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Abstract. In agriculture, the health of plants can often be assessed by examining the appearance
of their leaves. Traditionally, this evaluation is carried out by humans through visual observation.
However, drone technology enables plant monitoring through aerial photography, removing the
need for direct human presence. Furthermore, artificial intelligence offers the potential to replace
human expertise in this process. In this study, the authors explore the use of machine learning
methods to evaluate the condition of blackcurrants using visible light (RGB) images. The research
reviews similar approaches where machine learning techniques have been applied to analyze plant
leaves, aiming to identify various issues in a timely and efficient manner. Specifically, this study
employs the YOLO model for leaf instance segmentation, followed by multi-label classification
of the segmented leaf instances using the ResNet model. The study concludes that this method,
while not perfect, provides sufficient accuracy to effectively identify field-level health issues and
support targeted crop management strategies.
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1 Introduction

In modern and precise agriculture, there is a continual search for new and cost-effective
methods to diagnose plant conditions, enabling timely and accurate decisions regarding
fertilization, spraying, and other interventions. One of the simplest methods for prob-
lem identification is visual plant observation. This can be done by walking through the
fields and visually observing the plants; however, it is more convenient to perform this
using automatically captured images. Field images can be obtained quickly and easily
using many of the commercially available drones. These images provide farmers with
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sufficient visual information on plant condition without the need for physical field in-
spections. However, the process becomes more efficient when plant health information
is obtained automatically.

Various comprehensive reviews (section 2) indicate that plant leaf images are widely
utilized for assessing plant health through machine learning methods. While some stud-
ies explore the methodologies for image acquisition, the primary emphasis is placed on
identifying potential issues and their nature using these techniques. These studies also
encompass several shrub species, such as raspberries and quince. However, blackcur-
rants and the challenges (leaf identification in images and classification) associated with
their cultivation remain unaddressed.

The publication examines the classification of blackcurrant leaves using current im-
age analysis methods (section 3). To identify issues with blackcurrants, the process
is divided into two stages: instance segmentation and classification. Images of black-
currant bushes are segmented to isolate individual blackcurrant leaves using machine
learning methods (YOLO model). The segmented images are then classified using the
ResNet model to distinguish between healthy plants, diseased plants, and plants lacking
sufficient nutrients.

The significance of this work is highlighted by the fact that the analysis of blackcur-
rant leaves and disease identification has not been addressed in previous studies. Addi-
tionally, there are no publicly available datasets of blackcurrant leaf images containing
both healthy and damaged leaves with annotations. The authors could not ignore real-
world challenges and worked with naturally obtained images of blackcurrant bushes,
performing segmentation and classification of individual leaf instances. As a result, a
solution prototype was developed that could be integrated into industrial applications.

2 Related works

Currently, the analysis of agricultural crops using photographs is being widely studied.
Several comprehensive reviews of studies in this field of agriculture may be found (De-
bangshi (2021), Hafeez et al. (2023), Istiak et al. (2023), Anam et al. (2024)). While
images from various multispectral cameras are increasingly being examined, much at-
tention is still focused on what can be inferred about plants from visible light (RGB)
images (Hafeez et al. (2023)). When evaluating plant leaves, various plant properties are
assessed, such as plant health (Janani and Jebakumar (2023)), changes in plant biomass
(Fei et al. (2023)), age (Bai et al. (2023)), and others.

The processing of plant leaf images typically involves two steps: isolating plant
leaves from larger images and segmentation. In the following subsections, the authors
review segmentation and multi-label classification methods used in other similar stud-
ies.

2.1 Instance segmentation

Instance segmentation is a crucial step in the classification process, as it facilitates the
accurate identification of individual leaves within a single image. It is a computer vi-
sion technique combining object detection and semantic segmentation to identify and



488 QOditis et al.

delineate individual object instances within an image precisely. Unlike semantic seg-
mentation, which assigns a class label to each pixel without distinguishing separate
instances, instance segmentation provides both class labels and unique boundaries for
each instance of the same class. This method allows for more precise data collection for
each leaf, ultimately leading to improved overall data quality for the entire image.

