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Abstract. The hyperspectral unmixing method is an algorithm that extracts material (usually
referred to as endmembers) data from hyperspectral data, along with their corresponding abun-
dances. Due to the lower spatial resolution of hyperspectral sensor data compared to conventional
cameras, each pixel is more likely to contain mixed information from multiple endmembers. In
turn, mixed hyperspectral data is less valuable for use in research or predictive models. One of
the problems in hyperspectral unmixing is the lack of openly available, field-collected datasets,
particularly those from agricultural and other UAV-gathered sources. In turn, hyperspectral un-
mixing algorithms are rarely tested on this data type. This paper proposes a hyperspectral un-
mixing algorithm based on the U-Net network architecture to achieve more accurate unmixing
results on existing and newly created hyperspectral unmixing datasets. The proposed model is
fully unsupervised and is not limited by data shape and size. We also developed and shared a
hyperspectral unmixing dataset derived from blueberry field data collected using a hyperspec-
tral camera mounted on a Unmanned Aerial Vehicle (UAV). Compared to the state-of-the-art
transformer-based unmixing model, our proposed algorithm achieved approximately 20% lower
endmember RMSE and more than 50% lower reconstruction error values.

Keywords: Hyperspectral Unmixing, Remote Sensing, Deep Neural Networks, Hyperspectral
Dataset.

1 Introduction

The growing popularity of remote sensing systems and advancements in hyperspec-
tral imaging technologies have increased interest in using these technologies in various
agricultural applications. Most commonly used near-infrared hyperspectral cameras en-
able the simultaneous collection of large amounts of spatial and spectral information. A
large amount of spectral data comes at the cost of spatial resolution compared to RGB or
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multispectral cameras. Smaller spatial resolution results in mixed material data within
each pixel of hyperspectral data, particularly when using satellite hyperspectral sensors.
To address the issue of mixed data, hyperspectral unmixing algorithms are employed,
which typically perform three tasks simultaneously: identifying material (or endmem-
ber) counts, determining material spectral signatures, and determining mixture amounts
(or abundances) in each hyperspectral pixel. In this paper, we focus on expanding hy-
perspectral unmixing research using agricultural hyperspectral data and compare our
proposed algorithm with a transformer-based algorithm. This paper is structured into
several chapters, including a literature review on hyperspectral unmixing algorithms
and their applications to agricultural data.

2 Related Work

Works related to hyperspectral unmixing use cases focusing on agricultural data and
algorithms used for hyperspectral unmixing that are based on sparse regression, non-
negative matrix factorisation, and neural networks.

2.1 Hyperspectral Unmixing Algorithms

A few of the most common types of hyperspectral unmixing algorithms were reviewed
in our previous work (Paura and MarcinkeviCius, 2023). These three types of algorithms
are:

— Semi-supervised sparse regression modelling.
— Unsupervised non-negative matrix factorisation methods.
— Unsupervised deep learning autoencoder neural networks.

Sparse regression. Sparse regression algorithms are used because, in a hyperspectral
image, most pixels contain only a few material data values mixed in, compared to the
total number of endmembers in the image, creating a sparse abundance matrix. Popular
algorithms in this category are:

The sparse unmixing by variable splitting and augmented Lagrangian (SUnSAL)
and constrained SUnSAL (C-SUnSAL) algorithms (Bioucas-Dias and Figueiredo, 2010)
are based on the Alternating Direction Method of Multipliers (ADMM) (Gabay and
Mercier, 1976). The ADMM algorithm breaks down a complex problem into a series
of more straightforward issues. The results provided by the authors are in dB values
of reconstruction signal-to-noise ratio (RSNR) metric, and both algorithms were tested
using 50 dB of artificial noise.

SUnSAL and total variation (SUnSAL-TV) (Iordache and Bioucas-Dias, 2012) is a
variation of the SUnSAL algorithm with an added total variation regularisation, which
provides spatial information for better spectral unmixing results. The created TV reg-
ularizer accounts for spatial homogeneity because it is very likely that neighbouring
pixels will have quite a similar abundance fraction of the same endmembers.

