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Abstract: This study evaluates the effectiveness of password recovery techniques targeting 

wireless network protocols, including WPA2, WPA3, and Wi-Fi Protected Setup. Several tools 

were tested for their ability to capture authentication data and perform offline dictionary attacks. 

The impact of system parameters was analyzed, including processor clock speed, memory size and 

channels, GPU usage, and backend frameworks. Results show that CPU architecture and 

frequency strongly affect performance, while memory configuration has negligible impact. 

Discrete GPUs significantly improve cracking speed, and OpenCL slightly outperformed CUDA. 

Combining the CPU with GPUs may reduce performance. GPU temperatures were also found to 

be much lower than CPU under load. A strong correlation was observed between benchmark 

scores and cracking performance. The study confirms that improper configurations, such as WPA3 

compatibility mode, expose networks to downgrade attacks. These findings offer practical 

guidance on secure Wi-Fi setup and hardware selection for efficient password recovery. 
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1. Introduction 

Since the development of smartphones with Wi-Fi connectivity, wireless technology has 

become widely integrated into everyday digital life (Kanagachidambaresan, 2022). To 

connect a smartphone or any other device that suppo rts wireless internet access, users 

typically purchase a Wi-Fi router and configure it to function as an access point (AP) 

(Dondyk and Zou, 2013). This setup is performed by accessing the router's 

administrative panel via an IP address (commonly 192.168.0.1) or a dedicated URL 

(e.g., miwifi.com for Xiaomi devices) (Ferriz, 2013). The default login credentials—

usually “admin” for both username and password—are often printed on the router’s label 

(Niemietz and Schwenk, 2015). During the configuration process, users must select a 

security protocol for their AP (Potter and Fleck, 2003). Once a security protocol is 

chosen and a password is set, an Ethernet connection is established to the router, 

enabling Wi-Fi access for smartphones, tablets, and other devices (Jewell et al., 2015). 

Due to the widespread adoption of Wi-Fi networks, the question is no longer whether 

wireless security protocols can be compromised, but rather how and under what 



 Assessing Wi-Fi Security Protocols  593 

 
 

 

conditions they are most vulnerable (Pahlavan and Krishnamurthy, 2020). The original 

protocol, Wired Equivalent Privacy (WEP), was introduced in the IEEE 802.11 standard 

in 1997 (Pahlavan and Krishnamurthy, 2020). However, WEP was quickly rendered 

insecure due to serious limitations, including its use of the outdated RC4 encryption 

algorithm and insufficient key length (Jean-Philippe, 2024). In 2003, the Wi-Fi Protected 

Access (WPA) protocol was released, introducing the TKIP encryption algorithm as a 

temporary solution (Jiang and Garuba 2008). This protocol was also soon compromised 

(Moen et al., 2004). WPA2 followed in 2004, offering more robust security with AES 

encryption and becoming the most widely adopted wireless security standard (Moissinac 

et al., 2021). In 2018, WPA3 was introduced, providing stronger protections against 

brute-force attacks through individualized encryption and password salting techniques 

(Sagers, 2021). 

Among the most effective techniques for breaching Wi-Fi networks are brute-force 

attacks, which systematically attempt all possible password combinations until the 

correct one is identified (Por et al., 2024; Chalyi and Kolomytsev, 2023). A more 

efficient variant, the dictionary attack, uses a predefined list of likely passwords instead 

of attempting every possible combination (Bosnjak et al., 2018). These wordlists may be 

manually created, downloaded from the internet, or derived from leaked password 

databases, such as the top one million most frequently used passwords. Although 

dictionary attacks significantly reduce the time needed compared to pure brute-force 

methods, their success depends entirely on whether the target password is included in the 

selected list (Narayanan and Shmatikov, 2005). 

The aim of this research is to evaluate the efficiency of various password recovery 

tools targeting WPA2 and WPA3 security protocols, with a particular focus on 

dictionary-based and brute-force attacks. Unlike prior studies, this work systematically 

analyzes the impact of hardware characteristics, including memory size, memory 

channel configuration (single vs. dual), CPU clock speed, and architectural generation on 

password recovery performance. 

In addition, this study explores GPU acceleration in offline password cracking, 

comparing integrated and discrete GPUs, backend frameworks (CUDA vs. OpenCL), 

and hybrid CPU + GPU configurations. A particularly novel finding is that combining a 

CPU with multiple GPUs can degrade overall performance, contradicting common 

assumptions about hybrid acceleration. 

The study also evaluates memory usage across varying wordlist sizes, revealing that 

RAM consumption scales more with device power than with dictionary size. Moreover, 

thermal analysis showed that GPU temperatures remain significantly lower than CPU 

temperatures during sustained cracking operations—an important consideration for long-

term attacks and hardware longevity. 

The research also investigates the vulnerabilities associated with Wi-Fi Protected 

Setup (WPS) and the practical feasibility of WPA3 downgrade attacks, which remain 

significant risks in many wireless networks when improperly configured (Chalyi et al., 

2025; Abasi-Amefon et al., 2020; Bruzgė et al., 2023). 

2. Related Work 

Moissinac et al., (2021) in their work, investigate wireless encryption and WPA2 

weaknesses. They describe the workings of the WEP and WPA2 algorithms and examine 
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their key generation process. Using the Aircrack-ng tool and a Kali Linux 2020.1 virtual 

machine, they conducted experiments simulating three operations used for WPA2-PSK 

calculations. It took 33.415 seconds for 1,000 operations to find the key using the 

Aircrack-ng tool. To address the vulnerabilities of WPA2-PSK, they proposed a solution 

that increases the time required for key discovery by 2.9 times—up to 96.743 seconds. 

Their approach involved replacing the standard WPA2-PSK authentication mechanism 

with a combination of RADIUS authentication and an SSL handshake, which adds an 

additional layer of security. The experiments showed that these modifications 

significantly increased the computational overhead for an attacker attempting to crack 

WPA2-PSK. Additionally, their study highlighted the impact of increasing 

computational power on WPA2-PSK vulnerabilities. The results demonstrated that a 

higher computational cost could serve as a deterrent for brute-force attacks. However, 

the authors also acknowledged that their proposed approach does not fully mitigate 

dictionary attacks or precomputed hash-based exploits. They concluded that the adoption 

of WPA3, with its Simultaneous Authentication of Equals (SAE) handshake, could 

further enhance security by eliminating weaknesses inherent in WPA2-PSK. Their 

findings emphasize the necessity of continuous improvements in wireless encryption 

standards to keep pace with evolving attack methodologies. 

Appel and Guenther (2022) investigate the improvements of WPA3 over WPA2. 

Their paper aims to provide an overview of the designs of WPA2 and WPA3, including 

their currently known vulnerabilities, and attempts to determine whether WPA3 is still a 

viable successor or if it has already been compromised beyond repair. Moreover, the 

paper highlights critical security weaknesses in WPA3, particularly the Dragonblood 

attacks, which expose vulnerabilities in the SAE handshake. These attacks include 

downgrade attacks that force clients to connect using WPA2, side-channel attacks 

leveraging memory access patterns or timing variations, and denial-of-service attacks 

that exploit the high computational cost of WPA3 authentication. The authors argue that 

while WPA3 addresses known vulnerabilities of WPA2, its flaws raise concerns about 

its long-term viability. They emphasize that the transition mode, intended to ease 

adoption, paradoxically weakens security by enabling attacks on WPA3 networks. 

Furthermore, the paper discusses the challenges in mitigating these vulnerabilities, as 

countermeasures often introduce additional computational overhead, making WPA3 

adoption more difficult, especially for resource-constrained devices. The paper 

concludes that although WPA3 offers improvements, its current state requires further 

refinements or alternative solutions to ensure robust wireless security, highlighting the 

need for continued research and potential protocol modifications. 

