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Abstract. The rising global mortality rate of women due to breast cancer highlights the urgent
need for advancements in its diagnosis and early detection. Early identification of breast can-
cer significantly improves patient prognosis and survival outcomes. Artificial intelligence (AI),
particularly Deep Learning (DL) and Large Language Models (LLMs), shows transformative
potential in enhancing the diagnostic and prognostic capabilities in breast cancer detection. How-
ever, their clinical adoption remains challenged due to their ”black-box” nature. Intelligent sys-
tems in healthcare, understanding the reasoning behind AI decisions is as critical as ensuring
their performance, accuracy as well as patient safety and trust. Explainable AI (XAI) addresses
these challenge by making AI reasoning transparent, allowing clinicians to interpret, validate, and
trust model outputs. This paper reviews the application of XAI methods like SHapley Additive
exPlanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Gradient-
weighted Class Activation Mapping (Grad-CAM) in improving the transparency of DL models
for breast cancer detection. This paper explores advanced XAI strategies that balance accuracy
with interpretability, including attention-based mechanisms and LLM-driven explanations. In par-
ticular we discuss LLMs embedded within XAI systems, act as translational interfaces, decoding
complex model outputs into clinician-friendly explanations. By adapting technical explanations
to the end user’s context and needs, LLMs enhance the accessibility and interpretability of com-
plex model explanations. Collectively, these approaches help to bridge the gap between AI be-
havior and human understanding, ultimately improving transparency, trust and decision support
especially in healthcare domain.

Keywords: Artificial Intelligence, Deep Learning, Breast Cancer, Healthcare, Explainable AI,
Large Language Models

1 Introduction

Opaque decision-making systems have increased dramatically in the last fifteen years.
Machine learning (ML) and deep learning (DL) models are used in a wide range of
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methods in this rapidly developing field. The majority of these models are referred to as
”Black-Box” due to their inherent complexity and lack of explanations of the decision-
making process (Sabol et al., 2019). These ”black-box” systems use advanced machine-
learning algorithms to evaluate and forecast individual data, frequently containing pri-
vate or sensitive data. One of the main obstacles to their adoption in mission-critical
application domains, including banking, e-commerce, healthcare, public services, and
safety, is their interpretability (Malhi and Främling, 2023). The European Union’s Gen-
eral Data Protection Regulation (GDPR), effective in 2018, places strict limitations on
automated decision-making systems that significantly affect users while mandating a
right to explanation for affected individuals (Goodman and Flaxman, 2017). This regu-
lation highlights the urgency for industries to adopt nondiscriminatory machine learning
practices and the critical role of computer scientists in developing interpretable algorith-
mic frameworks that align with compliance and ethical standards.
The high failure rates of digital innovation adoption in the healthcare industry are no-
ticeable (Guidotti et al., 2018). Artificial intelligence (AI) systems can analyze medi-
cal images, such as ”Computed Tomography” (CT), ”Magnetic Resonance Imaging”
(MRI), ”Ultrasound”, ”X-ray”, and ”Infrared Scans” to identify specific anatomical
structures and identify anomalies (Raghavan, Balasubramanian and Veezhinathan, 2024).
As a result, the widespread use of AI has caused people to questions: ”How comfort-
able are we blindly trusting these AI-generated detection and results and When anything
goes wrong, who is going to be responsible?”. Notably, the highly effective predictions
of AI models come from Deep Neural Networks (DNNs), built from incredibly compli-
cated non-linear statistical models with countless parameters. However, the complexity
of DNNs which consist of numerous non-linear layers and millions of parameters often
compromises the transparency and interpretability of these models.
The most notable example of AI application in healthcare is cancer prediction (Bray
et al., 2018). According to World Health Organization(WHO) Breast Cancer (BC) is
the most prevalent disease worldwide, with over 2.3 million new cases annually. The
most significant risk factor for breast cancer is being a woman. Women are affected
by breast cancer in about 99% of cases, whereas men are affected in 0.5–1% of cases.
Women with breast cancer who live in high-income nations have a 60% higher chance
of surviving than those who live in low- and middle-income countries (WHO, 2024).
Furthermore, 70% of breast cancer deaths occur in resource-limited environments be-
cause of challenges in early diagnosis and treatment. A study by (McKinney et al.,
2020) shows that using AI may significantly enhance breast cancer diagnosis statisti-
cally, but it doesn’t thoroughly examine how these developments fit into routine clinical
procedures. The study ignores common problems, such as describing how the system
works, making sure it is easy to use, and comprehending how it fits into collaborative
practices that allow for a smooth transition into standard clinical work.
Another vital factor regarding interpretability is knowing why a system, service, or
method needs to be interpretable. In some situations, explanations may not be required
if no critical outcomes depend on the prediction’s outcome. For instance, if the objective
is to determine whether an image contains a tomato, and this information has no signif-
icant consequences, in this situation, an interpretable model may not be required, and a
black-box approach might be sufficient. Consequently, explaining and interpreting the



