piece with a Q-Q plot 

 

(ii) Cook’s distance(Cook, 1977) - helps to identify data points that could significantly 

influence the results of the regression model. Outliers are determined using the formula   

4 / (n - k - 1), where the number 4 is used as an empirical constant often applied to identify 

influential data points in a regression model; n is the number of observations in the dataset; 

k is the number of independent variables in the model (number of regression coefficients 

excluding the intercept). In this case, data points whose Cook’s distance exceeds the 

calculated threshold value are considered influential. In figure 10, the threshold is 

illustrated with a red dashed line. There are quite a few outliers but there exist some 

distinctly influential data points between them.  
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Figure 10. Visualization of Cook’s distance for the Area of FRONT piece 

 
(iii) Mahalanobis distance (Mahalanobis, 1936) - used to identify outliers in 

multidimensional data. It is calculated in R using the mahalanobis() function (R Core 

Team, 2024) which uses data matrix, the mean vector, and the covariance matrix of the 

residuals. The highest 2% are marked as outliers. 

 

 

 
 

Figure 11. Visualization of Mahalanobis distance for the Area of FRONT piece  
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Outliers identified by Cook’s and Mahalanobis distances were also recorded in a 

scatter plot, which visualizes how consistent the data is for training and predicting with 

the linear regression model. 

 

 
 

Figure 12. Scatter plot of Cook’s and Mahalanobis distances for the Area of FRONT piece  

 

The output of all outlier detection methods were combined and summarized in EXCEL 

tables, which are available in (Neimanis et al., 2025) - refer Perimeter and Area 

attachments.zip. 

 

 
 

Figure 13. Identified profiles with the highest error probability for the  

Perimeter and Area of the FRONT piece  
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2.5. Fault Diagnosis on Line Level 

The previously analyzed variables Perimeter and Area can only be used as indicators of 

large structural deviations, as neither of these quantities considers the possible shape 

differences of any two pieces. Therefore, in further analyses, we will focus on how to also 

consider shape. 

Research question (2.5): How and under which requirements potential errors in the 

construction of a CM/M2M pattern can be identified using properties characterizing the 

pattern pieces’ shape? 

To identify shape differences, one can leverage the fact that each CM/M2M piece is 

constructed using specific types of lines. The characteristics of these lines can then be 

analyzed to detect differences. 

 

 
 

Figure 14. Sample set of comparable lines for patterns of profiles 288 and 244 

From a purely mathematical perspective, there are many conceivable variants for defin-

ing the indicators used to compare individual lines. However, considering the aspect of 

applicability, the crucial question becomes how we interpret the location of the line within 

the common piece. Therefore, we determine that each line’s location is characterized rel-

ative to the mass center of the respective piece. By aligning the two comparable pieces at 

their mass centers (without changing their directions defined in the CM/M2M system), we 

are able to compare the pairs of lines forming the construction of these two pieces. 

 

 
 

Figure 15. Samples of pieces’ mass centers 
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The following quantities can be used for comparison, all of which (including the 

required mass centers in this context) are derived from the CM/M2M system or vector 

data contained in the file representing the pattern:  

i. length of the line;  

ii. vector (represented as x/y-coordinates) of the starting point from the piece’s 

mass center;  

iii. vector (represented as x/y-coordinates) of the endpoint from the piece’s mass 

center;  

iv. angle of the line at its starting point;  

v. angle of the line at its endpoint.  

 

As an application example for quality analysis using the properties of lines, we use a 

base bodice construction. This construction, like the base skirt construction used above, 

has already proven itself in practice. Using the above-mentioned line parameters the 

quality of a garment construction can be further analyzed applying several statistical 

methods. To detect potential outliers in the line properties and find out which profile’s 

patterns should be checked for quality control, a similar approach as described earlier in 

piece analysis (refer section 2.4) was used. First, data was scaled and centered. For each 

piece, several predictive models were trained using the lines as factors. Several models 

were applied and the results compared:  

• Linear regression (R Core Team, 2024),   

• Random forest (Lang et al., 2019), (Wright and Ziegler, 2017),  

• GAM (Wood, 2011)  

• rpart decision tree (Therneau and Atkinson, 2023).  

 

Their results (using the metrics MAE, MAPE, and R2) were compared to choose the 

ones with the best performance in each category of predictors: 

Model for Length –  

type: linear regression model (R Core Team, 2024),   

predictors: all measurements used to create the pattern; circumference and surface of 

the piece where the line is located. 

Model for Coordinates – 

type: random forest (Lang et al., 2019), (Wright and Ziegler, 2017), 

predictors: all measurements used to create the pattern; length of the line.  

Model for Angles –  

type: rpart decision tree (Therneau and Atkinson, 2023), 

predictors: all measurements used to create the pattern; length of the line; start and end 

coordinates of the line. 

 

These models were used to make predictions on the same data they were trained on, 

allowing us to compare actual versus predicted values. High differences between these 

values are candidates for anomalies in the geometry of the lines.   

