
Baltic J. Modern Computing, Vol. 13 (2025), No. 3, 641-655

https://doi.org/10.22364/bjmc.2025.13.3.05

Constructive-synthesizing Modeling of Debugging

Process Visualization

Viktor SHYNKARENKO, Oleksandr ZHEVAHO

Department of Computer Information Technology, Ukrainian State University of Science and

Technologies, Lazariana 2, Dnipro, 49010, Ukraine

shinkarenko_vi@ua.fm, o.o.zhevaho@ust.edu.ua

ORCID 0000-0001-8738-7225, ORCID 0000-0003-0019-8320

Abstract: This paper presents a theoretical framework for developing video-based debugging

instruction using constructive-synthesizing modeling (CSM). The proposed framework formalizes

the transformation of integrated development environment debugging logs into educational videos

through CSM methodology, providing a systematic approach for creating visual representations of

debugging processes. The CSM formalization enables reproducible conversion of temporal

debugging sequences into structured educational content, with videos featuring synchronized code

context, debugging actions, and explanatory annotations. We present a seven-phase implementation

methodology for classroom integration, including structured video analysis, collaborative reflection,

and expert-guided discussion phases. The framework establishes theoretical foundations for future

empirical validation of video-based debugging instruction, addressing the critical gap between

debugging's importance in professional practice and its treatment in educational contexts.

Keywords: debugging, constructive-synthesizing modeling, visualization, software engineering,

education, information technology

1. Introduction

In modern programming curricula, the primary focus is on writing code, while tasks

related to debugging are often relegated to a secondary position (Michaeli and Romeike,

2019a; Rich et al., 2019). This creates a misconception that debugging is less crucial than

programming. However, in real-world, these two processes are inextricably linked and

require equal attention.

Although debugging is a critically important component of programming, accounting

for an estimated 40 to 60% of the time spent on programming, learning debugging

strategies is often a skill that beginners are expected to develop on their own (Alaboudi

and Latoza, 2023). As a result, students primarily learn debugging by working through

their own mistakes, which can be quite frustrating. They must spend considerable time

and effort hypothesizing the causes of errors while simultaneously tackling other

cognitively demanding tasks, such as understanding and writing code (Ma et al., 2024).

The purpose of this research is to develop a formal theoretical framework for

converting debugging logs into educational videos using CSM, and to propose a classroom

642 Shynkarenko and Zhevaho

methodology based on this visualization, establishing a foundation for future empirical

studies on video-based debugging education.

This paper addresses the gap between debugging importance and debugging

instruction through a formal approach to debugging visualization. We explicitly note that

this paper focuses on the theoretical framework. We provide the formal model for

debugging process visualization, ensuring systematic and reproducible video generation.

Empirical validation of educational effectiveness is beyond the current scope and

represents important future work.

2. Related Work

2.1. The Educational Challenge: Debugging Instruction Gap

Despite debugging's critical importance in professional software development, it remains

severely underrepresented in formal computer science curricula. Recent systematic

reviews confirm that debugging instruction is an underexplored area, with most

educational interventions focusing on programming syntax rather than error detection and

resolution strategies (Yang et al., 2024). The complexity of debugging as a cognitive

process-requiring hypothesis formation, systematic testing, and analytical reasoning-

necessitates specialized pedagogical approaches distinct from traditional programming

instruction (Jemmali et al., 2020).

Current educational practices typically relegate debugging to incidental learning

during programming assignments rather than explicit instruction (O'Dell, 2017). This

approach fails to prepare students adequately, as evidenced by surveys showing that

professional programmers receive virtually no formal debugging training, with most

learning through self-directed workplace experience (Whalley et al., 2021). This

educational gap creates a paradox where one of the most time-consuming aspects of

professional development receives minimal systematic attention in academic settings.