Moroz (2024), in her qualification paper, investigates the WEP and WPA1-3 security 

protocols and their resistance to brute-force and dictionary attacks. She also explores the 

relationship between the execution time required for a dictionary attack and the security 

protocol used. According to this work, as of May 2024, only 1.28% of all Wi-Fi 

networks worldwide operate using WPA3, the most secure known security protocol for 

wireless networks. The experiments were conducted on a locally installed Kali Linux 

6.6.9-amd64 operating system. The tools Aircrack-ng, Rockyou, and Hashcat were used. 

An offline dictionary attack was executed on a Huawei Wi-Fi AX3 router using the 

Rockyou dictionary on supported security protocols. A total of 46 iterations were 

performed with three passwords. Appendix B of Moroz's work presents a table listing 

the passwords, security protocols, and the time required to perform the dictionary attack. 

The results show that for a simple password (eight digits), the required time for a 
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dictionary attack was the same across all WPA1-3 security protocols. However, when 

the password became more complex (14 digits), the attack time for WPA1 was lower 

than for WPA2. Notably, in this experiment, the time required to crack WPA3 was 

16,524 times longer compared to WPA1, which could be the result of error. The 

experiment demonstrated that without exploiting vulnerabilities to downgrade the 

security protocol to WPA2-PSK in WPA2-PSK/WPA3-SAE mode, it is impossible to 

execute offline dictionary and brute-force attacks due to the complexity of the Dragonfly 

handshake mechanism. Additionally, the WPA3-SAE protocol is resistant to de-

authentication attacks due to the Security Association (SA) mechanism, which prevents 

the control of management frames, such as unencrypted de-authentication frames.  

Fatihah Wan Mustapha et al. (2020) proposed a WiFi approximated signal quality 

measurement method to be used with a Brute Force algorithm in looking for the best 

placement of AP in indoor locations. The result shows that the approximated signal 

quality generated by the proposed algorithm almost equals the actual strength measured 

with an acceptable error. Instead of performing multiple signal strength measurements at 

different AP locations, their method requires only a single initial measurement. The 

algorithm then approximates the expected signal strength at other locations, allowing for 

an optimized AP placement without extensive physical testing. This significantly 

reduces the time required for network planning while maintaining accurate predictions of 

signal distribution. Their approach aims to optimize AP placement to ensure both cost-

effectiveness and sufficient coverage, addressing the common issue of inefficient AP 

deployment in indoor environments. The new placement of AP proposed by their 

algorithm also manages to ensure a minimum of 84% WiFi strength in each room if all 4 

APs were used. Moreover, their findings indicate that even with a reduced number of 

APs, acceptable coverage can be maintained—2 APs are sufficient to achieve at least 

72% WiFi signal quality in each room. The study highlights the efficiency of the Brute 

Force algorithm in systematically exploring placement options, ultimately leading to a 

configuration that balances network performance and installation cost. 

Prodani and Rista (2024), in their work, analyze the security of passwords in Wi-Fi 

networks using the Airgeddon tool and applying brute-force and dictionary attacks . By 

capturing handshakes on different Wi-Fi networks, they estimate the time needed to 

decrypt them while simultaneously analyzing the hardware performance and the 

effectiveness of brute-force and dictionary attacks.  In their experiments, they used three 

hosts with different CPU, GPU, RAM, and storage types—HDD, SSD SATA3, and SSD 

NVMe. They launched 10 APs with different passwords, captured handshakes, and 

attempted to crack them using the three different hosts. Table 2 in their work presents the 

results, showing that hardware specifications significantly impact the cracking time, with 

Host 3 performing much better than Hosts 1 and 2. The results demonstrate that more 

powerful hardware can drastically reduce the time required for brute-force attacks. For 

example, for cracking their second SSID (with numeric passwords only), Host 1 took 

1238 seconds, Host 2 took 467 seconds, and Host 3 only 5 seconds—2.65 and 247 times 

faster, respectively, compared to Host 1. Furthermore, the paper compares the 

effectiveness of brute-force and dictionary attacks for different passwords. The results 

indicate that while brute-force attacks require significant computational power and time, 

dictionary attacks can be much faster if the password exists in the predefined dictionary 

file. The findings suggest that adopting strong password practices, including complex 

combinations of characters, avoiding common phrases or acronyms, using long and 
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varied passwords, and avoiding frequent repetitions, improves the security of Wi-Fi 

networks. 

3. WPA/WPA 2 

The main attack on WPA/WPA2 security protocols in this research was a dictionary-

based attack on the hashes contained in the captured handshake. The analyzed tools were 

divided into the following categories:  

1. Tools for capturing handshakes. 

2. Tools for brute-forcing captured hashes. 

3. Universal tools that can capture handshakes and brute-force them. 

3.1. Handshake Capture 

Several tools were selected for evaluating WPA/WPA2 handshake capture efficiency: 

airodump-ng, hcxdumptool, besside-ng and Fluxion. 

Airodump-ng, a component of the Aircrack-ng suite, is widely used in security-

focused Linux distributions (e.g., Kali Linux, Parrot OS) (Kolev and Yordan, 2024). It 

enables monitor mode and captures handshake data from nearby access points. 

Combined with deauthentication attacks (e.g., via aireplay-ng), it facilitates the forced 

re-authentication of clients, allowing the handshake to be captured in .cap format. 

Hcxdumptool, from the Hcxtools package, performs low-level Layer 2 attacks and 

captures handshake data in .pcapng format (WEB (a)). The captured data must be 

converted to the .hc22000 format using hcxpcapngtool for compatibility with tools like 

Hashcat. 

Besside-ng, also part of the Aircrack-ng suite, automates the process by enabling 

monitor mode, scanning for targets, and launching deauthentication attacks without 

manual configuration (Barybin et al., 2019). While convenient, its lack of fine-tuned 

control may lead to instability in multi-AP environments. 

Fluxion differs significantly from other tools, as it uses social engineering rather than 

brute-force techniques (WEB (b)). After forcing disconnection from the target AP, it sets 

up a fake access point to phish the Wi-Fi credentials. Although it does not support hash 

cracking, Fluxion can verify handshake capture using internal modules such as Aircrack-

ng or Cowpatty. 

3.2. Brute-Force and Dictionary attack 

Several tools were evaluated for their capabilities in performing brute-force and 

dictionary-based attacks on WPA/WPA2 handshake hashes. These included Aircrack-ng, 

John the Ripper, Cowpatty, and Hashcat. 

Aircrack-ng is a widely used utility that supports both dictionary and brute-force 

attacks on .cap handshake files (Jain et al., 2022). Its integration into many security 

toolkits, including Kali Linux, makes it a common baseline for comparative testing. 

Aircrack-ng processes WPA handshake hashes directly and attempts to recover the 

passphrase using a supplied wordlist. 

John the Ripper requires the .cap file to be converted to a compatible format using 

the wpapcap2john utility (WEB (c)). Once converted, the tool applies a wordlist attack 
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using its internal password-cracking engine. Its modular design allows it to support a 

variety of hash formats and attack strategies. 

Cowpatty performs offline dictionary attacks against WPA/WPA2 networks using 

pre-shared key (PSK) authentication (WEB (d)). The tool accepts .cap files and a 

wordlist, and matches the computed hash values with the handshake contents. The attack 

performance is highly dependent on the presence of precomputed hash tables (e.g., 

rainbow tables) or optimized hash-caching mechanisms. 