Spectral-spatial weighted sparse unmixing (Zhang and Li, 2018) is a hyperspectral
unmixing framework that computes a sparse solution constrained by both spectral and
spatial domains simultaneously. It implements ADMM for parameter and coefficient
optimisation purposes.
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Non-negative matrix factorisation. Non-negative matrix factorisation algorithms are
used because the information gathered by the hyperspectral sensors can never be harm-
ful, and the hyperspectral cube can be factored into abundance, endmember and residual
noise matrices. Popular algorithms in this category are:

Coupled Non-negative Matrix Factorisation (CNMF) (Yokoya and Yairi, 2012) is
an algorithm that simultaneously unmixes high spatial resolution multispectral data and
high spectral resolution hyperspectral data, thereby achieving fusion of hyperspectral
and multispectral data. The algorithms utilise a vertex component analysis (VCA) algo-
rithm to calculate the initial endmember matrix from the spectral data and a user-defined
number of endmembers to identify.

Spatial group sparsity regularised NMF (SGSNMF) (Wang and Zhong, 2017) is a
blind unmixing method that incorporates a spatial group sparsity regularizer constraint,
which takes into account the pixel location (spatial data) and the fact that abundance
matrices are sparse.

Neural networks. The last type of algorithm is neural networks, specifically autoencoder-
type networks, that create an artificial neuron bottleneck to compress the data into a
latent space, extracting spatial and spectral features from hyperspectral images. Deep
neural network algorithms are gaining popularity due to their ability to learn from com-
plex, non-linear data relations. Due to the base model architecture design, these types of
neural networks can be trained using the difference between the original image and its
reconstruction, making the algorithm unsupervised. Popular algorithms and packages
in this category are:

HySUPP - An open source Python package created by (Rasti and Zouaoui, 2023) for
hyperspectral unmixing as a framework to run experiments on different hyperspectral
data and the implemented unmixing algorithms. The framework was not included in
the experiments conducted in this paper because the algorithms implemented by the
framework are supervised or semi-supervised.

The Deep Generative Unmixing algorithm (DeepGUn) (Borsoi and Imbiriba, 2020)
is a spectral unmixing algorithm based on Generative models, such as generative adver-
sarial networks (GANs) and variational autoencoders (VAEs). According to the authors,
their proposed strategy yields more accurate abundance estimation at a minimal cost in
computational resources. Their proposed autoencoder architecture consists of three hid-
den encoder layers with rectified linear unit (ReLLU) activation functions, three hidden
decoder layers with ReL.U activation functions, and an input and output layer with sig-
moid activation functions.

The Deep Half-Siamese network (Deep HSNet) (Dong and Yuan, 2020) is a hy-
perspectral unmixing algorithm that consists of two distinct networks: an endmember-
guided network and a reconstruction network. The first network maps extracted end-
members to the abundances, while the reconstruction network is an autoencoder archi-
tecture that recreates hyperspectral pixels.

2.2 Agricultural Hyperspectral Data Unmixing

A comprehensive and extensive review paper on the usage and unmixing of hyperspec-
tral data in agriculture was written by (Guerri and Distante, 2024). The authors explore
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the use cases of hyperspectral data in agriculture and the available algorithms used to
unmix this hyperspectral data. They examine these types of algorithms in their papers:
Autoencoder denoising (Deng and Zhou, 2023), Convolutional Neural Networks (Mou
and Ghamisi, 2018), Recurrent Neural Networks for classification (Zhou and Hang,
2019), Deep Belief Networks (Li and Huang, 2022), Generative Adversarial Networks
for denoising (Zhang and Cai, 2022) and super-resolution (Shi and Han, 2022), Transfer
Learning for classification tasks (Li and Liu, 2022), Semi-Supervised Learning classifi-
cation (Zheng and Jia, 2022), Unsupervised learning classification (Mou and Ghamisi,
2018). From their paper, it can be concluded that the most popular unmixing methods
recently are all within the domain of deep learning algorithms.

A paper by (Annam and Singla, 2021) employs supervised and unsupervised ma-
chine learning methods to detect heavy metals (arsenic (As), cadmium (Cd), and lead
(Pb)) in soil using hyperspectral data, with the unsupervised k-means algorithm achiev-
ing the best resulting accuracy of approximately 98%.

3 Hyperspectral Dataset of Blueberry Fields

In this section, we describe the field data gathering process and the creation of a hy-
perspectral unmixing dataset from hyperspectral data gathered by a UAV flying over a
blueberry field. Building on the review paper by (Guerri and Distante, 2024) and our
previous work (Paura and Marcinkevicius, 2023), it was concluded that the amount of
openly available hyperspectral data, especially in agricultural areas, is limited. In this
paper, we create a hyperspectral unmixing dataset from UAV data gathered in blue-
berry fields. Blueberry field dataset is an expansion on our previous work (Paura and
Marcinkevicius, 2024) with these key differences:

— Further research on classification accuracy using the Vertex Component Analysis
(VCA) (Nascimento and Dias, 2005) algorithm, changing the variation threshold
in class data sampling to 1.5 o from 2. This, in turn, extends the variability of the
data, preserving more of the original data and keeping the dataset as close to the
raw data as possible.