Following the review of studies (Gu et al. (2022)), two instance segmentation meth-
ods were examined: YOLO (You Only Look Once), particularly YOLOv8-seg, and R-
CNN (Region-based Convolution Neural Networks). Both models are widely recog-
nized for their effectiveness in segmentation tasks (Charisis and Argyropoulos (2024)).
However, given the high volume of data involved in analyzing blackcurrant fields—where
potentially thousands of leaves need to be segmented and classified—computation time
becomes a critical factor. Given the findings from recent research (Sapkota et al. (2024))
indicating that YOLOv8 demonstrates superior inference speed and effectiveness in
segmentation tasks compared to Mask R-CNN, and additional evidence (Khan et al.
(2023)) from a study where YOLOVS was tested on a maize disease detection dataset,
demonstrating that it not only achieved high precision but also proved to be highly ef-
fective. This further supports that YOLOVS is not only fast but also highly accurate,
making it an excellent fit for the task.

2.2  Multi-label classification

Classification is a supervised machine learning task that involves predicting a categori-
cal label for an input based on its features. In classification, a model is trained on labeled
data, where each input is associated with a specific class. The goal is to learn patterns
from the data that allow the model to assign correct labels to unseen examples.

As demonstrated in the works of other authors (Hosny et al. (2023), Elfatimi et al.
(2024)), multi-label classification algorithms have proven to be highly effective for the
identification of issues in plant leaves. In the context of multi-label classification, the
task extends to scenarios where one object can be associated with more than one class.
For instance, in the case of blackcurrant leaf health analysis, leaves can be associated
with multiple diseases and may be nutrient deficient. Hosny et al. (2023) identifies
several models applicable for multi-label classification of leaves, highlighting among
them ResNet, VGG, and EfficientNet.

3 Proposed method

In this study, we propose a blackcurrant leaf analysis method using advanced deep
learning techniques for instance segmentation and classification. The proposed approach
utilizes instance segmentation to detect and isolate individual blackcurrant leaves accu-
rately from complex backgrounds and overlapping foliage within an image, thereby en-
suring precise delineation of leaf boundaries. Once segmentation is complete, each leaf
instance undergoes further analysis via a multi-label classification model, which eval-
uates its health condition based on critical features. As discussed in section 2, YOLO
models (YOLOv8n-seg, YOLOv9c-seg) are employed for instance segmentation, while
ResNet architectures (ResNet-50, ResNet-101, ResNet-152) are utilized for multi-label
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classification (the model selection is justified in section 3.7). The proposed methodol-
ogy encompasses the steps represented in figure 1.

Image Acquisition Image Annotation Annotated

Datasets

Multi-class . Instance
e Feature Extraction .
Classification Segmentation

Fig. 1. Steps of leaf disease detection

3.1 Agricultural Context

Blackcurrants (Ribes nigrum) are valuable crops cultivated in temperate regions, thriv-
ing in well-drained soils with moderate moisture. However, they are highly suscepti-
ble to diseases such as powdery mildew, leaf spot, and rust, which manifest as discol-
oration, spotting, and necrosis, significantly reducing yield and quality. Early signs of
these diseases are often identified through visual indicators on leaves, necessitating reg-
ular physical field monitoring. One of the most efficient ways to acquire such imagery
is through drones equipped with automated missions, typically capturing images from
a height of 3-5 meters to ensure sufficient detail for disease identification. The pro-
posed method automates the identification of these diseases in images, associating leaf
instances with disease classes. This information can be mapped onto aerial photos to
provide a comprehensive view of field health. To be practically useful for farmers, the
data should delineate the boundaries of affected areas, allowing targeted interventions.
While instance-level metrics may not always achieve perfect accuracy, maintaining re-
liable field-level averages ensures the overall utility of the method for effective crop
management.