530 Dastgeer and Treigys.

model’s outcome and functionality are essential to enhance the applicability of these
systems across diverse clinical applications. Explainable AI (XAI) aims to provide re-
searchers with a wide range of tools to understand the opaque nature of black-box AI
systems, with a focus on transparency and the interpretability of AI models utilized to
make decisions (Croce et al., 2024).
This article focuses on the current state of research, contributions made in this area of
XAI and LLMs, and an investigation into what is still to be discovered. Our ultimate
goal is to give a comprehensive taxonomy in the field of XAI, which helps those who
are new in this field that they can use it as a guide to advance future research while
also motivating professionals and experts from other fields to embrace the advantages
of AI in their respective fields, free from assumptions about its interpretability. This
study, explored the potential of integrating LLMs into XAI pipelines to enhance the
interpretability of breast cancer prediction models. Initially, an image-based machine
learning model is trained using a breast cancer dataset to predict diagnostic outcomes.
Post-hoc explanation techniques, such as Gradient-weighted Class Activation Mapping
(Grad-CAM) or SHapley Additive exPlanations (SHAP), are then employed to gener-
ate visual or textual insights into the model’s decision making process. However, these
explanations often lack clarity and are not easily understandable by non expert users.
To address this gap, emerging research has investigated the use of LLMs to generate
user friendly, human centered narratives that describe the reason behind the model’s
predictions. This integration helps to bridge the gap between complex model behavior
and end user interpretability by making explanations more accessible, trustworthy, and
actionable. Figure 1 illustrates the yearly publication trend from 1999 to 2024 in the
healthcare domain using interpretable, explainable, and transparent AI approaches. The
core contribution of this study are following:

· An analysis of the role of XAI with a focus on healthcare domain.
· Emerging trends and tools in XAI and LLMs for enhancing interpretability in AI.
· An exploration of how LLMs enhance the explanation by translating them into

more understandable format.

Figure 1: Yearly publication for interpretable, explainable and transparent AI in health-
care(Data derived from SCOPUS)
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2 Survey Strategy

To ensure a comprehensive review, we structured our survey strategy into three phases:
identifying relevant studies, implementing inclusion and exclusion criteria, and extract-
ing the most suitable articles for detailed analysis.
Step 1: Identifying studies To systematically compile peer-reviewed research on the
use of XAI in breast cancer diagnosis, we employed an automated search strategy using
specific keywords. Our search targeted reputable academic databases known for pub-
lishing high-impact healthcare AI research, including PubMed, IEEE Xplore, Scopus,
and Google Scholar.
Step 2: Inclusion and exclusion criteria

· Articles focusing on the use of XAI and LLMs methods and tools for breast cancer
diagnosis across multiple imaging or data modalities (e.g., Mammography, MRI,
Histopathology).

· Studies employing black-box models (e.g., non-interpretable AI) for breast can-
cer diagnosis that lack explicit explanation methods or recent approaches integrate
LLMs to enhance interpretability by generating human understandable explana-
tions from these opaque systems.

· This survey excluded those articles published prior to 2019, to prioritize recent
advancements in XAI and breast cancer research.

· Articles are excluded other than English language, due to potential inconsistencies
in translation and accessibility.

Step 3: Extracting suitable articles To ensure the quality and relevance of our re-
view, we applied predefined inclusion and exclusion criteria. Selected studies had to be
original research articles published in the aforementioned peer-reviewed journals and
must have employed at least one explainable artificial intelligence (XAI) methodol-
ogy or Large Language Model (LLM) in the context of breast cancer. We conducted a
thorough screening of titles and abstracts, excluding studies that did not meet the inclu-
sion criteria. Specifically, we excluded studies that focused on XAI or LLMs without
addressing breast cancer, studies on breast cancer without XAI components, preprints
pending peer review, duplicate entries, and non-research materials such as books, dis-
sertations, and technical notes. After this screening process, 224 studies were excluded,
resulting in a final selection of 54 articles that met all inclusion criteria and were in-
cluded in our comprehensive analysis.
Table 1 presents the search strings used for article selection, covering publications from
January 2020 to December 2024.

3 Fundamental Concepts and Background

Traditionally, radiologists analyze mammograms to identify and diagnose malignan-
cies. This is often done in consultation with other medical professionals for a final
decision, but in rural areas and developing countries, access to qualified experts is lim-
ited. The complex structure of breast tissue and the peculiarities of breast tumors further
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Table 1: Review articles published from 2020 to 2024 were selected based on keywords,
with the number of papers retrieved from different databases according to predefined
inclusion and exclusion criteria.

Database Keywords Paper count
Scopus ( TITLE-ABS-KEY ( ”Explainable Artificial Intelligence” OR ”Ex-

plainable AI” OR ”XAI” OR ”Large Language Model” OR ”LLMs”
) ) AND TITLE-ABS-KEY ( ”Breast Cancer” ) AND PUBYEAR
> 2019 AND PUBYEAR < 2025

192

IEEE
Xplore

(”Abstract”:”Explainable Artificial Intelligence” OR ”Ab-
stract”:”Explainable AI” OR ”Abstract”:”XAI” OR ”Ab-
stract”:”Large Language Models” OR ”Abstract”:”LLMs”)
AND (”Abstract”:”Breast Cancer”)