2.2. Evidence for Systematic Debugging Instruction and Pedagogical

Approaches

Empirical evidence demonstrates that debugging skills can be effectively taught through

structured approaches. Systematic reviews of debugging interventions from 2010-2022

reveal that well-designed programs consistently improve students' debugging accuracy,

efficiency, and self-efficacy (Yang et al., 2024). Research has identified three critical

cognitive processes in debugging: identification, isolation, and iteration (Hylton et al.,

2023), providing concrete frameworks for instructional design.

Effective pedagogical approaches range from traditional hands-on programming

(Michaeli and Romeike, 2019a) to structured error introduction methods (Kerslake, 2024).

The scientific method has emerged as an influential framework, treating debugging as

hypothesis-driven investigation through five sequential stages (O'Dell, 2017). Multi-

language approaches demonstrate effectiveness in developing generalizable skills

(Wilkin, 2025), while contemporary research emphasizes combining direct instruction

with deliberate practice (Yamamoto et al., 2016).

However, studies reveal that novice and expert debugging strategies differ

substantially, with beginners struggling to generate comprehensive hypotheses and

 Constructive-synthesizing Modeling of Debugging Process Visualization 643

lacking systematic evaluation strategies (Caballero et al., 2021; Liu and Paquette, 2023;

Ma et al., 2024). Students typically exhibit surface-level approaches, prioritizing

immediate fixes over systematic investigation (Hylton et al., 2023). These cognitive

differences necessitate personalized learning approaches that address varying strengths

across different knowledge domains (Ding et al., 2024; Zhang et al., 2022). Notably, even

experienced educators show substantial variance in diagnostic approaches to identical

scenarios (Wachter and Michaeli, 2024).

2.3. Technology-Enhanced Instruction and Observational Challenges

Technological advances have expanded debugging instruction possibilities through AI-

powered environments, visualization tools, and automated testing frameworks. Large

language models enable novel approaches like the HypoCompass system, where students

act as teaching assistants correcting LLM-generated code (Ma et al., 2024). Program

visualization tools provide dynamic representations of execution flow, while automated

testing frameworks offer systematic error detection approaches (Caballero et al., 2021).

Enhanced error messaging systems show potential for improving debugging performance

through better feedback mechanisms (Kerslake, 2024).

However, a fundamental challenge exists: most student debugging occurs outside

classroom settings, limiting educators' ability to observe and support skill development.

Students debug autonomously during homework and personal projects, creating gaps

between instruction and independent practice (Liu and Paquette, 2023). Researchers have

explored various approaches for capturing debugging behaviors, including IDE debugging

logs (Shynkarenko and Zhevaho, 2020a) and think-aloud protocols, but these methods

face scalability limitations.

2.4. Video-Based Approaches and Theoretical Framework Requirements

Video-based instruction represents an emerging frontier for addressing debugging

education challenges. Research demonstrates effectiveness of video-based learning for

conveying complex procedural knowledge in programming contexts. Video vignettes

prove particularly valuable for teacher education, enabling repeated observation of

debugging scenarios difficult to capture naturally (Wachter and Michaeli, 2025; Ding et

al., 2024; Hylton et al., 2023). These approaches offer dynamic representation of expert

debugging processes, including temporal sequences of decisions and adaptive strategies.

The application of CSM to debugging instruction represents a novel theoretical

contribution. While CSM has proven effective in various educational contexts for

transforming complex processes into structured learning materials, its systematic

application to debugging visualization remains largely unexplored. The systematic

transformation of IDE debugging logs into educational videos through CSM methodology

addresses reproducibility challenges that have limited the scalability and theoretical

grounding of previous debugging instruction research.

This convergence of video-based instruction, debugging education requirements, and

formal modeling approaches establishes the foundation for systematic, theoretically-

grounded instructional designs. The integration addresses multiple challenges

simultaneously: providing observable representations of expert debugging processes,

creating reusable instructional materials extending beyond individual classroom contexts,

and establishing systematic frameworks for debugging instruction that can be empirically

644 Shynkarenko and Zhevaho

evaluated and continuously improved. These foundations directly motivate the need for a

formal theoretical framework that can systematically transform debugging processes into

effective educational visualizations.