Hashcat is the most advanced tool in this evaluation, supporting GPU acceleration 

and distributed cracking across multiple devices (WEB (e)). It requires conversion of 

.cap files into .hc22000 format, compatible with Hashcat's optimized WPA2 cracking 

routines (WEB (f)). Hashcat supports numerous attack modes, including dictionary, 

mask, hybrid, and rule-based approaches, and enables detailed benchmarking across 

different hardware configurations. 

3.3. Universal Tools 

Universal tools that integrate both handshake capture and password cracking 

functionalities were also evaluated. These included Airgeddon, Wifite, and Fern WiFi 

Cracker. 

Airgeddon is a comprehensive Bash-based framework designed for wireless network 

auditing (WEB (g)). It integrates a variety of utilities, such as airmon-ng, aireplay-ng, 

and Hashcat, and supports both manual and semi-automated workflows. The tool 

provides a unified interface for capturing WPA/WPA2 handshakes and executing attacks 

using different cracking engines, including aircrack-ng and hashcat. It also supports 

rule-based attacks and various deauthentication methods (e.g., mdk4, aireplay-ng). 

Although Airgeddon is not pre-installed in Kali Linux, it remains popular due to its 

modular structure and wide feature set. 

Wifite is an automated wireless auditing tool that wraps multiple attack tools, 

including aircrack-ng, pyrit, reaver, and tshark (WEB (h)). It is designed for minimal 

user interaction, enabling fully automated WPA/WEP attack sequences. Wifite can 

capture handshakes, conduct deauthentication attacks, and apply dictionary-based 

password cracking. By default, it uses aircrack-ng as the cracking engine and stops 

execution after a predefined duration if no successful match is found. 

Fern WiFi Cracker is a graphical wireless security auditing tool written in Python 

using the Qt framework. It supports WEP, WPA, and WPS key recovery and provides a 

GUI-based interface for scanning, capturing, and attacking Wi-Fi networks. Due to its 

reliance on native hardware interfaces, Fern WiFi Cracker operates effectively only in 

live environments and may not function properly in virtualized setups. Unlike command-

line tools, its usability is geared toward educational or demonstration purposes rather 

than high-performance testing. 

3.4. Creating Wordlists 

Brute Force is a good attack for breaching short random passwords. On the other hand, 

Dictionary attacks are better for attacking long passwords based on real words or words 

from a specific dictionary, wordlists or a defined reference source (Hastings et al., 2013). 

Despite the fact that a brute-force attack can be more successful than a dictionary attack, 

it is much more time-consuming. Users can use pre-existing wordlists (Chalyi and 
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Stopochkina, 2024), such as the 10 million most popular passwords, or utilize the 

wordlist storage pre-installed in Kali Linux. 

In addition to static lists, custom wordlists can be generated using tools such as 

Maskprocessor and Crunch, both of which allow for the creation of structured and 

exhaustive password combinations tailored to specific attack scenarios. 

Maskprocessor is a high-performance tool that generates passwords based on user-

defined masks. Each position in the generated password string can be constrained to 

specific character sets (e.g., lowercase, uppercase, digits, special characters), enabling 

targeted generation. This approach is particularly useful when the attacker has partial 

knowledge of the password structure. 

Crunch provides similar capabilities, allowing users to define the minimum and 

maximum length, custom patterns, and character sets. In contrast to Maskprocessor, 

Crunch outputs entire wordlists as files, which can be useful for offline analysis or 

benchmarking. 

Wordlist generation tools are essential when attacking strong but pattern-based 

passwords, such as those using repeated substitutions or corporate naming conventions. 

While these methods are computationally intensive, they significantly improve the 

likelihood of success in targeted attacks compared to using generic dictionaries. 

4. WPS 

WPS allows the exchange of keys to be done over-the-air between a wireless router and 

compatible end devices. This is usually implemented by way of a hardware ‘WPS’ 

button on the wireless router and a hardware or software ‘WPS’ button on the end 

device. The WPS PIN is an eight-digit number used to add a new client to the network 

(Sadeghian, 2013). When a client attempts to join the network using the WPS PIN, the 

access point will check the validity of the PIN separately in two halves. The first half 

consists of four digits (10,000 possibilities), and the second half consists of three usable 

digits and one checksum digit, resulting in three effective digits (1,000 possibilities). 

According to Wifite, three attacks could be conducted (WEB (h)): 

 

1. Pixie-Dust attack. This attack exploits the fact that on some devices Enrollee 

Secret Nonce 1 (E-S1) and Enrollee Secret Nonce 2 (E-S2), which are two 

hashes of two halves of splitted PIN are generated using insecure pseudo-

random number generators which have 32 bits of state and no external entropy 

and that each half of the PIN takes at most 10^4 guesses (WEB (i)). 

2. Brute-Force PIN attack. A design flaw in the WPS specification for PIN 

authentication significantly reduces the time required to brute-force the entire 

PIN because it allows an attacker to know when the first half of the 8-digit PIN 

is correct (Jared, 2011). 

3. Null PIN attack. This attack can be used against access points that do not 

follow the WPS checksum on the last digit of the PIN (WEB (j)). 

The lack of a proper lockout policy after a certain number of failed attempts to guess the 

PIN on many wireless routers makes this brute-force attack much more feasible. Some 

routers have defense systems against WPS PIN attacks, which lock the WPS connection 
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after several failed WPS PIN attempts. Some routers can be locked for 1 or 2 minutes, 

while others are locked for a long time and are difficult to crack (Ye et al., 2024).   

4.1. Tools for breaking WPS PIN 

Multiple tools were evaluated for their ability to exploit known design flaws in Wi-Fi 

Protected Setup (WPS), particularly vulnerabilities related to PIN-based authentication 

mechanisms. The analyzed tools include Bully, Reaver, OneShot, Wifite, and 

Airgeddon. 

Bully is a C-based WPS brute-force attack tool that improves upon the original 

Reaver implementation (WEB (k)). It offers enhanced performance through optimized 

memory and CPU usage, correct endianness handling, and reduced dependencies. Bully 

requires the BSSID of the target access point and supports multiple attack types 

including brute-force PIN cracking and Pixie-Dust-style attacks. 

Reaver is a widely known tool for exploiting WPS PIN vulnerabilities (WEB (l)). It 

performs brute-force attacks and can recover WPA pre-shared keys (PSK) upon 

successful PIN discovery. Reaver also includes wash, a utility for identifying WPS-

enabled access points. Like Bully, it requires prior knowledge of the target BSSID and 

operates primarily via CLI. 

OneShot is a lightweight Python script designed specifically for executing Pixie-Dust 

attacks. Unlike other tools, it does not require switching to monitor mode and focuses 

solely on exploiting  Pixie-Dust attack. 

Wifite, originally developed with a focus on WPS exploitation, offers a high level of 

automation. It supports multiple attack types including Pixie-Dust, NULL PIN, and 

brute-force PIN attacks, utilizing both Bully and Reaver as backends. 

Airgeddon integrates WPS attack capabilities within a broader Wi-Fi auditing 

framework. It supports both Bully and Reaver for brute-force and Pixie-Dust attacks, and 

allows selection of attack method via its modular script interface. Additionally, it 

includes support for database-based known-PIN attacks, making it suitable for extended 

testing scenarios. 

These tools were compared using the following criteria: 

 GUI – Graphical User Interface of the tool; if the tool has only a command-line 

interface, the value is marked as CLI. 

 WPS Attack Type – List of possible attacks (as described above) that can be 

performed using the selected tool. 

 Pre-installed – Indicates whether the tool is pre-installed in Kali Linux. 

 Auto Monitor Mode – Specifies whether the tool requires manual setup of the 

network interface in monitor mode. 

 Language – Programming language used by the tool. 

 BSSID – Indicates whether the tool requires specifying the target BSSID before 

performing the attack. 