2

Google
Scholar

(”Explainable Artificial Intelligence” OR ”Explainable AI” OR
”XAI” OR ”Large Language Models” OR ”LLMs”) AND (”Breast
Cancer”)

30

PubMed (”Explainable Artificial Intelligence”[Title/Abstract] OR ”Explain-
able AI”[Title/Abstract] OR ”XAI”[Title/Abstract] OR ”Large Lan-
guage Models”[Title/Abstract] OR ”LLMs”[Title/Abstract]) AND
(”Breast Cancer”[Title/Abstract]) AND (2020[Date - Publication] :
2024[Date - Publication])

54

complicate the manual analysis process. In contrast to human inspection, AI-based au-
tomated image analysis expedites the screening process by saving time and effort by
effectively collecting valuable and relevant information from vast amounts of images
(Schaffter et al., 2020). To automate the identification of breast cancer, researchers have
used a variety of imaging modalities, including CT, MRI, Ultrasound, Thermography,
Mammography, and Histopathological imaging (Thakur et al., 2024).

3.1 Datasets & Breast Cancer Screening Approaches

To detect breast cancer, several imaging techniques have been developed. The differ-
ent methods depend on many factors, like the cancer’s size, location inside the body
and aggressiveness. Among the most widely recognized methods for diagnosing and
determining breast cancer in its early stages are Mammography, Thermography, MRI,
Positron Emission Tomography (PET), CT, Ultrasound and Histopathology (Karthiga
et al., 2024). Table 2 provides an overview of publicly available breast cancer datasets,
including their imaging modalities and corresponding access links. This section exam-
ines existing diagnostic techniques, reviews key studies and validating their effective-
ness, and outlines evidence based guidelines for clinical application.

3.1.1 Manual Physical Breast Cancer Checkup A healthcare professional or the
patient can perform a Breast Physical Examination (BPE), also known as a Clinical
Breast Examination (CBE), to detect abnormalities in breast tissue, such as lumps,
asymmetry, or skin changes (Mohamed et al., 2021). To assess texture, mobility, and
potential masses, the examiner applies varying pressure levels to palpate the breasts and
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Table 2: Public Datasets for Breast Cancer Imaging
Ref Modality Dataset name Dataset availability link

(Spanhol
et al., 2015)

Histopathology BreakHis https://web.inf.ufpr.br/vri/databases/breast-
cancer-histopathological-database-breakhis/

(Mangasarian
et al., 1995)

cytology Breast Cancer
Wiscon-
sin(Diagnostic)

https://archive.ics.uci.edu/dataset/17/breast+
cancer+wisconsin+diagnostic

(Araújo et al.,
2017)

Histopathology Breast Histol-
ogy Dataset

https://rdm.inesctec.pt/dataset/nis-2017-003

(Suckling,
1994)

Mammograpghy Mini-MIAS http://peipa.essex.ac.uk/info/mias.html

(Rose et al.,
2006)

Mammograpghy DDSM http://www.eng.usf.edu/cvprg/mammography/
database.html

(Moreira
et al., 2012)

Mammograpghy INBreast https://biokeanos.com/source/INBreast

(Ramos-
Pollán et al.,
2012)

Mammograpghy BCDR https://bcdr.eu/information/about

(Halling-
Brown et al.,
2020)

Mammograpghy RSNA https://www.england.nhs.uk/statistics/statistical-
work-areas/diagnostics-waiting-times-and-
activity/imaging-and-radiodiagnostics-annual-
data/

(Saha et al.,
2021)

Radiology Duke-Breast-
Cancer-MRI

https://www.cancerimagingarchive.net/
collection/duke-breast-cancer-mri/

(Rodrigues,
2017)

Radiology Breast ultra-
sound image

https://data.mendeley.com/datasets/
wmy84gzngw/1

(Institute,
2025)

Radiology The Cancer
Genome At-
las Program
(TCGA)

https://portal.gdc.cancer.gov/

surrounding tissues, including the axillary lymph nodes. This non-invasive technique is
crucial for the early detection of breast cancer, particularly for individuals who are not
yet eligible for routine mammography or those living in resource-limited settings. BPE
are cost-effective and easily accessible screening methods that do not require special-
ized equipment, making them particularly valuable for initial clinical assessments (Sul-
tania et al., 2017). Despite being sensitive compared to advanced imaging modalities
such as Mammography or MRI, BPE serves as a critical complementary component
of screening programs, helping identify suspicious abnormalities requiring advanced
diagnostic assessment.

3.1.2 Mammograpghy Mammography is a key imaging technique used for the early
detection of breast cancer, which uses low-dose X-rays to visualize internal breast tis-
sue. It effectively identifies microcalcifications, lumps or structural distortions that may
indicate malignancy frequently before symptoms show up (Welch et al., 2016). The
breast is compressed between two plates to get high resolution images typically in
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craniocaudal and mediolateral oblique views. Although the test can identify abnormal
regions, it cannot determine that they are cancer. Although challenges such as false-
positive results, false negatives (notably in dense breast tissue) and patient discomfort
exist, innovations like digital mammography and 3D tomosynthesis have enhanced di-
agnostic precision and minimized recall rates. Its sensitivity is still limited, especially
in high risk patients which increases the likelihood of false positives and raises ques-
tions about the careless use of population based screening. Additionally, age and breast
density affect mammography accuracy with younger people or those with dense tissue
showing lower sensitivity (Geisel et al., 2018).