3. Theoretical Framework: Constructive-Synthesizing

Modeling for Debugging Visualization

This section presents the application of CSM to debugging visualization, establishing a

framework for converting debugging logs into educational videos. CSM provides a formal

methodology for representing complex processes and their transformations by linking

elements while considering their attributes, aggregates, and relational structures. The

fundamental principles and ontological foundations of CSM, including the generalized

constructor framework, have been established in previous work (Skalozub et al., 2017).

Examples of CSM applications demonstrate its versatility across various domains

(Shynkarenko and Zhevaho, 2020a; Shynkarenko and Zhevaho, 2021).

CSM enables formal description and transformation of complex process data. In our

system, IDE-generated logs are modeled as structured data and transformed into visual

educational content. The CSM approach is suitable because:

 it allows hierarchical decomposition of debugging events;

 it facilitates rule-based transformations and interpretations;

 it supports reproducibility and systematization in educational content generation.

We detail the formalization of this process through constructors, terminals, and

interpretation rules. Each debugging session is treated as a sequence of events, where

frames are generated per event and assembled chronologically into a video.

Previous applications of CSM to debugging contexts formalized the data collection

process, resulting in a constructor for generating debugging action logs and a Microsoft

Visual Studio IDE extension that records debugging activities in structured event logs

(Shynkarenko and Zhevaho, 2020b).

The current research extends this foundation by formalizing the conversion of textual

debugging logs into video-based visualizations. This transformation addresses the

observational challenges identified in debugging education while providing a theoretically

grounded approach to creating scalable educational content that captures the temporal,

contextual, and strategic dimensions of expert debugging practices.

The first stage of this construction involves specializing the generalized constructor

 C = S↦ CV = VVV 

where C – generalized constructor; M – carrier, which includes terminals and non-

terminals, as well as a set of rules;  – a set of operations and relationships for elements

M;  – information support for construction; S↦ – specialization operation of the

constructor.

Terminals and their attributes:

 sessionslog – debugging event log, which contains an array of debugging sessions;

 index,sizesessions – array of sessions with its attributes: index – the index of the session
in the array, size – the size of the array;

 Constructive-synthesizing Modeling of Debugging Process Visualization 645

 events,start,endsession – a debugging session, which consists of an events array and the
timestamps for the start and end of the debugging process;

 index,sizeevents – array of events with its attributes: index – the index of the event in
the array, size – the size of the array;

 name,context, timestampevent – an event in the development environment during debugging
with its attributes: name – the name of the event, context – the context, a dynamic
structure object containing information about the event's surroundings, such as the
file the user is working with, the line number where the event occurred, etc. (the
structure of the object may vary for different events), timestamp – timestamp when
the event occurred;

 framesvideo – a generated video file consisting of a frames sequence;

 index,sizeframes – array of frames with its attributes: index – the index of the frame in
the array, size – the size of the array;

 info,code,commentframe – a generated frame for the video, based on an event from the
IDE with its attributes: info – the upper section of the frame, containing information
about the debugging (number of sessions, total session time), code – the main
section of the frame, which includes code and visual elements of the event, comment
– the side section, containing a natural language explanation of the event.

Operations on attributes:

 ○(t) – operation of setting the attribute values of terminal t by an external executor;

 ≈(a,i,t) – operation of retrieving the element at index i from array a and setting its
value in terminal t;

 ⋮(a,i,f,b) – operation of generating frame f based on the element retrieved at index i
from array a and adding it to array b at index i;

 ≡(lo,ro,t) – operation of comparing the value lo with the value ro, and setting 1 if
they are equal, or 0 otherwise, in t;

 ≠(lo,ro,t) – operation of comparing the value lo with the value ro, and setting 1 if
they are not equal, or 0 otherwise, in t;

 ±(video) – operation of creating a video based on the frames from the given terminal
video.

Let's perform the interpretation

CV = VVVCA = AVAAAI↦ CVAI = VAIVAIVAI

where VA – set of algorithms for forming in the basic algorithmic structure (BAS); I↦

– interpretation operation.