5. WPA 3 

In addition to direct password attacks, a downgrade attack scenario was analyzed to 

evaluate the vulnerability of WPA3-enabled networks operating in mixed-mode 
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compatibility. This type of attack exploits the transition mode (WPA3/WPA2) available 

on many modern routers, allowing legacy clients to connect via WPA2. As a result, an 

attacker can coerce a WPA3-capable client into connecting to a rogue access point using 

WPA2, thereby exposing it to traditional handshake capture and password cracking 

techniques. 

The downgrade attack is based on the Evil Twin technique (WEB (m)). A fake access 

point is deployed with the same SSID as the legitimate one, but only supporting WPA2 

encryption. If the victim device has previously connected to the original network and 

transition mode is enabled, it may automatically attempt to reconnect to the fake WPA2 

AP (WEB (n)). Upon reconnection, a standard WPA2 handshake can be captured and 

subjected to dictionary-based password recovery. 

The experimental setup required two wireless interfaces: one to broadcast the rogue 

access point using hostapd, and another to capture the resulting handshake via 

airodump-ng. Subsequent dictionary attacks were performed using aircrack-ng. Router 

firmware was configured in WPA3/WPA2 compatibility mode to enable downgrade 

conditions. Devices using WPA3-only mode were not vulnerable under these 

circumstances, confirming that the attack vector is specific to transition configurations. 

6. Experimental Setup and Variables 

The following tools were used for the comparison of brute-force tools for cracking 

WPA2 handshakes: Aircrack-ng, John, Hashcat, and Cowpatty. 

Airmon-ng was used as the tool for capturing handshakes due to the universality of 

its .cap files, which can be converted to .john or .hc22000 formats. 

The experimental setup was designed to evaluate the influence of various parameters 

on the success of password dictionary-based attacks. 

To assess dictionary-based attack performance, the attacker’s hardware configuration 

was modified across several key variables: 

 RAM amount: 16GB (single-channel), 2x8GB (dual-channel), 24GB (dual-

channel). 

 RAM configuration: single-channel and dual-channel setups. 

 GPU type: integrated Radeon RX Vega 7. 

 CPU clock speed: fixed at either 1.4 GHz, 1.7 GHz and 2.9 GHz  

The complete testbed specifications were kept consistent for comparability and are 

listed below: 

 Host system: Asus TUF A17 FA706II equipped with a Ryzen 7 4800H 

processor. 

 Memory modules: 

 2× Samsung DDR4 8 GB 3200 MHz. 

 1× Juhor DDR4 16 GB 3200 MHz. 

 Wi-Fi adapters: Intel AX210NGW (M.2 interface), Ralink MT7601U (USB 

interface, required for WPA3 testing). 

 Operating system: Kali Linux Live Image. 

 Routers used as access points: 

1. TP-Link WR843ND (Wi-Fi 4, 2.4 GHz, WPA2, WPS-enabled). 
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2. Xiaomi BE5000 (Wi-Fi 7, dual-band 2.4/5 GHz, WPA3). 

The SSIDs the tested access points were modified to include the author's ORCID ID as a 

suffix (e.g., “BE5000_0009-0006-3536-9715”), thereby confirming ownership and 

allowing independent verification of legal use. 

To analyze the impact of CPU architecture on WPA2 dictionary attack performance, 

a set of controlled experiments were conducted under fixed clock conditions. 

Specifically, the following CPUs were tested: 

 Ryzen 7 7700 and Ryzen 7 4800H at 3.6 GHz (to isolate architectural 

differences with equal frequency and core/thread count). 

 Ryzen 7 7700, Ryzen 7 4800H, and Pentium N3530 at 1.7 GHz (to compare 

across generations and classes of processors). 

To evaluate the correlation between general-purpose CPU performance metrics and 

actual cracking throughput, these three CPUs were also tested at their maximum native 

performance settings. The resulting performance data was compared against publicly 

available PassMark CPU benchmark scores. 

Additionally, the role of GPU acceleration in hash processing was examined by 

testing several configurations: 

 Discrete GPUs: AMD Radeon RX 5700 XT and NVIDIA GTX 1650 Ti 

(evaluated under both CUDA and OpenCL backends). 

 Integrated GPUs: AMD Radeon Graphics (Ryzen 7000 iGPU) and Radeon RX 

Vega 7.  

 Hybrid setups combining both discrete and integrated GPUs. 

 Full configurations with CPU + iGPU + dGPU (e.g., Ryzen 7700 + Radeon 

iGPU + RX 5700 XT). 

To explore the relationship between GPU benchmark scores and hash processing 

performance, PassMark G3D scores were used for correlation analysis. For GPUs with 

multiple supported APIs (e.g., CUDA and OpenCL on the GTX 1650 Ti), only the 

configuration yielding the higher speed was used. 

Finally, the experimental design ensured statistical consistency and reproducibility: 

 Each configuration was tested in three repetitions for 2.9 GHz, two repetitions 

for 1.7 GHz, and one repetition for 1.4 GHz. This was done due to the wider use 

of attacking systems with 1.7 GHz and 1.4 GHz compared to 2.9 GHz, as well 

as the low result difference between iterations. 

 The wordlist tool with the dictionary file rockyou.txt, which contains 

14,344,392 entries, was used for all brute-force attempts. The chosen password 

was !!HELLOKITTY!!, which is located near the end of the list (entry 

#14,338,078), ensuring a longer dictionary attack time and making the 

performance differences more apparent. 

 To evaluate the effect of dictionary volume on host RAM usage, two additional 

wordlists were used: md5decryptor.txt, containing 3,431,316 entries, and an 

expanded version of rockyou.txt (×5), containing 71,721,955 entries. 

RAM consumption was measured across different devices for each of these 

wordlists. 

 For dictionary attacks on WPA3, a modified wordlist-probable.txt was used. 
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 Environmental variables such as temperature and radio interference were held 

constant. 

 One-way ANOVA was used to evaluate the significance of categorical 

variables. If the p-value is lower than 0.05, the categorical variable has a 

significant impact. 

 In addition, CPU and GPU configurations were selected to represent a wide 

range of computing capabilities, from entry-level processors (e.g., Pentium 

N3530) to modern high-performance systems (e.g., Ryzen 7 7700 with discrete 

GPU). This allowed the experimental dataset to reflect real-world attack 

scenarios and hardware diversity. All measurements were verified for 

consistency across repeated runs. 

6.1. Legal and Ethical Disclaimer: 

All experiments were conducted exclusively on equipment and access points owned by 

the author. No tests were performed on networks or devices without explicit 

authorization. This study strictly adheres to ethical research standards and does not 

encourage unauthorized access to wireless networks. Readers are reminded to comply 

with applicable laws and obtain consent before conducting any similar experiments. 

7. Results 

7.1. WPA/WPA 2 

The Cowpatty tool was excluded from the comparison after observing its speed at the 

highest possible frequency, shown in Figure 1. 

 

 

 
Figure 1. Cowpatty Speed at the Highest Frequency 

Using the matplotlib.pyplot Python library, a figure demonstrating the average speed 

comparison between all tested tools was created, shown in Figure 2. 

 



 Assessing Wi-Fi Security Protocols  603 

 
 

 

 

Figure 2. Average Speed Comparison of Brute-Force Tools 

 

This figure demonstrates not only that Hashcat provides the highest speed among all 

tested tools, but also highlights a strong correlation between higher CPU clock speeds 

and brute-force performance. Additionally, it indicates that the amount of RAM and its 

channel configuration (dual or single) have minimal impact on brute-force speed. These 

observations were further confirmed using the one-way ANOVA method with the 

f_oneway function in Python, shown in Table 1. 