Outliers were detected using Mahalanobis distance and residuals applying the same 

thresholds as in the piece level analysis (refer Section 2.4) - top 2% of residuals; 

Mahalanobis distance was assessed using chi-squared distribution (Kahle, 2017), (R Core 

Team, 2024) to determine if an observation was unusually far from the mean of a 

distribution. 
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If the distance or the residual were greater than the threshold the respective outlier was 

marked. All marked values were summed up for every single line and for every 

measurement profile. The goal was to detect profiles having the highest outlier count 

indicating that their measurement data combination has led to some unforeseen geometry. 

 

  
 

Figure 16. Profiles with highest count of outliers for base bodice pattern 

 
To illustrate the application of such results we can take a closer look onto the profile 

with the id 249 having the highest number of outliers (225). In the following image of the 

base bodice pattern for that profile the lines having at least one outlier in one of their 

parameters are colored red. As a counterpart we added the pattern for the profile with id 

254 which has quite similar measurements as profile with id 249 but way less outliers (64).  

The comparison between the two patterns illustrates that a high outlier count helps to 

detect construction anomalies, e.g., the shape of the scye is obviously uneven for profile 

249, but smooth for profile 254. 

 

 
  

Figure 17. Base bodice patterns for two profiles. 
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Looking at the list of lines with the highest number of outlier profiles (refer Figure 18), 

the cl_ScBc line (back scye) appears at the top. This suggests that the scye in the base 

bodice construction may require improvement.  

 

  
Figure 18. Lines with the highest number of outliers 

 

But it should be considered that scye lines are long and curved. The shape of a scye 

largely depends on the pattern-making method used to create the bodice, as these methods 

employ different approaches to combining body measurements. The parameters used so 

far for the analysis (length, location and angles of start/end) cannot fully characterize the 

shape of such a line. The two samples from the executed test dataset illustrate that scye 

lines with nearly identical start/end-angles can have a substantially different form. 

 

 

 
 

Figure 19. Samples of scye with similar start-/end-angle of profiles 352 and 435 
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2.6. Fault Diagnosis for .dxf patterns 

The samples discussed thus far were created using a CM/M2M construction system that 

outputs result in a structured format. Every pattern produced by this system comprises the 

same set of lines arranged in a consistent sequence. Regardless of the profiles for which 

the program is executed, it generates patterns that are structurally identical. The only 

specifics are that a line might exist as a 1-point-line (a line having a fixed location but no 

length). Since that construction method’s implementation uses the .svg standard, all these 

lines can be characterized by a fixed number of parameters, resulting in a structurally fixed 

set of output parameters The use of statistical methods within the Testing procedure is 

based on that fixed structure premises.   

But not all CM/M2M-construction systems support the .svg standard. Many systems 

produce their results in other formats, and one of the most popular such standards is .dxf 

(WEB (e)).  

Although .dxf as a standard allows to implement an analogous fixed structure approach, 

in real life another approach is more popular. That approach is to implement all the pat-

tern’s lines as straights connecting many closely placed vertexes as illustrated in the sam-

ples below (further on called Vertex-polygon-type). 

 

 
 

Figure 20. Sample of a Vertex-polygon-type line 

 

In such kind of patterns implementation, the count of vertexes is not fixed but depends 

on the length and the curvature of the patterns’ lines. Applying the statistical approach 

used so far is not possible since the number of output parameters is not fixed. However, 

the authors of this study applied a conversion approach (details to be found in (Neimanis 

et al., 2025) – refer dxftosvgconverter.zip) allowing to approximate the .dxf polygons with 

a combination of straights and Bezier curves. The resulting error (e.g., the maximum dis-

tance between the lines) is irrelevant to the subject of investigation. 

 

 
 

Figure 21. Conversion sample (green/black: vertex-polygon-type, orange:  

approximation with .svg) 



Statistic-based Quality Control of Patterns  383 
 

 
The approach was applied on the output created by an open-source CM/M2M-system 

(Harwood et al., 2020) which provides the results in that Vertex/polygon-type format. That 

system is published with several executable pattern samples. We selected similar patterns 

as discussed above – a base skirt and a sweatshirt. By providing (the partly transferred – 

refer section 2.2) input data from the test data we created 469 .dxf patterns and applied the 

above-mentioned conversion to .svg creating the prerequisites to apply the Testing proce-

dure.  

Thanks to the Testing procedure, before reviewing any pattern we identified immedi-

ately 5 profiles for whom the pattern creation algorithm had created a senseless .dxf result, 

simply by comparing the number of created lines during the conversion. 

 

 
 

Figure 22. One of five identified senseless results for the skirt in .dxf format 

 

For the remaining 464 profiles results in the same form as described in the previous 

sections were reached.    
 

 

 
 

Figure 23. Skirt sample (converted to .svg format) 
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The analogue execution of the sweatshirt sample, consisting of front, back and two 

sleeve versions resulted in .svg-files with identical line structure, hence the provided out-

lier data could be used for detection of potential construction problems. 

 

 
 

Figure 24. Sweatshirt sample (converted to .svg format) 

3. Results 

3.1. Piece Level 

As discussed in Section 2.4, the correlation coefficients for the piece-level parameters 

Area and Perimeter differed significantly, even though practical experience suggests that 

the basic skirt pattern examined here should not exhibit anomalies in its construction.  