CVAI in addition to the algorithms for executing operations from the BAS, it includes

the following algorithms: 𝐴1|𝑡
𝑡 , 𝐴2| ,𝑎,𝑖,𝑡

𝑡 𝐴3| ,𝑎,𝑖,𝑓,𝑏
𝑏 𝐴4| ,𝑙𝑜,𝑟𝑜,𝑡

𝑡 𝐴5| ,𝑙𝑜,𝑟𝑜,𝑡
𝑡 𝐴6| ,𝑣𝑖𝑑𝑒𝑜

𝑣𝑖𝑑𝑒𝑜 which

perform the corresponding operations: ○(t), ≈(a,i,t), ⋮(a,i,f,b), ≡(lo,ro,t), ≠(lo,ro,t),

±(video).

Let's perform the concretization

 CVAI ↦K CVAIK (LOG) = KKK 

646 Shynkarenko and Zhevaho

where LOG – event log provided for conversion into a video; ↦K – concretization

operation.

Construction initial condition: σ – the non-terminal from which the derivation

begins, with initial values i = 1, j = 1, and also t0 = 1, t1 = 0. If ti = 0, the corresponding

rule is not executed.

Construction completion condition: all sessions and events from the external

executor's event log are processed and a video is generated.

Sequential execution of rules will be denoted as ∏ 𝑠𝑖
𝑛
𝑖=1 .

The first rule performs the initial processing of the provided event log

 𝑠1 =< 𝜎 → log• ∏ 𝛼𝑖
𝑠𝑖𝑧𝑒↲𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠↲𝑙𝑜𝑔
𝑖=1 >, 

 𝑔1 =<○ (log) >, 

where 𝑏 ↲ 𝑎 – identifies attribute b of object a.

Each log consists of debugging sessions, and each session consists of events series. An

event refers to actions such as setting a breakpoint, step-by-step execution of code,

viewing the call stack, and other standard debugging tools in the IDE, each accompanied

by relevant contextual information, such as the file name and line number.

The second rule involves processing the sessions

 𝑠2 =< 𝛼𝑖 → session• ∏ 𝛽𝑗
𝑠𝑖𝑧𝑒↲𝑒𝑣𝑒𝑛𝑡𝑠↲𝑠𝑒𝑠𝑠𝑖𝑜𝑛
𝑗=1 >,  

 𝑔2 =<≈ (𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ↲ log, i, session) >. 

Each event has an action and context. The action determines the visual effect and

comment to be applied in the frame. The context specifies the particular file and line

number to be displayed in the main area of the frame.

The third rule involves creating a frame for each event

 𝑠3 =< 𝛽𝑗 →𝑡0
frame• 𝛽𝑗 >,  

𝑔3 =<⋮ (𝑒𝑣𝑒𝑛𝑡𝑠 ↲ session, j, frame, frames ↲ video),
 ≡ (𝑗, 𝑠𝑖𝑧𝑒 ↲ 𝑒𝑣𝑒𝑛𝑡𝑠 ↲ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑡1),

 ≠ (𝑗, 𝑠𝑖𝑧𝑒 ↲ 𝑒𝑣𝑒𝑛𝑡𝑠 ↲ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑡0) >. 

The video consists of individual frames, where each frame visually represents a

separate event or state transition in the debugging process (Figure 1).

 Constructive-synthesizing Modeling of Debugging Process Visualization 647

Figure 1. Example frame from the debugging process visualization

Each frame is composed of three areas (Shynkarenko and Zhevaho, 2024):

 upper area (process information): displays aggregated data from session logs, such
as the number of sessions and their duration. This area remains unchanged for all
frames of the current session;

 main area (program text): the context (file name and line number) of each event is
used to display the corresponding section of the code. This area is dynamically
updated as the video progresses through the events;

 side area (event comments): each event is marked with a timestamp and
accompanied by a brief explanation, such as "Breakpoint set at line 42." If there is
a pause of more than 5 seconds between events, a comment indicating the duration
of inactivity is inserted.