 

 

 

 

 
Table 1. One-Way ANOVA Results for Estimating the Influence of Parameters on Brute-Force 

Speed 

 

Tool RAM F value RAM p value CPU clock F value CPU clock p value 

Aircrack-ng 0.0002 0.9998 13,529.81 1.09e-11 

John 0.0001 0.9999 57,183.20 1.44e-13 

Hashcat 0.0002 0.9998 15,946.85 6.65e-12 

 

The results show that the p-value for RAM is nearly equal to 1 for each tool, indicating 

no significant influence on brute-force speed. In contrast, the p-value for CPU clock 

speed indicates a significant impact on performance. The data also reveal that John is 

more dependent on higher CPU clock speeds compared to the other tools. At 1.4 GHz 

and 1.7 GHz, Aircrack-ng outperforms John; however, at 2.9 GHz, John surpasses 

Aircrack-ng in speed. 
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Additionally, the time required to complete a dictionary-based attack attack was 

evaluated for each tool. The tools reported the duration in minutes, which was then 

converted into seconds for consistency and presented in a comparative figure across all 

three tools, shown in Figure 3. 

 

 

Figure 3. Average Time Comparison for Brute-Force Tools 

 

A lower value indicates better performance, as less time is required to find the password. 

This figure demonstrates that at 2.9 GHz, the time required by John and Hashcat is 

nearly the same, whereas at lower frequencies, Hashcat performs better. The one-way 

ANOVA method was used to investigate the influence of CPU and RAM on the 

performance of brute-force tools for handshake hash cracking (Table 2). 

 
Table 2. One-Way ANOVA Method for Estimating Parameters Influencing Brute-Force Time 

 

Tool RAM F value RAM p value 
CPU clock F 

value 
CPU clock p value 

Aircrack-ng 0.0003 0.9997 15,638.78 7.06e-12 

John 0.0002 0.9998 19,151.01 3.84e-12 

Hashcat 0.0002 0.9998 8,244.14 4.81e-11 

It also shows that the RAM amount and channel usage have almost no effect on the 

required time, unlike the CPU clock. For time values, increasing the CPU clock provides 

a similar advantage for all tools. However, at 1.4 GHz, the time required by John and 

Hashcat was nearly the same, while at higher frequencies, the difference became more 

noticeable. 

After completing the brute-force hash attack, each tool displays the elapsed time and 

speed (in passwords or hashes per second). Hashcat is the only tool that also reports the 

CPU temperature after finishing the attack. Based on its output, a figure illustrating the 
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dependence of temperature on CPU clock and RAM configuration was created, shown in 

Figure 4. 

 

 

Figure 4. CPU Temperature Comparison 

 

This figure shows that at higher frequencies, the CPU temperature increases 

significantly. It also indicates that when using 8 GB of RAM in dual-channel mode, the 

temperature was the highest, reaching 90 degrees Celsius. However, with 24 GB of 

RAM, the CPU temperature was highest at 1.4 GHz and 1.7 GHz. Additionally, the one-

way ANOVA method was used to investigate the dependencies between temperature, 

RAM, and CPU clock (Table 3). 

Considering that Hashcat consistently demonstrated the highest performance among 

all tested tools and fully supports GPU utilization for dictionary-based attacks, it was 

selected for all further experiments. Table 3 presents the results of WPA2 cracking 

performance across different CPU architectures at fixed clock speeds. 

 
Table 3.  CPU Architecture Comparison for WPA2 Dictionary Attack Performance  

(Fixed Clock Speed) 

 

CPU Clock Architecture Cores Threads 
L3 Cache 

(MB) 
Hashcat Speed 

(pw/sec) 

Pentium N3530 1.7 Silvermont 4 4 2 920 
Ryzen 4800H 1.7 Zen 2 8 16 8 12288 
Ryzen 7700 1.7 Zen 4 8 16 32 28040 

Ryzen 4800H 3.6 Zen 2 8 16 8 29194 

Ryzen 7700 3.6 Zen 4 8 16 32 60109 

 

As shown in Table 3, CPU architecture significantly impacts Hashcat performance. 
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More modern CPU architectures provide considerably higher cracking speeds, even at 

the same clock frequency. Figure 5 illustrates this difference visually by comparing 

CPUs running at the same clock speed. 

 

 

Figure 5. Hashcat Speed Comparison for CPUs at Equal Clock Frequency 

 

The figure confirms that even under identical clock settings, more recent and powerful 

architectures (e.g., Zen 4) significantly outperform older or low-end designs (e.g., 

Silvermont).  

To further investigate the relationship between overall CPU performance and 

dictionary attack speed, PassMark benchmark scores were used for comparison under 

default (unrestricted) CPU frequency settings. The results are shown in Table 4. 

 
 

Table 4. Hashcat Performance and PassMark Scores at Default CPU Frequency 

 

CPU Avg Speed (pw/sec) Avg Time (s) PassMark Score 

Ryzen 7700 110900 87 34457 
Ryzen 4800H 29194 329.3 18258 

Pentium N3530 1002 8940 1182 

To evaluate the strength of this dependency, a correlation analysis was performed 

between PassMark scores and Hashcat speed. The result is presented in Figure 6. 
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Figure 6. Correlation Between PassMark Score and Hashcat CPU Performance 

 

The figure demonstrates a near-perfect linear correlation (r = 0.96) between PassMark 

CPU scores and measured WPA2 dictionary attack speed in Hashcat under default 

frequency conditions. This supports the hypothesis that synthetic CPU benchmarks can 

serve as reliable predictors of brute-force password cracking performance. 

Hashcat fully supports GPU acceleration and can take advantage of both discrete and 

integrated graphics cards when performing dictionary attacks. Table 5 presents the 

comparison of different GPUs in WPA2 hash cracking performance using dictionary 

attacks. 

 
Table 5. Hashcat GPU Performance for WPA2 Dictionary Attacks 

 

GPU Type 

Core 

Clock 

(MHz) 

Mem 

Clock 

(MHz) 
Avg Speed 

(kpw/sec) 

Avg 

Time 

(s) 

PassMark 

G3D 

Score 

Radeon Graphics 

(Ryzen 7700) Integrated 2200 2900 28.48 337.5 1758 

RX Vega 7 Integrated 1600 1600 45.62 211.33 3336 
GTX 1650 Ti 

(CUDA) Discrete 1820 6120 147 65.67 7534 

GTX 1650 Ti 

(OpenCL) Discrete 1820 6120 153.87 63.33 7534 

RX 5700 XT Discrete 1820 1742 411.2 22.67 16324 
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As shown in this table, discrete GPUs significantly outperform integrated GPUs in 

dictionary attacks. The RX 5700 XT, for example, achieved over 9× the speed of RX 

Vega 7. Figure 7 provides a visual comparison of GPU performance by type. 

 

 

 

Figure 7. Hashcat Speed Comparison: Discrete vs. Integrated GPUs 

 

This figure also shows that the OpenCL backend on the GTX 1650 Ti slightly 

outperformed the CUDA version in this experiment. While the difference is minor, it 

highlights how backend implementation and driver maturity may influence the results. 

To explore the relationship between GPU benchmark scores and actual cracking 

performance, a correlation analysis was conducted using PassMark G3D scores. The 

results are shown in Figure 8. 

     This figure reveals an almost perfect linear correlation (r = 0.99–1.00) between 

PassMark G3D scores and Hashcat cracking speed, supporting the conclusion that 

general-purpose GPU benchmarks can reliably predict dictionary attack efficiency in 

WPA2 scenarios. 