3.1.3 Magnetic Resonance Imaging (MRI) Breast MRI is an advanced, non-invasive
diagnostic tool that utilizes powerful magnetic fields and radio waves to generate highly
detailed, cross-sectional images of breast tissue. Compared to Mammography or Ul-
trasound, breast MRI excels in soft tissue contrast and it is beneficial for high risk
patients such as those with BC gene mutations or dense breasts, and for evaluating
complex cases where other imaging results are inconclusive (Kuhl, 2024). It is partic-
ularly used to assess tumor extent, monitor chemotherapy response and screen for can-
cer recurrence. The procedure often involves a gadolinium based contrast agent which
enhances visualization of abnormal blood flow patterns associated with malignancies.
While breast MRI boasts high sensitivity in detecting cancers it has lower specificity
sometimes leading to false positives and unnecessary biopsies (Gao and Heller, 2020).
Additionally, it is more time-consuming, costly and requires careful consideration for
patients with certain implants, renal impairment or claustrophobia.

3.2 Challenges in breast cancer recognition using AI

We review several articles on breast cancer detection using AI and address the issues
identified in these studies:

· Limited Public Datasets: The lack of publicly available datasets limits the progress
of breast cancer diagnostic research and poses an obstacle to model development.

· Unbalanced and insufficient data: Unbalanced datasets and small sample sizes
can negatively impact model performance. This makes it challenging to get reliable
results.

· Data loss in data preprocessing: Techniques such as data scaling solve the prob-
lem of small data sizes. This often leads to data loss. This may affect the quality of
the input data.

· Bias in AI Algorithms: Sometimes AI algorithms can produce biased results. This
challenges the development of models that can be generalized to diverse communi-
ties.

4 Impact of Explainability on AI Systems

Machine learning and Deep learning models are often criticized as ’black boxes’ due
to their inherently opaque and complex structures (Dastgeer and Treigys, 2024). The
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opaque nature of their decision-making processes makes it challenging for researchers
to justify their outputs in human-understandable terms. This lack of transparency has
gained significant interest in XAI. A concept significance arises from its social need.
Given the increasing focus on explainability in AI algorithms, we identify a few crucial
areas where XAI might result in bringing about transformative change.

4.1 Explainable AI (XAI)

The concept of XAI has deep roots in computational history. Early research on this
topic can be traced back to literature published over four decades ago. Early examples
include rule based expert systems that explained their outcomes based on applied rules
(Swartout, 1985). The term XAI refers to the characteristics that explain how the AI
model makes its predictions (Shi et al., 2022). According to (Sadeghi et al., 2024),
XAI focuses on creating an interface that makes AI decision-making accessible and
helps people to understand. Interpretability focuses on creating human understandable
rules that explain how a system makes its decisions. In the healthcare industry, where
decisions can have critical consequences, it is essential to understand how AI algorithms
generate their recommendations. Healthcare workers may find it difficult to assess and
trust AI systems outputs if they lack explainability potentially leading to hesitation in
adopting these technologies.

4.2 Need of Explainable AI (XAI)

AI models, often called ”black boxes” frequently produce unjustifiable, unexplainable
and unaccountable outcomes. In recent years, the XAI field has received more attention.
These days, it is crucial for AI systems not only provide precise diagnoses but also offer
supplementary information that clarifies or supports the complex classifier decisions. A
study (Moxey et al., 2010) highlights that physicians typically do not prefer black boxes
in medical systems because they would rather know how the system generates this deci-
sion. According to (Lamy et al., 2019) the primary goal of XAI is to develop intelligent
systems that can clearly and understandably communicate their choices, predictions,
and behaviors to users. This approach aims to develop models that produce correct re-
sults and explain the reasoning behind them. This makes it easier for users to trust and
communicate with AI systems, particularly in crucial fields like healthcare, finance, and
law. XAI focuses on enhancing the transparency, accountability, and fairness of AI sys-
tems which help users to understand the model’s behaviour better and make defensible
judgements based on its recommendations (Hassija et al., 2024). It draws attention to
essential methods like LIME, SHAP, Grad-CAM, and other vital factors that advance
explainability and interpretability. Figure 2 illustrates the overview of the problem of
black-box AI in medical diagnosis and the proposed solution using XAI and LLMs to
provide interpretable and user friendly explanations for clinical decision making.

4.3 Explainable Artificial Intelligence in Medical Diagnostics

The use of XAI to explain medical diagnostic conclusions has recently come into the
spotlight of the scientific community. Therefore, it can be understood that the healthcare
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Figure 2: Explainable AI Framework for Medical Diagnosis

sector is unique in its need where user acceptability of AI algorithms depends on both
explainability and accuracy (Zhang et al., 2022). Medical professionals must ensure
the models are appropriately trained and the parameters they rely on align with their
expertise (Aziz et al., 2024). For example, suppose an ML model’s post-hoc analysis
findings indicate that fatigue is an indication of breast cancer. In that case a medical
expert may instantly suggest that the ML model is unreliable. In applications such as
sentiment analysis, spam detection, or recommendation systems the lack of user par-
ticipation may not pose significant issues. This is because experts can independently
analyze the outputs of XAI methods to debug models and identify gaps in the training
data. However, in the medical domain the situation is different. Even if XAI methods
provide plausible explanations, only clinicians can properly analyze the outputs and un-
derstand the causes of failure cases in ML models especially in critical areas like breast
cancer diagnosis.