Actions like setting or hitting a breakpoint trigger a visual cue, highlighting the

corresponding line in the main area.

The fourth rule involves the final assembly of frames into a single video file after all

events have been processed

 𝑠4 =< 𝛽𝑗 →𝑡1
𝑣𝑖𝑑𝑒𝑜 >,  

 𝑔4 =< ±(video) >. 

Frames are arranged in chronological order based on their timestamps, preserving the

sequence of events that occurred during the debugging session. Periods of inactivity are

marked with comments in the appropriate area, and the video transitions to the next active

frame to ensure that the video is as informative as possible, without an excessive number

of static frames where nothing happens.

648 Shynkarenko and Zhevaho

4. Proposed Teaching Methodology

This section outlines an approach to teaching debugging programs based on process

visualization videos (Shynkarenko and Zhevaho, 2024). The implementation of the CSM-

based debugging visualization follows a structured seven-phase approach designed to

maximize learning effectiveness while providing measurable outcomes for future

empirical validation. The process consists of the following key steps (Figure 2):

4.1. Task assignment

Students receive programming assignments or debugging challenges carefully selected to

demonstrate specific debugging strategies or common error patterns. The task selection

process emphasizes bugs that represent typical debugging scenarios encountered in

professional practice, ensuring that students engage with realistic problem-solving

contexts. Clear task objectives and expected outcomes are provided to establish learning

goals, while bug complexity is calibrated to match students' current skill levels to maintain

appropriate challenge without overwhelming novice debuggers. The assignments

incorporate both syntax and logic errors to provide comprehensive practice across

different categories of debugging challenges, enabling students to develop versatile error

detection and resolution capabilities.

4.2. Action logging

Students work on the debugging task while specialized IDE extensions automatically

capture all debugging actions during their work sessions (Shynkarenko and Zhevaho,

2020b). The logging system records timestamps, action types, code contexts, and decision

points without interfering with the debugging process. Successful implementation requires

ensuring that debugging extensions are properly installed and activated across all student

workstations prior to session commencement. Instructors must verify that log collection

mechanisms are functioning correctly before students begin their debugging work and

establish appropriate time limits for debugging sessions to maintain focused learning

experiences. Students are informed about data collection procedures and privacy measures

to maintain transparency and comply with educational data protection requirements, while

the non-intrusive nature of the logging system allows students to engage naturally with

debugging tasks without awareness of the monitoring process affecting their problem-

solving approaches.

4.3. Video creation

Based on the CSM framework, the constructor processes collected logs to generate

standardized educational videos from representative debugging sessions selected for their

pedagogical value (Shynkarenko and Zhevaho, 2024). Each video maintains consistent

visual formatting with session metadata displayed in the upper area, code context in the

main viewing area, and action annotations positioned in the side area, incorporating

synchronized code visualization, timing information, and strategically placed highlights.

The automated generation process allows for configuration of video parameters including

playback speed, annotation density, and visual emphasis to optimize educational

effectiveness. Generated videos undergo quality review to ensure educational value and

 Constructive-synthesizing Modeling of Debugging Process Visualization 649

clarity before classroom implementation, with supplementary materials prepared as

needed to support specific learning objectives and provide additional context for complex

debugging scenarios.

4.4. Video presentation

The instructional video is shown in class, serving as a foundation for discussion and

analysis. Students view generated videos in classroom settings through structured

observation protocols that begin with introducing the debugging scenario and learning

objectives to establish context. Video playback incorporates strategic pauses at critical

junctures to facilitate discussion and allow students to process complex debugging

decisions. During viewing, students are encouraged to take detailed notes on debugging

strategies, patterns, and decision points, while initial observation focuses on identifying

debugging approaches without instructor commentary to promote independent analysis.

The instructor highlights key decision points and debugging techniques during subsequent

discussion phases, and multiple videos can be compared to demonstrate different

debugging approaches to the same or similar problems, providing students with

comprehensive exposure to various problem-solving methodologies and enabling

comparative analysis of debugging effectiveness.