Hashcat also supports the ability to combine multiple GPUs for both dictionary and 

brute-force attacks, as well as integrate CPU with multiple GPUs. During the attack 

process, Hashcat reports the cracking speed for each device separately, along with the 

combined total speed. Table 6 presents the results of using two GPUs (integrated and 

discrete), as well as the combination of CPU + 2 GPUs. 
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Figure 8. Correlation Between GPU Hashcat Performance and PassMark G3D Scores 

 
 

 

 

 

Table 6.  Hashcat Speed Comparison for 2 GPU and CPU + 2 GPU Combinations 

 

Configuration Avg Speed (kpw/sec) Avg Time (s) 

RX 5700 XT + Radeon iGPU 421.7 22.67 

GTX 1650 Ti + RX Vega 7 185.5 52.33 

Ryzen 7700 + RX 5700 XT + iGPU 353.83 27.33 

Ryzen 4800H + 1650 Ti + RX Vega 7 162 59.33 

 

     This table demonstrates that combining an integrated and discrete GPU does not 

provide a significant performance boost, as indicated by the time required for hash 

cracking. However, the total speed of the attack increases, showing that using multiple 

powerful GPUs together can significantly improve the overall cracking speed by 

summing up their individual performances. Figure 9 visualizes these results. 
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Figure 9. Hashcat Speed Comparison: Two GPUs vs CPU + Two GPUs 

 

       As shown in Figure 9, combining the CPU with both GPUs resulted in a lower 

performance compared to using both GPUs alone, which suggests that the CPU may not 

contribute effectively to GPU-accelerated tasks in this setup. 

While previous experiments showed that RAM has minimal impact on dictionary 

attack performance using the rockyou.txt list, additional tests were conducted to 

determine whether this finding holds true for both larger and smaller wordlists. Table 7 

presents the host memory consumption across different devices using three wordlists of 

varying sizes. 

 

 
Table 7.  RAM Usage (MB) for Different Wordlists per Device 

 

Wordlist / Device Ryzen 7 7700 Ryzen 7 4800H RX 5700 XT GTX 1650 Ti 

Rockyou.txt 507 MB 520 MB 1 783 MB 1 284 MB 

Md5decryptor.txt 500 MB 509 MB 1 777 MB 1 265 MB 

Rockyou.txt × 5 551 MB 543 MB 1 801 MB 1 293 MB 

 

This table demonstrates that RAM usage correlates weakly with the size of the 

wordlist. While RAM consumption increases slightly with larger dictionaries, the overall 

difference remains minimal. Figure 10 visualizes these results. 
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Figure 10. RAM Usage by Hashcat Devices with Different Wordlists 

 

 

 

The figure illustrates that devices with higher cracking throughput (e.g., 

RX 5700 XT) also tend to exhibit greater RAM usage, though this increase is not directly 

proportional to the wordlist size. This confirms that dictionary size has limited influence 

on RAM requirements in practice. 

Across all experiments, Hashcat consistently delivered the highest performance 

among the tested tools. CPU clock speed and architecture were the primary factors 

influencing cracking speed, while RAM amount and configuration had negligible effect. 

Among GPU-based configurations, discrete GPUs significantly outperformed integrated 

ones. However, combining the CPU with GPUs did not always yield improved results, 

suggesting that Hashcat may have limitations in parallel workload distribution across 

heterogeneous hardware. 

7.2. WPS 

Based on the tool descriptions, the following table (Table 8) was created, which 

demonstrates the comparison of selected tools for WPS vulnerability attacks. 
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Table 8. Comparison of Tools for Attacking WPS Vulnerabilities 

 

Tool GUI Attack type Pre-installed Auto Monitor Mode Language BSSID 

Bully No 
PIN Bruteforce, 

Pixiedust 
Yes No C Yes 

Reaver No 
PIN Bruteforce, 

Pixiedust 
Yes No C Yes 

Oneshot No Pixiedust No Not required Python Yes 

Wifite CLI 

PIN Bruteforce, 

Pixiedust, 

Null Pin 

Yes Yes Python No 

Airged

don 
CLI 

PIN Bruteforce, 

Pixiedust, 

Null Pin 

No Yes Python No 

In this table, Bully and Reaver are standalone command-line tools that perform brute-

force and Pixie-Dust attacks on WPS-enabled access points. Wifite and Airgeddon act as 

frameworks that automate these attacks by leveraging tools like Bully and Reaver 

internally. Both Wifite and Airgeddon support additional attack types such as the Null 

PIN attack and offer user-friendly terminal interfaces. 

Unlike Airgeddon and Oneshot, Wifite is pre-installed in Kali Linux and 

automatically handles monitor mode setup, making it more accessible for quick 

deployment. OneShot, while not requiring monitor mode, is limited to Pixie-Dust attacks 

and is not bundled with Kali Linux by default. 

Based on this comparison, Wifite appears to be the most versatile and user-friendly 

option for launching WPS-related attacks, especially in penetration testing environments 

where ease of use and automation are valuable. 

7.3. WPA 3 

First, the user needs to enable monitor mode for both cards using airmon-ng and kill any 

processes that may affect the results, such as NetworkManager and wpa_supplicant. 

To run the fake AP using hostapd via hostapd config_name, the following 

configuration was used: 

interface=wlan0mon 

ssid=BE5000_0009-0006-3536-9715 

hw_mode=g 

channel=5 

auth_algs=1 

wpa=2 

wpa_passphrase=LETMEIN1234 

wpa_key_mgmt=WPA-PSK 

rsn_pairwise=CCMP 
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where interface is the name of the interface in monitoring mode, and hw_mode=g means 

the fake AP works on 2.4 GHz (the user should replace g with a to make the fake AP 

operate on 5 GHz). The ssid should have the same ESSID (name) as the target AP. 

The user needs to start the command airodump-ng --band abg interface2_name --

essid target_essid -w name_of_cap_file for direct target ESSID monitoring, shown in 

Figure 11. 

 

 

Figure 11. Result of Launching Fake AP via Hostapd 

 

If hostapd is launched, the user will see both networks with the same ESSID but with 

different Encryption and Authentication. Next, the user needs to wait until the victim 

device connects to the fake AP; after that, the WPA handshake can be captured, shown 

in Figure 12. 

 

 

 

Figure 12. Captured Hhandshake using Fake AP 

 

Additionally, it was checked whether having the fake AP on a different channel from the 

target AP would influence handshake capturing, shown in Figure 13. 

 

 

 

Figure 13. Fake AP with Different Channel 
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The experiment has shown that it doesn’t influence handshake capturing. After capturing 

the handshake using Aircrack-ng, the password attack can be conducted, shown in 

Figure 14. 

 

 

 

Figure 14. Aircrack-ng for Breaking Captrued Handshake 

 

As Aircrack-ng shows in Figure 15, the handshake has two BSSIDs, but only one has the 

handshake (the target AP). The user needs to choose the one with the handshake and 

start the password attack. 

 

 

 

Figure 15. Target AP Key Found 

 

As a result, if the wordlist contains the correct password, the attack will be successful.  
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7.4. Key Findings 

Cowpatty shows the worst result for WPA2 password attacks, with only 1,184 

passphrases per second, making it time-consuming when using a wordlist with a large 

number of words.  

The tools Aircrack-ng, John, and Hashcat were selected to measure the dependencies 

between brute-force speed, execution time, and RAM usage. The results showed that the 

amount and channel configuration of RAM had no significant impact, as confirmed by 

one-way ANOVA (p ≈ 1.0). In some cases, single-channel 16 GB RAM even slightly 

outperformed dual-channel setups. 

The dependence between brute-force speed, execution time, and CPU clock was 

measured. Three clock speeds were chosen: 1.4 GHz, 1.7 GHz, and 2.9 GHz. The results 

showed that with higher CPU clock speeds, the brute-force speed of each tool increased, 

and the required time decreased. This was also confirmed by the one-way ANOVA 

method, where the p-value was much less than 0.05, indicating a significant impact on 

brute-force speed and execution time. 