— Expansion of the dataset from a single hyperspectral cube to 3 cubes, for more ex-
tensive experimentation and data variety. This improves the usability of the dataset
for machine learning algorithm training, validation, and testing, as each of the cubes
can be used for separate tasks.

— Experimentation on classification, with the best results achieved by keeping the
same class distribution in all hyperspectral data cubes. Keeping the same number of
classes across all three data cubes allows for simpler training, testing and validation
of machine learning models that have number of classes as a hyperparameter.

3.1 Data gathering

Raw hyperspectral data was gathered using an Aurelia X6 drone (Aurelia Technolo-
gies Inc, 2024) with SPECIM hyperspectral push broom camera (Specim, 2024) flying
over a blueberry field. Push broom hyperspectral camera records the data of all (in case
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of this data gathering mission) 224 spectral bands in lines 1024 pixels wide. In turn, the
final hyperspectral cube size gathered depends on the flight length, but will always have
a similar size of 1024 pixels wide with 224 spectral bands gathered. A data-gathering
flight was conducted at 70 meters above ground, and the required drone speed was
calculated to maintain a square pixel resolution. The final pixel size of gathered UAV
hyperspectral cubes is 5 x 5 centimetres.

To maintain the accuracy of the data, recording must be done along straight flight
paths, known as flight lines. Each flight line creates a separate hyperspectral data cube
of size 1024 x x x 224, where x depends on the line length and camera recording speed.
An exposure time of 6 ms and the camera fps (or lines per second in push broom camera
case) set to 100.

3.2 Calibration

To keep the data consistent and comparable between flights, a set of calibration carpets
was deployed in the field with their laboratory-calibrated reflectance values of 5 %, 10
%, and 40 %, and a data cube with the camera lens closed to gather fully dark data or
sensor noise. Calibration was performed using the reference/reflectance carpets placed
in the field, with one of the drone flight lines intersecting the carpets. The primary
methodology used was that described in the article by (Burger and Geladi, 2005).

3.3 Raw Hyperspectral Data

From the multiple hyperspectral data cubes gathered during the UAV mission, three
data cubes were selected as the base of the unmixing dataset. Three cubes were chosen
to create train, test, and validation data cubes. All data cubes share the same set of end-
members (e.g., blueberries, grass, soil, water and wet soil, areas obscured by shadows,
and any other data), but the data were collected over the field at different times and in
various locations within the same blueberry field. Three cubes are used to increase data
variety and, in turn, check algorithm robustness to changes in field data. The three data
cubes have these parameters:

— Cube 1 shape: 1024 pixels wide, 3177 pixels long, with 224 spectral bands.

Cube 2 shape: 1024 pixels wide, 3047 pixels long, with 224 spectral bands.

Cube 3 shape: 1024 pixels wide, 2815 pixels long, with 224 spectral bands.

All cubes have the same spectral data collected from 400 to 1000 nm with an aver-
age distance between bands of approximately 2.5 nm.

Hyperspectral cube RGB representations, created by data integration over the Inter-
national Commission on Illumination (CIE) 1931 XYZ colour matching functions and
conversion from XYZ to RGB, are given below in Figure 1.

3.4 Hyperspectral dataset ground truth creation

Gathered field hyperspectral data has the disadvantage of not having completely ac-
curate classification and ground truth data, which are challenging to create. To apply
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Fig. 1: RGB representation of the hyperspectral blueberry data cubes, from top to bot-
tom, Cube 1, Cube 2 and Cube 3 are shown. The three selected hyperspectral cubes
were collected in the same blueberry field at different locations along the field and over
several days to increase data variety.
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as accurate a data classification as possible, a collection of classes was extracted from
the data cubes using an unsupervised method called VCA (Nascimento and Dias, 2005).
The suggested endmembers extracted using the VCA algorithm were used as the ground
truth classes for this hyperspectral unmixing dataset. By selecting multiple endmember
counts, the algorithm extracted possible endmembers from the hyperspectral data cube
(Cube 1 was used for extraction). A higher number of classes resulted in a smaller sam-
ple size for each class and an increase in the difficulty of unmixing down the line. The
VCA selected six classes to maintain a high-class representation of the hyperspectral
image and a reasonable calculation difficulty. Raw class data is represented in Figure
2. Classes represent blueberry crops, bare soil, grass, data in shadow, water, and other
data types that are distinct from different classes.
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Fig. 2: Averages, for each of the six classes, of extracted endmembers used as the ground
truth for the created hyperspectral unmixing dataset.