4.4 Four Principles of XAI

The increasing use of AI systems in high stakes fields such as healthcare, finance, and
legal decision-making requires these principles since opaque ”black-box” models com-
promise accountability, safety, and trust (Angelov et al., 2021). According to (Phillips
et al., 2020) an AI system must meet these four essential guidelines to be classified as
an XAI:

· Explanation: AI systems must provide a transparent justification for their out-
comes providing relevant contextual evidence or specific reasons.

· Meaningful: To ensure clarity, explanations should match the user’s expertise level
and be conveyed in an understandable, clear, and appropriate format.

· Accuracy: The system’s explanation must clearly and accurately represent its in-
ternal processes and decision pathways, ensuring that they are neither oversimpli-
fication or misrepresentation.

· Knowledge limits: This principle asserts that AI systems must recognize limita-
tions outside of their intended design where their responses may not be reliable.
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The explanation promotes user confidence in AI results by allowing users to exam-
ine judgments such as medical diagnoses. For example, a medical professionals need
explanations that differ from those of patients or regulators to achieve a meaningful ex-
planation. Accurate explanations can help avoid misunderstandings that bias a model’s
reasoning essential for evaluating regulatory compliance and identifying algorithmic
bias. Lastly, knowledge limits reduce the risk of damage by preventing overconfident or
outside of scope predictions such as an AI that detects uncommon diseases it was never
trained on.

5 Insights into Explainable AI (XAI)

Explainability in AI models has been attained using a variety of methods and strategies.
Table 3 summarizes key studies that have applied XAI techniques in breast cancer di-
agnosis. The table lists the datasets used, the specific explanation techniques employed
(such as Grad-CAM, SHAP, or LIME), machine learning models applied and the limi-
tations identified in each study. This comparison provides insight into the current land-
scape of XAI applications in medical imaging helping to identify which methods are
frequently used as well as their associated challenges.

5.1 Explainability Methods

The method for explaining AI behavior depends on the type of machine learning al-
gorithm. Some algorithms produce inherently transparent models (e.g., Decision Trees,
Bayesian Classifiers, Random Forest), while others like deep learning algorithms cre-
ate complex black-box models that require specialized techniques to interpret their
decisions for users to understand (Hall and Gill, 2019). The explainability method is
categorized into two categories: How explanations are generated and When explana-
tion are provided? Another key criterion for classifying XAI techniques is the scope
of explanations which can be categorized into local explanations focusing on individual
predictions and global explanations providing a broader understanding of overall model
behavior.

5.1.1 Model-specific vs Model-agnostic Based on how explanations are generated,
explainability methods in machine learning are categorized into two types: Model-
specific and Model-agnostic. Model-specific approaches are designed to analyze par-
ticular types of models by examining their internal structure and parameters to generate
insights (Ai and Narayanan. R, 2021). For instance, in Random Forest Models, feature
importance is calculated using techniques directly tied to the model’s structure. One
such technique is the Gini importance metric which evaluates how much each feature
reduces prediction uncertainty or impurity. Alternatively, permutation importance as-
sesses a feature’s impact by randomly shuffling its values and measuring the resulting
decline in model performance. These techniques help identify which features contribute
the most to the model’s predictions.
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Table 3: Comparison of Explainability methods used in different breast cancer studies

Ref no Dataset Method
Explanation
Technique Limitation

(Dhiman
et al., 2024)

OCT images TOPSIS &
CSA

SHAP The model’s performance may vary
if a different dataset is used

(Maheswari
et al., 2024)

Fine Needle
Aspirate (FNA)
images

KNN, SVM,
RF Naive
Bayes

LIME &
SHAP

When applied to another, unex-
plored situations with different fea-
tures, the model’s performance
might not be as accurate or effec-
tive.

(Dihmani
et al., 2024)

Infrared Image
(DMR-IR)

Hybrid Particle
Swarm Op-
timization &
Hybrid Spider
Monkey Opti-
mization

SHAP The study focused solely at one
imaging modality; adding MRI or
mammography might make feature
extraction and interpretability more
difficult.

(Briola
et al., 2024)

Wisconsin
Breast Can-
cer(tabular
dataset)

XGBoost SHAP The effectiveness of federated
learning depends on the consis-
tency and quality of the data from
all sources differences affect per-
formance.

(Raghavan,
B and v,
2024)

Infrared breast
images

DenseNet201,
VGG19 &
EfficientNetB7

Attention
guided grad
cam

Using explanation maps resulted in
a 42.5% decrease in performance,
indicating a compromise between
accuracy and interpretability.

(Kaushik
et al., 2023)

Infrared breast
imagery

DenseNet201 Grad-CAM Clear and well-structured data is
necessary for denoising autoen-
coders and classifiers to produce
precise predictions.