Based on the lowest and highest experimental results, it was found that increasing the 

CPU clock from 1.4 GHz to 2.9 GHz provided the following improvements: 

 For Aircrack-ng: a 245% speed boost and a 245% reduction in required time. 

 For John: a 271% speed boost and a 276% reduction in password attack time. 

 For Hashcat: a 251% speed boost and a 254% reduction in required time. 

These results indicate that John has the highest dependence on CPU clock among all 

three tools, while Aircrack-ng has the lowest. 

At higher CPU clocks, Hashcat outperforms Aircrack-ng by 6% and John by 2% in 

brute-force speed. It was also found that at 2.9 GHz, Hashcat requires only 57% of the 

time compared to Aircrack-ng, and 90% compared to John. Considering this data, 

Hashcat is the best solution among these tools for cracking handshake hashes, even 

though it requires converting the airodump cap file into the hc22000 format. 

Comparing CPUs at equal frequency further confirmed architectural influence: 

 At 3.6 GHz, Ryzen 7700 outperformed Ryzen 4800H by 205%, despite 

identical core/thread counts. 

 At 1.7 GHz, Ryzen 7700 outperformed the 4800H by 228%, and Pentium 

N3530 by 3047%, illustrating how newer architectures significantly outperform 

older or entry-level designs. 

Hashcat’s support for GPU computation further improved performance. The discrete 

RX 5700 XT outperformed the integrated RX Vega 7 by 901%, and Radeon Graphics 

(Ryzen 7700) by 1443%. Among backends, OpenCL on GTX 1650 Ti outperformed 

CUDA by 4.7%, highlighting slight variations due to driver or API differences. 

Combining two GPUs also showed improvement: using GTX 1650 Ti + Vega 7 

increased cracking speed by 20% compared to GTX 1650 Ti alone. However, adding 

CPU to a dual-GPU setup (Ryzen 4800H + GTX 1650 Ti + Vega 7) reduced 

performance by 14.5%, suggesting that CPU contribution may become negligible or 

even limiting in mixed workloads. 

Correlation analysis using PassMark benchmark scores showed strong alignment 

between synthetic performance metrics and Hashcat results, CPU: r = 0.96 and GPU: r = 

0.99. These results confirm that benchmark scores are reliable predictors of real-world 

password cracking performance in dictionary attacks. 
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In the experiment on RAM usage dependence on wordlist size, it was found that 

dictionary volume has minimal impact on host memory consumption within the same 

Hashcat device. For example, md5decryptor.txt, which is approximately 21 times smaller 

than the 5× expanded rockyou.txt, showed only a 5% average difference in RAM usage 

across all four tested devices. However, differences in RAM usage became more 

apparent between devices. For instance, the RX 5700 XT, which demonstrated the 

highest cracking speed, consumed on average 344% more memory than the Ryzen 7 

7700. 

The analysis of tools targeting WPS vulnerabilities reveals that most rely on the same 

underlying brute-force and Pixie-Dust techniques, often implemented through shared 

components such as Reaver or Bully. Wifite stands out as the most comprehensive and 

accessible tool, supporting multiple attack types, automating setup, and being pre-

installed in Kali Linux. Additionally, Wifite provides the best balance between 

functionality, ease of use, and availability. 

WPA3 offers a high level of security against brute-force and dictionary attacks. 

However, using a downgrade attack, by creating a fake access point with WPA2 security 

and tricking the target into connecting to it, can provide an opportunity to capture the 

handshake of the target AP. Once the handshake is captured, it can be brute-forced using 

Aircrack-ng or another tool. However, executing this attack can be a challenging task, as 

it requires several conditions to be met: the target AP must support WPA2 compatibility 

mode, the user must connect to the fake AP, and the target AP’s password must be weak 

or present in the wordlist. 

8. Discussion 

8.1. Comparison with Previous Studies 

Compared to earlier research that evaluated tools such as Airgeddon on three separate 

hosts with differing specifications (Prodani and Rista, 2024), the present study was 

conducted using not only separate hosts but also a single host system with controlled 

hardware variations. This approach allowed for more accurate attribution of performance 

differences to specific parameters, rather than being influenced by architectural 

disparities between machines. The comparison confirms, as noted in their Table 3, that 

dictionary attack performance is highly dependent on the host's configuration. The 

current results indicate that CPU clock speed has the most significant impact on brute-

force performance. In contrast, factors such as RAM size, memory channel 

configuration, and GPU presence showed negligible influence, consistent with the fact 

that GPU acceleration is not utilized by the tested tools during password recovery — 

unlike in this study, where a discrete GPU such as the RX 5700 XT had a significant 

impact on dictionary attack speed. 

Differences between this study and prior works (Moissinac et al., 2021 ; Moroz, 

2024) are expected, as hardware specifications, CPU models, and environmental 

conditions vary across experiments. Even when using identical clock speeds, the results 

may differ due to architectural differences between processors, as confirmed in this 

study by comparing the Ryzen 7 7700 and Ryzen 7 4800H at the same clock speeds. 

Notably, in the referenced works, the evaluation was limited to Aircrack-ng. The present 

study expands this comparison by including Hashcat and John the Ripper, demonstrating 
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that Aircrack-ng is the slowest among the three tools tested in terms of brute-force 

performance. 

Contrary to claims made in earlier research (Fatihah Wan Mustapha et al., 2020), 

parameters such as access point channel, frequency band, and physical distance have 

minimal impact on the password cracking process itself. These variables primarily affect 

the ability to capture the handshake, as signal strength degrades with distance. The 

farther the host is from the access point, the lower the signal-to-noise ratio, making 

handshake capture more difficult—but once the handshake is acquired, the cracking 

speed is unaffected by these factors. 

The downgrade attack described in (Appel and Guenther, 2022) was also validated in 

this research. The results confirm that such an attack can be effective against WPA3, but 

only under specific conditions—namely, when the access point is operating in WPA3 

compatibility mode (i.e., allowing WPA2 connections). If strict WPA3-only mode is 

enforced, the attack fails, and handshake acquisition becomes infeasible using 

conventional methods. Once the handshake is successfully captured, any of the evaluated 

tools, such as Aircrack-ng, Hashcat, or John can be employed for password recovery. 

8.2. Recommendations 

The attack on the WPA2 security protocol is divided into two steps: handshake capture 

and password attack. Each step was described, and several tools were analyzed. For 

handshake capture, users can use any tool capable of capturing a handshake; however, 

airodump-ng is recommended due to its pre-installation in most security-focused Linux 

distributions and its effectiveness. 

During the experiments, it was determined that a possible mitigation method against 

handshake capture is connecting the AP user to another secure access point. After 

deauthentication, the device will attempt to reconnect to the closest remembered 

network. Therefore, it is recommended to authenticate the device in advance to both 

5GHz and 2.4GHz networks, as they are likely to be closer, and the device will 

reconnect to them rather than to a fake AP (for WPA3) or a deauthenticated AP. This 

approach can increase the difficulty of successfully capturing the handshake. 

Based on experimental results, Hashcat is the recommended tool for WPA2 password 

attacks, as it demonstrated the highest password-per-second performance and the 

shortest execution time compared to John the Ripper and Aircrack-ng. In contrast, 

Cowpatty is not recommended due to its significantly lower brute-force speed. 

One of Hashcat’s key advantages is its support for GPU acceleration, particularly 

discrete GPUs, which can increase cracking speed several-fold compared to CPU-only 

execution. Using multiple GPUs can further enhance performance. However, combining 

CPU and GPU in the same attack process may reduce overall speed, likely due to 

resource balancing limitations within Hashcat. 