The whole data cube classification was performed using the extracted possible end-
members. Each pixel was checked against the endmembers to classify the data, and
RMSE values (Equation 1) were calculated for each one. The class selected for each
pixel had the lowest RMSE value among the six extracted endmembers. To maintain a
variation of data in the hyperspectral data cube, each pixel was left as the original data
if its variation was within 1.5 o of its respective class. In other words, the pixels close
to the extracted endmember were left unchanged and only given a class number. Pix-
els outside of a 1.5 o variation were replaced with random pixel data from within the
class data distribution, to keep computation times shorter and maintain higher spatial
variation.

Other endmember extraction and cube classification methods may be used to bal-
ance the dataset’s resource requirements, labelling time, and data variation. Complete
raw and classified data are published as open data for other experiments and hyperspec-
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tral unmixing and classification tasks. Data is published on the Zenodo platform with
open access: https://doi.org/10.5281/zenodo.13856357.
Class distribution on the hyperspectral data Cube 1 is shown in Figure 3.

500 1000 1500 2000 2500 3000

Fig. 3: Class distribution in the hyperspectral Cube 1. Color class representation: Yellow
- bare soil; Green - Blueberries; Blue - Grass; Dark blue - Shadows; Light green - Water
and wet soil; Black - Other data

3.5 Ground truth data mixing for hyperspectral unmixing dataset creation

Classified hyperspectral data cubes were mixed using a sliding window and linear mix-
ing. Multiple sliding window sizes were considered, and experiments were conducted
on window kernel sizes of 2, 3, and 4. The primary kernel size used was 3, to balance
the amount of data mixed (9 pixels with this kernel mixed into 1) and the cube sizes. As
this is a continuation of our previous work (Paura and Marcinkevicius, 2023), a smaller
dataset was targeted due to the numerous hyperspectral unmixing algorithm resources
and computational requirements associated with large datasets.

With the selected sliding windows of size 3x3, 9 pixels were linearly mixed into 1
pixel, including the classes of those pixels. Created the dataset cubes of sizes:

— Mixed cube 1 shape: 341 pixels wide, 1059 pixels long, with 224 spectral bands.
— Mixed cube 2 shape: 341 pixels wide, 1015 pixels long, with 224 spectral bands.
— Mixed cube 3 shape: 341 pixels wide, 938 pixels long, with 224 spectral bands.

In previous work (Paura and MarcinkeviCius, 2024), six classes were used to classify
the hyperspectral cubes. Using the same sliding window over the class array, an abun-
dance matrix was generated of the same size as the hyperspectral data, but with a third
dimension of size 6.

An example RGB representation of data Cube 1 is given in Figure 4. The RGB
representation is computed using data scaled across the entire hyperspectral cube; dif-
ferences in minimum and maximum values between images distort the final colours.
The generated RGB image is a false-colour image used to visualise the hyperspectral
data cube conveniently.
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Fig. 4: Mixed hyperspectral cube RGB representation that was used in training.

4 Hyperspectral Unmixing Using U-Net-based Architecture

This section describes our proposed hyperspectral unmixing algorithm based on the U-
Net model architecture and the datasets used in experimentation and validation. With
the growing popularity of deep learning neural networks and based on existing works
in hyperspectral unmixing of agricultural data, an unsupervised deep learning model is
a viable solution already employed in hyperspectral unmixing.

4.1 Metrics

Multiple metrics are used in the hyperspectral unmixing problems. The most common
are Root Mean Squared Error (RMSE), Signal Reconstruction Error (SRE), Spectral
Angle Distance (SAD), Spectral Angle Mapping (SAM), and Reconstruction Error
(RE). RMSE and Signal Reconstruction Error (SRE) metrics were selected due to their
popularity in hyperspectral unmixing algorithm performance evaluation and their over-
all simplicity in describing the differences between evaluated and real spectra:

— RMSE (Equation 1) shows the difference between the predicted spectra and the
ground truth. Different authors employed several variations of RMSE to evaluate
various aspects of the developed algorithms, including the average RMSE between
all endmembers, reconstruction RMSE, and abundance RMSE. Average RMSE is
calculated by taking the computed RMSE for each endmember separately and cal-
culating the average value. Reconstruction RMSE is computed between the ground
truth signal and the signal reconstructed by a predictive model. Abundance RMSE
is computed between ground truth abundances and predicted ones. This metric was
selected due to its widespread use in papers on hyperspectral unmixing algorithms
and its versatility in various error computations.