3.2 Image acquisition

All images used in the datasets for training and validation, as described in subsection
3.4, were captured using a Nikon D3300 DSLR camera with a 24.2 MP DX-format
CMOS sensor. The images were acquired from a local blackcurrant field, taken from
various angles to ensure diversity in the dataset and enhance the robustness of the model
training by simulating different perspectives of the leaf instances.
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3.3 Image annotation

The acquired images were annotated using tailored methods to support the different
stages of analysis. For instance segmentation, each image was manually annotated by
outlining the boundaries of individual blackcurrant leaves using the Computer Vision
Annotation Tool (CVAT). These annotations, provided in the form of point coordinates,
were exported in the YOLOvVS8 segmentation 1.0 format. This process enables the model
to accurately detect and isolate leaves from the background and overlapping objects,
which is critical for precise instance segmentation.

For multi-label classification, each leaf instance was analyzed manually, and a label
was assigned to describe its association with one or more of the predefined health status
classes. The classification scheme, which includes the classes Healthy Leaves (HL),
Nutrient Deficient Leaves (NDL), and Mycosphaerella ribis-Affected Leaves (MRL),
was established in collaboration with a domain expert following an evaluation of local
blackcurrant fields. The class labels were compiled in a structured file, which includes
the image names and their corresponding class associations. This process ensures that
both segmentation and classification tasks are fully supported by the annotations.

3.4 Datasets overview

This section provides an overview of the datasets employed in the study, which were
designed to support different stages of the proposed method. Two distinct datasets were
prepared: one for multi-label classification and the other for instance segmentation.

The multi-label classification dataset consists of 287 images, each containing a sin-
gle blackcurrant leaf instance placed against a black background. These images are
distributed across three subsets: 229 images for training, 49 for validation, and 49 for
testing. The health status of each leaf instance was labeled based on the classification
scheme developed in consultation with a domain expert, as outlined in the section 3.3.
The dataset includes a single annotation file that lists image names and their associa-
tions with the three identified classes: Healthy Leaves (HL), Nutrient Deficient Leaves
(NDL), and Mycosphaerella ribis-Affected Leaves (MRL), visually represented in fig-
ures 2, 3, and 4. A leaf instance may exhibit traits associated with multiple classes, thus
requiring the model to handle overlapping features through a multi-label classification
approach.

A single annotation file accompanies every subset, containing detailed information
about the class associations for each image. The distribution of samples across classes
in the multi-label classification dataset is presented in table 1. Because each instance
can belong to multiple classes, the total number of labels in the table is greater than the
total number of images.

The instance segmentation dataset consists of 87 images, each featuring blackcur-
rant leaves as the sole object type. It is divided into two subsets: a training set with 71
images and a validation set with 16 images. Compared to the classification dataset, the
instance segmentation dataset is significantly smaller. This is because annotating this
dataset is a complex and time-consuming process, requiring the precise outlining of
each leaf instance. Each image was manually annotated to provide segmentation infor-
mation in the form of points delineating each leaf. To analyze the potential impact and
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Fig.2. HL class example  Fig.3. NDL class example Fig.4. MRL class example

Table 1. Distribution of class occurrences across training, validation, and test sets

Class Training | Validation Test
(229 images)|(49 images) | (49 images)
Healthy Leaves (HL) 92 21 19
Nutrient Deficient Leaves (NDL) 85 19 16
Mycosphaerella ribis-Affected Leaves (MRL) 80 14 18
Total Labels 257 54 53

trends related to the dataset, the model was trained on different portions of the train-
ing set (1/4, 1/3, 1/2, 3/4, 1/1), with detailed results available in subsection 4.1. These
detailed annotations enable the model to learn how to accurately identify and isolate in-
dividual leaves from complex backgrounds, ensuring reliable segmentation for further
feature extraction and analysis.

3.5 Instance segmentation

For the instance segmentation task, authors selected YOLOv8n-seg and YOLOvO9c-seg
models, whose training was implemented using the Ultralytics package (LLC (2023)).