During the experiments, it was also observed that GPUs operated at significantly 

lower temperatures, with a maximum of 65 °C, compared to CPU temperatures reaching 

up to 93 °C under full load. This suggests that GPUs offer not only higher performance 

but also greater thermal efficiency in password cracking tasks. 

Additionally, the choice of backend—CUDA or OpenCL—can slightly affect 

performance. In the tested configuration, OpenCL outperformed CUDA by a small 

margin (~4.7%). Although the difference is minor, it indicates that backend selection and 

driver optimization can influence final results, particularly on mid-range hardware. 
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Benchmark scores, such as those from PassMark, can be used to estimate expected 

performance in Hashcat. The experiments confirmed a strong correlation between 

benchmark scores and cracking speed: devices with higher PassMark scores consistently 

achieved better performance. Moreover, investing in a higher-end GPU yields greater 

performance gains than investing in a higher-end CPU. For those seeking to use multiple 

discrete GPUs, it is recommended to use an ATX motherboard with more than one PCIe 

x16 slot to ensure full bandwidth and compatibility. 

It was also found that increasing RAM capacity or changing RAM channel 

configuration does not significantly affect brute-force speed. Instead, system 

performance is more strongly influenced by CPU frequency and the efficiency of the 

CPU’s architecture. Therefore, efforts should be focused on selecting a modern high-

performance CPU, rather than optimizing memory configurations. 

Additionally, RAM usage showed minimal dependence on wordlist size when testing 

on the same Hashcat device. However, when using more powerful devices with higher 

password-per-second throughput, RAM consumption increases accordingly. It is 

recommended to use systems with at least 16 GB of RAM to ensure that performance is 

not limited by memory constraints. 

For optimal performance, it is not recommended to run attacks from a live Linux 

image, as this setup can limit both CPU and GPU utilization. A better approach is to 

install a dedicated security-focused Linux distribution (e.g., Kali Linux or Parrot OS) 

directly on the system. Alternatively, Windows users can also run Hashcat with full GPU 

support, provided the necessary drivers and libraries (e.g., OpenCL or CUDA) are 

properly installed. 

For beginners, a universal tool like Airgeddon can be used for attacking WPA2 

access points. This tool is recommended because it features a command-line menu 

interface and integrates multiple tools for both handshake capture and hash brute-

forcing. Its main drawback is that it is not pre-installed in Kali Linux. Wifite can be a 

good alternative to Airgeddon, although it requires a bit more knowledge to use 

effectively. 

For a dictionary attack, a user needs to specify the wordlist containing passwords. It 

is recommended to use the wordlists folder provided by Kali Linux or use open 

dictionaries with the most popular passwords. If a user needs to create a universal 

wordlist, crunch is the optimal solution, as it displays the number of password lines and 

required disk space. 

Despite the fact that WPS introduces a potential vulnerability to WiFi routers and is 

still generally recommended to be disabled, the analysis suggests it could remain enabled 

for the convenience of easier connection—provided certain precautions are taken. If the 

user chooses to keep WPS enabled, it is recommended to test the WPS locking time after 

a PIN brute-force attempt using Wifite (as recommended in the comparison) or another 

suitable tool. If the WPS remains locked for an extended period (e.g., several days), it 

may be considered safe to keep it enabled. 

For access points using the WPA3 security protocol, it is not advisable to enable 

WPA3/WPA2 compatibility mode for password encryption. This mode allows 

downgrade attacks, exposing the network to password brute-force vulnerabilities. It is 

strongly recommended to disable compatibility mode and use WPA3 encryption only. In 

this configuration, any handshake captured through downgrade attempts will be 

encrypted with the WPA3 protocol, making it unusable by tools like Aircrack-ng. 

Because some older devices do not support WPA3, it is recommended to configure the 
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5GHz network with WPA3-only encryption and the 2.4GHz network with WPA3/WPA2 

compatibility mode to maintain support for legacy devices. 

The recommendation to use a complex password also applies here, as it remains the 

most effective method for mitigating brute-force attacks. A strong password should be 

longer than 8 characters (24+ is ideal), and include uppercase and lowercase letters, 

numbers, and special characters. It is also recommended to avoid using guessable or 

commonly used passwords that may appear in wordlists. 

8.3. Study Limitations 

WPS brute-force testing was excluded due to device-side lockout mechanisms. On the 

tested routers, the WPS PIN interface became unresponsive for several days after as few 

as three failed attempts, making realistic benchmarking of PIN attacks impractical. 

WPA3 downgrade attacks were only evaluated under controlled lab conditions. Real-

world feasibility depends on specific router settings (e.g., WPA2 compatibility mode), 

device behavior, and environmental factors such as channel overlap or roaming 

aggressiveness. 

For CPU-based cracking performance, only a subset of architectural configurations 

was tested, with emphasis on AMD processors. Results may not directly extrapolate to 

Intel CPUs of similar clock speed or core count due to differences in instruction sets, 

caching strategies, and power management. 

9. Conclusions 

This study evaluated the efficiency of brute-force and dictionary attacks against WPA2 

and WPA3 wireless security protocols using various tools and system configurations. 

The experimental results confirmed that CPU clock speed has a significant impact on 

brute-force performance, while RAM size and memory channel configuration have 

negligible effect. Statistical analysis using one-way ANOVA supported these findings 

and confirmed the dominant role of CPU frequency. 

In tool comparisons, Hashcat consistently demonstrated the highest cracking speed 

and lowest execution time, especially at higher CPU frequencies. Additionally, it was 

shown that CPU architecture plays a critical role, as newer generations (e.g., Zen 4) 

significantly outperformed older ones (e.g., Zen 2 or Silvermont), even at identical clock 

speeds. A strong correlation (r = 0.96) was observed between PassMark CPU scores and 

actual performance in Hashcat. 

The study also confirmed that GPU acceleration provides a substantial performance 

boost, particularly when using discrete GPUs. The RX 5700 XT, for instance, 

outperformed integrated graphics by over 900%. When using two GPUs simultaneously, 

additional speed gains were observed, although combining a CPU with dual GPUs did 

not improve performance and in some cases led to slight degradation. Thermal 

measurements also showed that GPUs operate significantly cooler than CPUs during 

cracking, which may benefit stability during extended attacks. GPU backend choice 

(CUDA vs. OpenCL) also had a small but measurable impact on performance, with 

OpenCL outperforming CUDA by ~4.7% on GTX 1650 Ti. 

While RAM amount had negligible influence on brute-force speed, memory usage 

increased with larger dictionaries and more powerful cracking devices. However, even 
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between the smallest and largest tested wordlists (a 21× size difference), memory usage 

differed by only ~5%, indicating efficient memory management in Hashcat. Devices 

with higher cracking throughput exhibited proportionally higher RAM usage, suggesting 

a scaling relationship based on processing rate rather than dictionary size alone.  

The findings also highlighted that WPS remains a critical vulnerability, especially on 

systems where lockout mechanisms are misconfigured or ineffective. Tools like Wifite 

and Airgeddon proved to be the most versatile for WPS-based attacks due to their 

support for multiple techniques and automation. 

Furthermore, the analysis of WPA3 showed that while the protocol is highly resistant 

to direct brute-force and dictionary attacks, the presence of compatibility mode with 

WPA2 opens the door to downgrade attacks. Successful execution of such attacks 

depends on several factors, including user behavior and router configuration. 

These results highlight the importance of secure configuration practices, including 

disabling WPS, avoiding compatibility modes, and enforcing strong password policies. 

This study contributes practical guidance for penetration testers and security 

professionals, as well as recommendations for users seeking to strengthen the security 

posture of personal or corporate Wi-Fi networks. 
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