— SRE (Equation 2) is used to determine the quality of the spectral mixture recon-
struction generated by the algorithms. A higher SRE value means a better recon-
struction quality. This metric was selected as a modification of the RE metric and
used explicitly for signal data.

— SAD (Equation 3) - measures the angles between two vectors in multidimensional
space.
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— Cosine similarity (Equation 5) - calculates the dot product of the vectors divided by
the product of their lengths.

— RE (Equation 4) - measures the average difference between model-generated data
and actual ground truth data.

Metrics are calculated using these formulas:

N
1
— E 502
RMSE N i:1($2 ;) 1)

, where N is the number of values in the tested vector, x; is the i-th actual value,
and Z; is the ¢-th predicted value.

E 2
SRE = 10log (E[||x[||$|;]||§}> 7 N

where z is the true value, Z is the predicted value, and E is the average value of the
expression inside.
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where R is the number of pixels, I; - actual data, I: - predicted data. When applied
to hyperspectral data, the two spatial dimensions of the hyperspectral data cube are
combined into a single dimension of size R, and the angle is calculated for each pixel
independently.

H W R
Lrp(I,1) = HZ (1ij = 1:5)*, )

=1 j=1

where W is the image width, i/ image height, IA” - predicted spectral data in pixel
ij, I;; - actual spectral data in pixel 7j. The computation is performed for each pixel in
the image separately.

cos(0) = Y%}Ai, (5)
|7

where Y and Y are the two input vectors to be measured, in the case of hyperspectral
data, the vectors are the spectral values of each pixel.

4.2 Proposed model architecture

The original U-Net model created by (Ronneberger and Fischer, 2015) was used for
biomedical image segmentation. Our previous work demonstrates that autoencoder net-
works are a widely used method in deep learning for hyperspectral unmixing. Due to
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this, a base autoencoder architecture from the U-Net model was employed. The autoen-
coder compresses data into a small latent space, allowing it to extract features at various
scales during the compression process.

To adapt the U-Net model architecture for the hyperspectral unmixing task, a set of
changes was made:

— Splitting the hyperspectral image into smaller, same-size photos to reduce the over-
all size of the model, enabling usage of augmentations (e.g., mirroring and rota-
tions) on the input data and training the model by selecting these image patches in
random order.

— Addition of cosine similarity loss 5 was used to encourage the model to extract less
similar endmembers.

— Splitting the compressed data into endmember and abundance extraction sub-networks.

— Fully unsupervised unmixing model is trained on the hyperspectral image recon-
struction loss.

Ability to provide reference endmembers for more accurate unmixing or faster con-
vergence speeds.

Compared to our previous work, these model changes were made:

Addition of dropout layers after convolutional layers and the optimisation of dropout

parameters.

Addition of data augmentations during training.

Optimisation of starting hyperparameter set, which increased stability across dif-

ferent datasets. The main changes were a variable learning rate.

— General code optimisation to reduce data reading overhead since large datasets do
not fit in the graphics card memory during training.

— Improved and expanded testing methodology of the model and extended research

on new and improved hyperspectral datasets.

Figure 5 shows the proposed model architecture. With the selected batch size and
patch size, the model is constructed based on the feature extraction encoder layers, split
into two parts. The first part extracts the endmembers by compressing the spatial data,
and the second part extracts abundances from the spectral data. The data cube is recon-
structed in the last layer to maintain the model’s unsupervised nature. The reconstruc-
tion utilises matrix multiplication, rather than decoder layers, to learn the abundances
and endmembers. The input and output data have the same shape, and the model is
trained on the reconstruction accuracy.

The complete algorithm and experimentation code are open and provided in the
repository at https://github.com/VytautasPau/UAVHyperspectral.

4.3 Datasets used for experimentation

In this section, we analyse freely available hyperspectral datasets selected for algorithm
performance experimentation and our newly created hyperspectral unmixing dataset.
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Fig. 5: The model architecture outline.

— DC Mall (Nanjing University, 2024) (MultiSpec, 2020). An area in Washington,
DC, with a size of 1208 x 307 pixels and 191 spectral bands. Created ground truth
for classification with these classes: Roofs, Streets, Paths, Grass, Trees, Water, and
Shadows.