(Rajpal
et al., 2023)

DNA methyla-
tion data

MethylMarker
Framework
(Deep Neural
Network-
based)

SHAP A single-omic approach to DNA
methylation could miss information
from combining data from several
omics.

(Khater
et al., 2023)

WBCD (tabular
dataset)

KNN LIME Biases in the dataset might affect
the model’s decision.

(Paudel
et al., 2023)

Categorical
data

Support
Vector Ma-
chine,Random
For-
est,MultiLayer
Perceptron

LIME &
SHAP

Although it is impressive to get high
F1 scores (above 0.98), the study
overlooks the possibility of overfit-
ting and generality across other pa-
tient groups or datasets.

(Farrag
et al., 2023)

INBreast
(Mammogram
dataset)

DeepLabv3 Grad-CAM It is in doubt how well this study
performs well because it does not
compare with other cutting-edge
segmentation models (such as U-
Net, U-Net++, and Swin UNETR).
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However, attention mechanisms in transformer models illustrate model-specific in-
terpretability by revealing how the model processes and prioritizes input elements dur-
ing prediction. For instance, in Natural Language Processing (NLP) tasks, self-attention
layers generate heatmaps that visualize which words or phrases the model focuses on
when making predictions. Similarly, in computer vision, attention maps identify salient
regions in an image that contribute most to the model’s decision. By directly expos-
ing the model’s internal focus attention based interpretations help to bridge the gap
between the complexity of transformer layers and human understanding of their deci-
sion making process. In contrast, model agnostic techniques work across various model
types and treat the model as a ”black box,” avoiding reliance on internal parameters.
Methods such as LIME and SHAP provide interpretations by analyzing input output re-
lationships rather than requiring deep expertise in the model’s architecture (Wikle et al.,
2023). This flexibility makes them particularly useful for explaining complex models
like DNNs in a way that is more accessible to non experts.

5.1.2 Post-Hoc vs Transparent Explainability Based on when explanations are pro-
vided explainablity methods in machine learning are categorized into two methods:Post-
hoc and Transparent. Post-hoc explainability methods systematically examine the inter-
nal logic and behavior of trained machine learning models after they generate predic-
tions. These methods may also use surrogate modeling to deconstruct the mechanistic
rationale behind the model’s input output relationships (Rai, 2020). Transparent models
also referred to as ante-hoc methods, intrinsically interpretable or glass-box models pri-
oritize explainability by embedding interpretability directly into a model’s architecture
or training process. These approaches create inherently understandable systems ensur-
ing transparency from the outset (Retzlaff et al., 2024). Rule Based Systems, such as
Bayesian Rule Lists (Letham et al., 2015) are intrinsically interpretable models that
classify data using a series of logical ”if-then” conditions. These models operate by
repeatedly identifying simple, human-readable rules that partition the data into subsets
based on feature thresholds or categorical conditions. The interpretability arises from
their clear, sequential logic which closely align with human decision making processes.
Unlike black-box models, rule based systems provide outcomes that can be directly
traced through the applied rules, allowing users to validate each step of the reasoning.
Their transparency makes them particularly useful in domains like healthcare where
stakeholders need clear justifications for predictions (Rudin, 2019).

5.1.3 Global vs Local Explanation Local interpretability methods aim to explain a
model behavior for specific instances or regions within the input space, rather than pro-
viding a comprehensive understanding of model’s decision making process (Hakkoum
et al., 2024). These techniques generate instance specific explanations by approximat-
ing the model’s behavior locally (e.g., near the data point of interest). While such ex-
planations reveal how the model responds to particular inputs they do not necessarily
provide insights into the model’s broader decision patterns patterns or generalize to its
overall functionality. Global explanation methods offer a holistic understanding of a
machine learning model’s behavior across the entire dataset rather than explaining an
individual predictions (local explanations). These techniques reveal overarching pat-
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terns, feature importance and decision logic making them essential for auditing models,
ensuring compliance, and building trust (Radensky et al., 2022). Figure 3 illustrates the
classification of AI models into transparent (glass-box) models which are intrinsically
interpretable (e.g., decision trees, linear models), and black-box models (e.g., deep neu-
ral networks, ensemble methods), which rely on post-hoc explanation techniques. The
figure further classifies explainability methods by scope (global vs. local) and technique
(model-agnostic vs. model-specific), such as feature importance scores, surrogate mod-
els or saliency maps. Transparent models enable direct inspection of their logic, while
black-box systems require external methods to approximate or extract their decision-
making patterns.

Figure 3: Taxonomy of AI Models and Explainability Approaches

5.2 Hurdles in Enabling XAI

There are several key challenges in achieving explainability for ML models. As noted
by (Adadi and Berrada, 2018) all Black-box systems don’t have to justify every deci-
sion they make because doing this could have a number of negative effects, including
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worse system performance and higher development costs. In the absence of compre-
hensive development framework for XAI, local interpretation methods has become a
common practice to explain the cases being investigated. Complex machine learning
model analysis requires a foundation in advanced statistics and mathematics concepts.
The regions that are crucial to the model’s predictions are identified by XAI techniques
but the underlying characteristics that give these regions their significance are not ex-
plained. Healthcare systems have not yet been able to meet the functional and design
requirements for the effective use of machine learning models in the medical field. End
users actively participate in the creation of ML models in order to align technology
with practical requirements and ensure that the end result meets user expectations. Al-
though XAI methods provide meaningful insights, only healthcare care providers can
appropriately assess the results and understand the reasons behind failures of the ML
model, particularly in crucial domains such as breast cancer detection (Chaddad et al.,
2023). Therefore, ML experts often have to rely on clinicians for debugging and im-
proving their models.