The ultralytics package provides an optimized pipeline for YOLO models, including
configured setups for essential hyperparameters such as:

1. Learning Rate (Ir): Automatically initialized and dynamically adjusted in response
to observed gradient behaviors.

2. Optimizer: The default Adam optimizer, selected to enhance gradient-based learn-
ing, was applied as configured within the Ultralytics framework for YOLO models.

3. Batch Size: Automatically determined according to available GPU memory, result-
ing in a batch size of 8 for this study.

For each model, the training was conducted in three separate configurations, each
using images of a different size: 256x256 pixels for the first configuration, 512x512
pixels for the second, and 1024x1024 pixels for the third. This approach allowed the
authors to assess how the models performed with varying resolutions and to understand
the impact of image size on instance segmentation accuracy.
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To determine the optimal number of epochs, the authors analyzed the model loss
metrics by training the models with an image size of 256x256 over 100 epochs. The
results are summarized in table 2.

Table 2. Initial and Final Loss Values: Box, Segmentation, Classification

Model Loss metric  |Initial value|Final value
YOLOvS8n-seg Box loss 2.3889 0.88616
YOLOVv8n-seg|Segmentation loss| 5.1496 1.1622
YOLOvS8n-seg|Classification loss| 3.4797 0.50577
YOLOvV9c-seg Box loss 2.0545 0.71893
YOLOvV9c-seg|Segmentation loss|  4.017 1.1462
YOLOV9c-seg|Classification loss| 2.1793 0.50037

All metrics demonstrated substantial reductions within the initial 60-70 epochs,
after which improvements plateaued, indicating diminishing returns. Consequently, the
authors set the training limit at 70 epochs. The training loss metrics can be seen in figure
5.

Training Progression of Loss Metrics over Epochs

—— YOLOv8n: Box Loss
51 — YoLOv8n: Segmentation Loss
—— YOLOv8n: Classification Loss Chosen Epoch: 70
—— YOLOv9c: Box Loss
—— YOLOv9c: Segmentation Loss
44 YOLOv9c: Classification Loss

Loss

e
| pee—

Epochs

Fig. 5. Training progression of Box Loss, Segmentation Loss, and Classification Loss over 100
epochs
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More detailed results, including additional insights and analysis of model perfor-
mance, are covered in section 4.1.

3.6 Instance isolation

In the proposed method, instance isolation involves isolating the segmented leaf in-
stances from the background to prepare them for classification. Following instance seg-
mentation, the segmentation mask of each detected leaf is extracted and resized to match
the original image’s dimensions. Using bitwise operations, the segmentation mask is
overlaid onto the original image, effectively isolating each leaf by removing unwanted
background pixels. The bounding box of the mask is computed to define the region
of interest, and the leaf is cropped accordingly. To standardize the input for the clas-
sification step, each cropped leaf instance is placed on a black background, ensuring
a consistent visual format. These cropped instances, now devoid of any irrelevant fea-
tures or noise, are then passed to the multi-label classification model to assess their
health status.

3.7 Multi-label classification model selection

Based on the related researches (section 2.2), the authors selected three classification
models for further investigation: ResNet, VGG and EfficientNet. The authors first con-
ducted a comparative analysis of ResNet and VGG models. Following this initial eval-
uation, the results were further compared with EfficientNet, a more recent model de-
signed to enhance the scalability of architectures like ResNet and similar convolutional
neural networks. The comparison of solutions in this study is based on the analysis
of existing research and performance reports, without conducting direct training of the
models on the proposed dataset.

Based on the results from training on ImageNet, ResNet is a better choice than
VGGNet for this particular task. Specifically, the research compared ResNet-152 and
VGG-16, where ResNet-152 achieved a top-1 accuracy of 0.870 and a top-5 accuracy
of 0.963, while VGG-16 showed a lower top-1 accuracy of 0.715 and a top-5 accuracy
of 0.901 (Wani et al. (2020)).