To investigate the reason for these differences, we closely examined the pattern’s 

algorithm for the waist darts. We found that the number, length, and placement of the darts 

are not defined continuously but rather in discrete steps. As a result, the prediction of the 

Perimeter using linear regression is less accurate compared to that of the Area, which is 

less influenced by the waist darts. 

When investigating the reason for the inhomogeneous distribution of Cook's distance 

(refer Figure 10), we found that a small number of outliers, which are influential data 

points, also appear to have low credibility. This suggests that the identified outliers are 

more likely to indicate low-quality body measurements rather than construction errors. 

Overall, we identified 12 profiles with potentially incorrect measurements, which 

adversely affect the generated skirt base patterns. 

Answer on research question 1: Potential errors in CM/M2M pattern construction 

can be identified by analyzing quantitatively measurable properties like the area and 

enclosed surface of pattern pieces’ outer contour. Preconditions for a senseful use of the 

according statistical methods are on the one hand qualitative input data and on the other 

hand a consistent implementation of the pattern construction for the whole variety of input 

data. By using the measurements as input for predictive models (e.g., linear regression), 

and analyzing the deviations between observed and predicted values with Mahalanobis 

distance, Cook's distance, and residual analysis, the method can detect major outliers and 
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irregularities, highlighting issues such as scaling errors or miscalculations in the pattern 

construction process. 

3.2. Line Level 

Similar to the skirt base pattern discussed in the context of potential piece-level failures, 

the bodice pattern used for line-level failure detection has been well-tested in practice. 

When investigating the reasons for the numerous outliers in profile 249, discussed at the 

end of Section 2.5, we found that this profile had already been classified as having "low" 

credibility in the study presented in Section 2.2. Similar to the piece-level analysis, the 

line-level analysis is more likely to indicate low-quality input data rather than actual 

construction errors. 

Answer to Research Question 2: Under the same preconditions outlined in the 

answer to Research Question 1, potential errors in CM/M2M pattern construction can be 

identified by analyzing the properties of the lines forming the outer contour of pattern 

pieces. By using body measurements as input for predictive models (e.g., linear 

regression) and analyzing the deviations between observed and predicted values through 

residual analysis, this method can detect major outliers and irregularities. It can highlight 

issues such as scaling errors or miscalculations in the pattern construction process. 

 

4. Conclusions 

4.1. Summary 

Our investigations indicate that statistically based methods for quality assurance of 

CM/M2M patterns have great potential for avoiding unnecessary costs in the product 

development of CM/M2M products. By using the Testing procedure described above, it 

is possible to determine, even during the development phase, which tested profile’s 

patterns are not fitting into the remaining test data result spectra. Targeted identification 

of risk candidates accelerates the testing process because, when CM/M2M patterns are 

programmed, it is important to consider as many possible and realistic measurement 

combinations as possible. However, due to human factors and time constraints, certain 

specific cases may remain unprocessed. The goal is to minimize such cases, and outlier 

analysis serves as a tool to achieve this. By identifying standout profiles, pattern 

programmers can visually inspect these specific patterns for potential defects without 

having to review all generated patterns. 

The most significant benefit of the Testing procedure, however, lies in uncovering 

technologically detectable errors before the CM/M2M product is validated through 

physical tailoring and fittings. 

 

4.2. Usage Hints 

The results discussed in Sections 3.1 and 3.2 show that the Testing Procedure loses 

significant value if the measurement data used as input is of low quality. The general 
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statistical principle "Garbage In, Garbage Out" fully applies to this procedure as well. 

Therefore, the Testing Procedure requires high-quality body measurement data that 

adequately covers the entire range of the target buyer group for the tested pattern. 

By nature, the Testing Procedure is only applicable if the line structure of the tested 

pattern's pieces remains identical across all applied body measurement datasets. 

Furthermore, the poor Perimeter results discussed in Section 3.1 indicate that not every 

quantitatively measurable property of pattern pieces is inherently suitable for a statistically 

based testing procedure. To use parameters such as Perimeter, one must either (i) 

Implement an appropriate segmentation of the test data, or (ii) remove the parameter from 

the test altogether. 

The Testing Procedure delivers meaningful results only for the tested items. The 

discussion regarding the scye line (see end of Section 2.5 and Section 3.2) suggests that 

potential issues cannot always be identified by the specific set of tested parameters used 

in this approach. For highly complex lines that depend on multiple body measurements, it 

is advisable to split them into equidistant segments before applying the Testing Procedure.  

 

4.3. Practical Application 

This publication presents only the results of applying the developed method to base 

patterns. The authors have begun applying the procedure to much more complex use cases 

in ongoing CM/M2M product developments. A major challenge will be to avoid being 

overwhelmed by a flood of data, as the number of lines in a typical CM/M2M product is 

in the high double digits, and the number of analyzable parameters is in the triple digits. 

The task is therefore to derive a practical and effective application methodology for the 

procedure. 

Furthermore, in addition to the previously considered .svg and .dxf variants, it is our 

intention to support additional output formats to expand the range of supported garment 

construction systems. 
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