4.5. Initial analysis

Students provide initial observations and analysis of the debugging process shown in the

video, developing critical thinking and analytical skills through structured examination of

debugging strategies. Initial analysis involves students identifying and commenting on key

actions visible in the video, such as incorrect breakpoints or inefficient navigation, while

focusing on strategy identification to determine what debugging approaches were

employed. Students examine decision points to understand why certain actions were taken,

evaluate the effectiveness of strategies to identify which techniques worked well, and

consider alternatives to explore what could have been done differently. This phase

emphasizes hypothesis generation and evaluation as students observe debugging

strategies, identify effective techniques, and propose potential improvements. The teacher

assesses students' understanding through their analytical commentary and outlines areas

for improvement, fostering metacognitive awareness as students develop deeper insights

into debugging methodology and decision-making processes.

4.6. Feedback collection

Structured collection of observations from both students and instructor using standardized

forms ensures comprehensive documentation of the debugging process analysis. Students

document their observations using standardized forms that capture technical observations

about specific debugging techniques used, process analysis of the overall debugging

workflow, learning insights regarding new strategies discovered, and improvement

suggestions for better approaches identified. These forms systematically cover identified

debugging strategies, decision rationale, alternative approaches, and error patterns,

creating a foundation for comparative analysis across different debugging sessions.

Teacher assessments complement student perspectives by providing expert evaluation of

strategy effectiveness and learning outcomes, while the structured feedback format

650 Shynkarenko and Zhevaho

enables systematic data collection that supports both immediate learning objectives and

longer-term curriculum refinement based on observed student comprehension patterns and

skill development trajectories.

4.7. Discussion

Facilitated comprehensive discussion consolidates learning and develops debugging best

practices as students and teacher exchange opinions and analyze the debugging process.

This phase enables identification of misconceptions and reinforcement of effective

practices through comparative analysis of different debugging strategies observed during

the video session. Students work collaboratively to identify common debugging patterns

and anti-patterns, developing a shared understanding of what constitutes effective versus

problematic debugging approaches. The discussion synthesizes observations and insights

to help students internalize effective debugging strategies while developing debugging

heuristics for future application in their own programming work. Through guided

conversation, students develop metacognitive awareness of their debugging processes and

create personal debugging strategy guides that capture the most valuable techniques and

decision-making frameworks learned during the session, establishing individualized

references that can support their ongoing debugging skill development and promote

transfer of learning to new programming contexts.

Figure 2. Steps of teaching debugging methodology

After the first discussion, the video is shown again, giving students the opportunity to

review their conclusions and further analyze the programmer's actions. The final

 Constructive-synthesizing Modeling of Debugging Process Visualization 651

discussion helps to consolidate skills and deepen understanding of the debugging process.

This iterative approach allows observing how students' understanding of the debugging

process has changed after the discussion and exchange of opinions.

This methodology enables students to improve their debugging skills while developing

critical thinking. The iterative approach, realized through repeated viewing and analysis,

allows for a deeper understanding of the debugging process. Comparative analysis of

students' opinions with the teacher's expert assessment helps identify gaps in

understanding and adjust the learning process accordingly. Additionally, by recording all

student activities in logs, which are then used to generate videos, this approach also helps

prevent cheating, as it becomes clear when tasks were not completed independently.

This approach addresses three critical limitations in current debugging education: (1)

lack of process observability, (2) insufficient authentic examples, and (3) limited

opportunities for comparative analysis. The video-based method enables students to

observe debugging processes that would otherwise remain invisible during independent

work.

5. Discussion

5.1. Theoretical Contributions

This research establishes three primary theoretical contributions to debugging education.

First, it provides the formal framework for debugging process visualization using CSM

methodology, enabling systematic analysis and comparison of debugging strategies across

different educational contexts. Second, it defines systematic transformation rules for

converting temporal debugging events into structured educational content, creating

reproducible pathways from raw debugging data to pedagogical materials. Third, it

establishes a theoretical foundation for video-based debugging instruction that can guide

future empirical research and curriculum development.