6 The Urgency of Large Language Models in Medical Diagnostics

The opacity of black box models poses a critical challenge in high-stakes healthcare ap-
plications, such as breast cancer diagnostics, where clinicians and patients need clear,
actionable insights. Traditional Explainable AI (XAI) method like SHAP and Gradients
typically rely on visualizations (e.g., heatmaps, saliency maps) or numerical outputs to
interpret model outcomes. While these approaches are valuable for ML experts, they
may fail to communicate with end users such as radiologists, oncologists, or patients
who lack specialized technical training. This gap undermines trust and limits the clini-
cal adoption of AI tools despite their diagnostic potential. LLMs offer a transformative
solution by converting complex model behaviors into contextual, natural language ex-
planations (Williams et al., 2024). For instance, in breast cancer diagnostics, an LLM
could elucidate why a deep learning model classified a mammogram as ”high risk” by
summarizing key features (e.g., microcalcifications, tumor morphology in easily under-
standable terms. This aligns with broader trends in XAI research where frameworks
like LLaVA-Med (Li et al., 2023), a multimodal LLM tailored for biomedical appli-
cations. It is trained to process medical images (e.g., Radiology scans, Histopathology
slides) alongside textual data (e.g., clinical notes, lab reports) and generate natural lan-
guage responses. Adapting similar approaches to healthcare could empower clinicians
to validate AI driven insights and more effectively communicate the reasoning behind
diagnoses to patients.

6.1 Enhancing AI Model Transparency via Large Language Models

In recent years, LLMs have shown great promise in enhancing XAI by translating com-
plex machine learning outputs into coherent and accessible human language. The hu-
man centered approach further guides the refinement of these explanations by consid-
ering user’s comprehension levels, contextual needs, and interaction preferences (Zhou
et al., 2024). By involving end users in the development process through methods such
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as interviews and scenario based evaluations. The explanations generated by the LLMs
are not only technically accurate but also socially relevant and easy to understand. This
approach ultimately enhances the transparency of AI models in healthcare and supports
more informed and confident decision making by medical professionals and patients
alike.

6.2 Enhancing Breast Cancer Diagnosis Interpretability with Large Language
Models

In recent developments, the integration of Deep Learning based image analysis with
LLMs has emerged as a promising approach to enhance interpretability in AI-driven
breast cancer diagnosis. While CNNs and vision transformers (ViTs) achieve state of
the art performance in classifying Mammographic images (e.g., malignant vs. benign),
post hoc explanation methods such as Grad-CAM and LIME typically generate saliency
maps and feature importance scores. However, these technical outputs are often not eas-
ily interpretable by medical professionals or patients. To address this issue, emerging
research has investigated the use of LLMs to generate human centered natural lan-
guage explanations that better convey the model’s reasoning in an accessible manner.
By translating complex outputs into coherent narratives, LLMs help bridge the gap
between model behavior and user understanding, improving transparency, trust and de-
cision support particularly for medical professionals such as radiologists and oncol-
ogists. LLMs (e.g., GPT-4, LLaMA-3) can be incorporated as translation layers that
convert structured XAI outputs including prediction confidence, salient image regions
(e.g., spiculated masses, microcalcifications), and metadata (e.g., lesion size and loca-
tion)into natural language explanations (Egli, 2023).

7 Tools for Fairness and Explainability in Interpretable AI

Machine learning practitioners frequently require tools to examine and evaluate their
models (Rahman et al., 2023). Essential steps to enhance performance include assessing
a model’s effectiveness and investigating how input modifications impact its outcomes.

7.1 Tools for ensuring Fairness and reducing Bias

IBM AI Fairness 360 (AIF360): The open source toolkit IBM AI Fairness 360 (AIF360)
(Varshney, 2018) offers a collection of measurements, algorithms and bias mitigation
strategies to identify discrimination and resolve bias in machine learning models. It has
tools for using preprocessing and postprocessing strategies to improve fairness, as well
as the ability to measure bias in datasets and models (Blow et al., 2024).
The What-If Tool (WIT): WIT from Google is an open source TensorBoard web ap-
plication that allows users to evaluate the performance and fairness of machine learning
models (Wexler et al., 2019). The tool requires only a sample dataset and trained mod-
els.
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Fairlearn : This toolkit is designed to help practitioners to evaluate and improve fair-
ness of AI systems (Bird et al., 2020). Its accompanying Python library, supports fair-
ness in AI by allowing practitioners to evaluate model outputs across different popula-
tions and includes specific algorithms designed to mitigate bias and fairness issues.