In a comparison between ResNet and EfficientNet, the authors analyzed the study
(Sinha and Patil (2024)) where a comparative analysis of CNN, EfficientNet, and ResNet
was conducted for grape disease prediction. Both EfficientNet and ResNet demon-
strated strong performance, with ResNet slightly outperforming EfficientNet. Accord-
ing to the study, ResNet achieved the highest accuracy of 98%, while EfficientNet
closely followed with an accuracy of 97%. Both models were fine-tuned using trans-
fer learning on a dataset containing high-resolution images of grape leaves affected by
diseases such as black rot, leaf blight, and grapevine measles. Although EfficientNet is
known for its efficiency in model scaling, the residual learning mechanism in ResNet
provided a marginal advantage in this specific task, resulting in better overall classifica-
tion performance. This study was chosen due to the nature of the task and its similarities
to blackcurrant leaf analysis, making the findings highly relevant.
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After comparing the models, ResNet has been selected for this study. The train-
ing will be conducted on ResNet-50, ResNet-101, and ResNet-152 to determine which
architecture yields the best results for blackcurrant leaf analysis.

3.8 Multi-label classification model training

Classification is used to identify and categorize diseases in blackcurrant leaf instances
based on distinguishing features. For this task, the authors trained and evaluated ResNet-
50, ResNet-101, and ResNet-152.

The training process utilized PyTorch to implement a multi-label classification model
based on ResNet architectures (ResNet-50, ResNet-101, and ResNet-152). The models
were initialized with their default pre-trained weights provided by PyTorch to lever-
age feature representations learned from large-scale datasets. The final fully connected
layer of each ResNet model was replaced to output predictions for three classes, mak-
ing them suitable for multi-label classification. Input images were resized to 256x256
pixels and transformed into tensors for processing. The model was trained using the
BCEWithLogitsLoss loss function , which combines sigmoid activation with binary
cross-entropy, ensuring efficiency and numerical stability for multi-label tasks (Ansel
et al. (2024)). The Adam optimizer was selected for its ability to adapt learning rates
and incorporate momentum (Kingma and Ba (2017)). To assess performance, evalua-
tion metrics such as accuracy, precision, recall, and specificity were computed.

To identify the optimal hyperparameters for model training, a grid search was con-
ducted separately for each ResNet architecture—ResNet-50, ResNet-101, and ResNet-
152—over three key hyperparameters: the number of epochs, learning rate, and batch
size. The following ranges were tested: epochs in [20, 30, 50, 70, 100], learning rates
in [0.01, 0.001, 0.0005, 0.0001], and batch sizes in [4, 8, 16, 32, 64]. Performance was
evaluated using precision, accuracy, recall, specificity, and validation loss.

After completing the grid search, the best-performing hyperparameter configura-
tions for each model were identified as follows: (1) ResNet-50: 70 epochs, a learning
rate of 0.0001, and a batch size of 16; (2) ResNet-101: 70 epochs, a learning rate of
0.0001, and a batch size of 8; and (3) ResNet-152: 70 epochs, a learning rate of 0.0001,
and a batch size of 16. These optimal configurations were then used to train and evaluate
each model. Training was conducted on a dataset comprising 229 images, with valida-
tion performed on a separate set of 49 images. The final model evaluation was con-
ducted using a test set of 49 images to assess overall performance. A detailed overview
and result analysis can be found in section 4.2.

4 Results and discussion

4.1 Instance segmentation results

The instance segmentation results presented in table 3 highlight the performance of
YOLOVS8n-seg and YOLOV9c-seg across varying input image sizes.

The evaluation metrics include mean Average Precision (mAP) at IoU thresholds of
0.50 (mAP50) and 0.50-0.95 (mAP50-95), as well as precision for bounding box (B)
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Table 3. Instance Segmentation results
Image
Model size mAP50(B) | mAP50-95(B)| Pre(B) |mAP50(M)|mAP50-95(M)| Pre(M)
YOLOvS8n-seg 2;56g 0.59164 0.38272  ]0.67455| 0.58450 0.34303  ]0.74249
YOLOv8n-seg 55112; 0.65656 0.49653  10.73628| 0.65931 0.47840  |0.76106
1024x
YOLOvV8n-seg 1024 0.67211 0.52423  |0.74736| 0.66956 0.51023  |0.75789
YOLOV9c-seg 225566X 0.64149 0.46194 |0.74662| 0.65124 0.47340  |0.72102
YOLOV9c-seg 55112; 0.68866 0.54670  |0.87470| 0.69849 0.51147  ]0.79023
1024x
YOLOvV9c-seg 1024 0.72130 0.68643 |0.88182| 0.69930 0.53121  |0.81230