— Samson (Nanjing University, 2024) Hyperspectral data cube cut to the size of 95 *
95 pixels with 156 spectral bands and three different classes.

— Apex (Nanjing University, 2024) Hyperspectral data of 110 * 110 pixels with 285
spectral bands and four different classes.

— Cube 1 shape: 1024 pixels wide, 3177 pixels long, with 224 spectral bands.

— Cube 2 shape: 1024 pixels wide, 3047 pixels long, with 224 spectral bands.

— Cube 3 shape: 1024 pixels wide, 2815 pixels long, with 224 spectral bands.

The three open datasets selected were from the original transformer-based hyper-
spectral unmixing model created by (Ghosh and Roy, 2022). Their code included tuned
hyperparameters for these datasets, along with evidence that the model performs well
on them.

4.4 Evaluation of proposed method

Model performance was measured using this methodology:
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— For each dataset, the model was trained until the change in reconstruction loss was
almost zero; in turn, the number of training epochs and training time differed for
each dataset. Not provided in Table 1, training times mainly depended on the input
data size.

— For each dataset, the hyperparameter set was manually based on existing sets pro-
vided by the authors of the transformer-based hyperspectral unmixing model or de-
termined after a few experimental runs. This was done to ensure that the algorithms
produced a proper result, as not all hyperparameter sets yield a usable result.

— For model training, RE, SAD and an additional cosine similarity loss were used.
Cosine similarity loss was added to encourage the model to learn less similar end-
members. This loss should not be used if the dataset is suspected to have similar
classes.

— For testing the results, RMSE and SAD metrics were averaged over all classes. In
addition, the hyperspectral cube RE is also provided.

— For each model and dataset combination, the models were entirely trained from
scratch with weights initialised randomly on model creation.

Experimentation results for each dataset are provided in Table 1. Our proposed
model results were compared to the transformer-based hyperspectral unmixing model
created by (Ghosh and Roy, 2022). This model was selected due to the availability
of code and novelty in hyperspectral unmixing algorithms using transformers, which
showed higher accuracy than other deep neural network model papers available at the
time of research initiation.

Table 1: Proposed method and transformer networks comparison results on selected
datasets and metrics.

Proposed model Transformer model
mRMSE|mSAD| RE |Epochss mRMSE/mSAD| RE |Epochs
Apex 0.4705 0.1737(0.0990(7/001 | 0.5555 |0.2025|0.1048|1000

Dataset

DC 0.3971 |0.3764]0.0480(1001 | 0.3918 |0.3009]0.0232(7000
Samson | 0.4301 0.1507]0.0526|7001 | 0.6031 |0.2400(0.1675|1000
(B:L‘Le:‘z’“y 0.3112 [0.2737/0.0752|3001 | 0.4845 [0.3951(0.3012|7000
(B:L‘Leeb;“y 0.3740 [0.2591/0.1263|3001 | 0.4511 [0.4012[0.2860|1000
giﬁ’gn’y 0.3088 [0.2214(0.0978(3001 | 0.4232 [0.3852(0.2645|1000

Figure 6 shows the loss changes for both models to show the differences in training
loss during one of the experiment runs.

The proposed model, created and trained, was used to extract the endmember data
from Hyperspectral Data Cube 3. The resulting endmembers, compared to the ground
truths, are given in Figure 7.



Hyperspectral Unmixing of Agricultural Images 637

Model training loss comparison from one of the training runs on Cube 1.
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Fig. 6: The model training loss comparison on a Cube 1 experiment run.

5 Conclusions

— Mean RMSE values achieved with our proposed model were lower by about 27%
than those of the comparison model on almost all datasets except the DC Mall
dataset.

— RE and mean SAD values achieved by our proposed model were lower than those
of the comparison model by about 187% and 41%, respectively, on average.

— Our proposed model architecture reduces the number of required hyperparameters
by removing the need for latent space dimensions and patch size parameters used
by transformer-based networks.

As explained previously, the given results are only the best achieved with manual
parameter tuning and, consequently, may not be the optimal results for each of the
datasets tested. For future works, an automated hyperparameter search is planned to
minimise reconstruction error as much as possible.
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Fig.7: Model predicted endmember (blue) comparison to ground truth endmember av-
erages (orange) and their variations (green) for each of the six classes. The endmembers
(from top to bottom) represent: 1) Other data, 2) blueberries, 3) water and wet soil, 4)
soil, 5) shadows, 6) grass.
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