7.2 Agnostic Explainability Tools

SHapley Additive exPlanations (SHAP): SHAP is an Explainable Artificial Intelli-
gence (XAI) method based on game-theoretic principles (Lundberg and Lee, 2017). It
interprets machine learning models by considering individual features as team members
working together to achieve a common goal, where the model’s outcome represents the
collective payoff. By calculating each feature’s unique contribution to the result, SHAP
provides both local and global explanations, offering insights into feature importance
across the dataset as well as overall model behavior.
Local Interpretable Model-agnostic Explanations (Lime): LIME (Ribeiro et al., 2016)
helps to enhance the interpretability of a machine learning models and make its indi-
vidual outcome more understandable. It provides local explanations by approximating
the model’s behavior for a specific single instance, helps it to for understand how a par-
ticular outcome was made.
Anchors: It is an open-source toolkit that generates high-precision, rule-based explana-
tions for individual model predictions (Ribeiro et al., 2018). It identifies minimal con-
ditions (”anchors”) under which the prediction remains unchanged, thereby enhancing
transparency and trust in AI systems through locally faithful and interpretable rules.

7.3 Explainability Methods for Deep Neural Networks

Captum: Captum is an open-source PyTorch library for model interpretability, offering
a unified framework to implement and evaluate feature attribution methods. It supports
gradient-based and perturbation-based algorithms to explain predictions across diverse
models including complex architectures like graph neural networks in both classifica-
tion and non-classification tasks (Stanchi et al., 2023).
Gradient-weighted Class Activation Mapping (Grad-CAM): Grad-CAM is a visual
attribution method for CNNs that generates coarse heatmaps highlighting image regions
critical to a model’s class prediction. It computes gradients from a target class back to
the final convolutional layer, weighting activation maps to reveal influential spatial fea-
tures (Selvaraju et al., 2017).
Integrated Gradients: Integrated Gradients is an attribution method for DNNs that
distributes a model’s prediction to input features (Sundararajan et al., 2017). It satisfies
two core principles: Sensitivity (non-zero attribution for output-changing features) and
Implementation Invariance (identical attributions for functionally equivalent models).
The approach requires no model modifications and leverages standard gradient compu-
tations.

7.4 Large Language Model Explainability Tools

ExBERT: ExBERT is an interactive visualization tool for exploring attention mecha-
nisms in transformer models (e.g., BERT). It visualizes word-to-word attention across
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layers and heads, enabling granular analysis of how LLMs process linguistic relation-
ships (Gajbhiye et al., 2021).
BertViz: BertViz is an open-source visualization tool enables interactive exploration
of transformer attention mechanisms, visualizing token to token patterns and head dy-
namics in self or cross attention (Vig, 2019). It advances explainability by revealing
how input tokens influence predictions and exposing biases or spurious correlations.
Researchers leverage it to debug behaviors, improve model design, and enhance trust in
AI outputs.
ExplainaBoard: ExplainaBoard is an open-source toolkit for interpretable evaluation
of NLP models (Yuan et al., 2021). ExplainaBoard converts standard NLP evaluation
into an interpretable, diagnostic, and comparative analysis, empowering researchers to
decode model behavior beyond metrics.
Figure 4 tracks the rising GitHub star counts of machine learning explainability repos-
itories over time. The x-axis represents the period from 2015 to 2025, while the y-axis
quantifies repository popularity through accumulated stars. The repositories include
well known tools include SHAP (slundberg/shap), LIME (marcotcr/lime), Captum (py-
torch/captum), and other libraries dedicated to AI interpretability. SHAP exhibits the
most pronounced growth trajectory, surpassing LIME and Captum in adoption. The
trend suggests a rising interest in post-hoc explainability techniques, with certain repos-
itories gaining significant traction over time.

Figure 4: GitHub Repository Star Growth Over Time for Explainability Techniques
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8 Conclusion

In this paper, we review the existing literature and provide a comprehensive analysis
of XAI, with a focus on its applications in healthcare and cancer diagnostics, while
also highlighting the emerging role of LLMs enhancing AI interpretability and user-
centered explanations. This study explored the inherent interpretability challenges of
DL models, clarifying why they are often described as ’black boxes. We discussed the
limitations and challenges associated with current XAI methods, particularly in provid-
ing clear and meaningful explanations to end users. By leveraging the tools discussed in
this study, practitioners can build interpretable models that promote the responsible and
widespread adoption of AI in sensitive and high-impact domains such as healthcare.
We highlight the critical need for trust between humans and AI, particularly in medical
contexts, where even small errors in model predictions can have severe consequences.
Futhermore, we explored the transformative potential of integrating LLMs into XAI
systems, particularly in the context of AI-driven breast cancer diagnosis. Recent devel-
opments in the filed of interpretable machine learning, particularly in local interpreta-
tion methods, provide insights into the decision-making process of complex models by
explaining individual predictions. It is crucial to explore approaches that make these
explanations more accessible and comprehensible to a wider range of stakeholders,
ensuring the effective translation of AI insights into actionable and understandable in-
formation. In future work, we will address the need to integrate visual tools with textual
explanations, enabling end users to better understand the critical regions of an image
by visualizing them using techniques such as saliency maps or heatmaps, ultimately
enhancing transparency and trust in AI systems.
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