and mask (M) predictions. Higher mAP values indicate better performance of the model
in accurately detecting and localizing objects. The formulas for these performance met-
rics are provided in table 4.

Table 4. Performance parameters

Indicator Formula
mAP50 L SN AP;(IoU = 0.50)
mAP50-95 I 050 & o AP;(IoU)
Accuracy (Acc) (% X 100) %
Sensitivity (Sen) (7ot > 100) %
Specificity (Spe) (Frﬁr—NTN x 100) %
Precision (Pre) <TPTEFP X 100) %

Across all tested image sizes, YOLOv9c-seg consistently outperformed YOLOv8n-
seg in both bounding box and mask segmentation metrics. At the highest resolution
(1024 x 1024), YOLOV9c-seg achieved a bounding box mAP50 of 0.72130 and a mask
mAP50 of 0.69930, compared to YOLOvS8n-seg’s corresponding scores of 0.67211 and
0.66956. Additionally, YOLOv9c-seg demonstrated better precision metrics, exceeding
YOLOvS8n-seg’s box precision by 16.2% and mask precision by 5.4%.
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Increasing the image resolution resulted in improved performance for both models,
with mAP50 and mAP50-95 metrics rising consistently. For example, YOLOvV9c-seg’s
bounding box mAP50-95 increased from 0.46194 at 256 x 256 to 0.68643 at 1024 x
1024, while YOLOv8n-seg showed a comparable increase from 0.38272 to 0.52423.
This trend suggests that higher-resolution inputs provide richer feature details, enhanc-
ing segmentation performance.

In figures 6 and 7, the YOLOv9c-seg model with an image resolution of 1024 x
1024 was used to segment leaf instances. The results in the provided images align well
with those presented in table 3, demonstrating strong detection and segmentation of
leaves. The high precision (88.18% for bounding boxes and 81.23% for masks) en-
sures that most detected leaves are correctly classified, which is crucial for agricultural
applications such as plant health monitoring.

Fig. 6. Instance segmentation results using YOLOv9c-seg (1024 x 1024 resolution) on healthy
leaves

However, the model encounters difficulties in recognizing damaged or diseased
leaves, as seen in Figure 7, where some leaves with spots or holes show inaccuracies
in both the bounding box and the segmentation mask. This limitation suggests that, in
real-world scenarios, some unhealthy leaves might be missed, potentially delaying dis-
ease detection in crops. Additionally, overlapping detections in dense foliage indicate
that the model may have difficulty distinguishing individual leaves in clustered environ-
ments, which could impact tasks such as automated pruning recommendations.

While the overall accuracy is promising, further improvements in fine-grained seg-
mentation would enhance the model’s ability to support precision agriculture by reliably
identifying both healthy and unhealthy leaves.

Overall, the results demonstrate that YOLOvV9c-seg is better suited for the given in-
stance segmentation task, particularly at higher resolutions. Since YOLOv9c-seg achieved
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Fig.7. Instance segmentation results using YOLOv9c-seg (1024 x 1024 resolution) on leaves
with visible damage

the best performance during training, the model was further trained using different por-
tions of the training set (1/4, 1/3, 1/2, 3/4, 1/1) to analyze its robustness and adaptability.
The training results are summarized in table 5 and visualized in figure 8.

Table 5. YOLOvO9c-seg instance Segmentation results based on dataset fraction

Dataset fraction mAP50(B) mAP50-95(B)| Pre(B) [ mAP5S0(M)|mAP50-95(M)| Pre(M)
1/4 0.49543 0.26224  |0.72417| 0.48971 0.23260 |0.71650
173 0.51329 0.28320 |0.74446| 0.48492 0.25204  ]0.70009
172 0.53370 0.30844  10.77216| 0.51555 0.26884  10.75563
3/4 0.59152 0.37815 |0.78589| 0.57172 0.33265 |0.79359
1/1 0.72130 0.68643  ]0.88182| 0.69930 0.53121  ]0.81230

The results indicate a clear trend of performance improvement as the dataset frac-
tion increases. With only 1/4 of the training data, YOLOv9c-seg achieved a bounding
box mAP50 of 0.49543 and a mask mAP50 of 0.48971, which gradually improved with
larger dataset portions. Notably, at the full dataset, the model reached its highest per-
formance, with a bounding box mAP50 of 0.72130 and a mask mAP50 of 0.69930.
This demonstrates that increasing the dataset size leads to higher segmentation accu-
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Comparison of Model Metrics by Dataset Fraction
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Fig. 8. Comparison of YOLOV9c-seg instance segmentation metrics by dataset fraction

racy, as no decline in performance was observed at any stage. Based on this trend, it is
reasonable to assume that further expanding the dataset would yield even better results.
However, since this study presents a conceptual rather than an industrial approach, and
given that instance segmentation annotation is a time-consuming process, the dataset
was not further extended.

4.2 Multi-label classification results

The performance of the multi-label classification models is summarized in table 6. The
results were evaluated using accuracy, sensitivity, specificity, and precision, with all
performance metrics defined in table 4. True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN) were used to compute these metrics, where TP
and TN indicate correct predictions, while FP and FN represent misclassifications.

Table 6. Multi-label classification results

Model |Acc (%)|Sen (%)|Spe (%)|Pre (%)|Epochs|Batch size| Lr

ResNet-50 | 0.896 | 0.913 | 0.982 | 0913 | 70 16 0.0001
ResNet-101| 0.931 | 0.948 | 0.981 | 0.965 | 70 8 0.0001
ResNet-152| 0.940 | 0.967 | 0.988 | 0.982 | 70 16 0.0001
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ResNet-152 achieved the highest performance among all models, with accuracy,
sensitivity, and specificity reaching 94.0%, 96.7%, and 98.8%, respectively. However,
ResNet-101 also demonstrated strong results, attaining an accuracy of 93.1% and pre-
cision of 96.5%, indicating its effectiveness in distinguishing between the three classes.
ResNet-50, while exhibiting slightly lower accuracy (89.6%), maintained competitive
sensitivity and precision values. All models were trained for 70 epochs, with variations
in batch size and learning rate having a limited impact on overall performance.

The results suggest that increasing model complexity does not yield substantial im-
provements, as even the smaller ResNet-50 model performed well. The similarity in
metrics across all three architectures indicates that the dataset’s characteristics, such as
size and class distribution, may have a greater influence on performance than the choice
of ResNet depth. This suggests that ResNet-50 provides a suitable trade-off between ac-
curacy and computational efficiency, making it a practical choice for this classification
task.

5 Conclusion

This study demonstrated the potential of a combined instance segmentation and multi-
label classification approach for analyzing blackcurrant leaf health using RGB images.
While the achieved accuracy was not the highest, it was sufficient to identify under-
lying issues in blackcurrant fields. YOLOv9c-seg excelled in instance segmentation,
particularly at higher resolutions, enabling precise detection of individual leaves, and
ResNet-50 provided a reliable balance between classification performance and compu-
tational efficiency. Instance segmentation training with different fractions of the dataset
showed a tendency for the metrics to improve, with no decline even when using the
full dataset, indicating that a larger dataset could further enhance overall performance.
Importantly, even though the method may not yield perfect results for every individual
instance, the aggregated data is effective for identifying patterns of health issues and
marking their spatial distribution across the field. This capability supports targeted in-
terventions and resource-efficient crop management. Future work should explore larger
datasets and enhanced models to further improve accuracy and adaptability.
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