The CSM-based approach addresses a fundamental challenge in debugging education:

converting invisible cognitive processes into observable educational content. By

formalizing the transformation of debugging logs into educational videos, the framework

enhances process visibility while maintaining rigor and practical applicability. The

automated video generation methodology enables systematic debugging education

without requiring extensive instructor expertise in video production, offering a scalable

solution to the widespread gap between debugging's professional importance and its

educational treatment.

The formal framework structure enables systematic replication and adaptation across

different educational environments and debugging platforms. This standardization

potential represents a significant advancement over ad hoc approaches that have limited

transferability and theoretical grounding. The formal foundation provided by CSM

ensures that the video generation process can be systematically evaluated, refined, and

extended to accommodate diverse educational contexts and student populations.

5.2. Implementation Considerations

While the theoretical framework demonstrates significant potential, several practical

considerations must be addressed for successful implementation. Scalability represents a

primary concern, as large-scale deployment requires efficient algorithms for log

652 Shynkarenko and Zhevaho

processing and video generation. The computational complexity increases with session

length and event frequency, necessitating optimization strategies to ensure practical

deployment in resource-constrained educational environments.

The framework's current focus on IDE-based debugging activities may limit universal

applicability across diverse development environments. Adaptation to command-line

debugging, web development platforms, or mobile development environments may

require framework extensions to accommodate different debugging tools and practices.

However, the formal CSM foundation provides a systematic basis for such extensions,

suggesting that adaptability challenges represent implementation rather than fundamental

theoretical limitations.

Privacy and ethical considerations require careful attention throughout

implementation. Comprehensive activity logging raises legitimate privacy concerns that

must be addressed through transparent data collection policies, secure storage practices,

and explicit user consent protocols. Students must be clearly informed about what data is

collected, how it will be used, who can access it, and how long it will be retained. Clear

opt-out mechanisms should be provided for non-educational activities, ensuring that

personal projects remain private while maintaining the educational benefits of the system.

5.3. Framework Validation

The theoretical nature of this contribution necessitates comprehensive empirical validation

to demonstrate practical effectiveness. Future validation should employ mixed-methods

approaches combining quantitative performance measures with qualitative learning

outcome assessments. Quantitative measures should include pre/post debugging task

completion times, error identification accuracy rates, debugging strategy sophistication

scores, and long-term retention assessments to establish measurable learning outcomes.

Qualitative validation requires student confidence self-reports, debugging strategy

articulation quality assessments, instructor observation protocols, and focus group

feedback on video effectiveness. Think-aloud protocols during video viewing can provide

insights into cognitive processing, while longitudinal tracking of debugging competency

development can assess sustained learning impacts.

Controlled experiments comparing video-based instruction with traditional debugging

education approaches will establish relative effectiveness across diverse student

populations. These studies should include randomized controlled trials with pre/post

assessments and qualitative investigations of student learning experiences to provide

comprehensive evaluation of the framework's educational value.

5.4. Future Research Directions

Several critical research directions emerge from this theoretical foundation. Empirical

validation studies represent the immediate priority, requiring controlled experiments to

demonstrate the framework's educational effectiveness compared to traditional

approaches. Cognitive load assessment investigations will determine how video

complexity and presentation timing affect learning outcomes for students with varying

programming experience levels.

Cross-platform adaptation research can extend the framework to support multiple IDEs

and programming languages, enhancing universal applicability and addressing current

limitations in platform coverage. Long-term retention studies will provide longitudinal

 Constructive-synthesizing Modeling of Debugging Process Visualization 653

assessment of debugging skill retention following video-based instruction, establishing

the durability of learning outcomes.

The development of adaptive video generation capabilities represents an advanced

research direction, enabling personalized video content based on individual learning

patterns and debugging skill levels. Such adaptations could optimize learning efficiency

while accommodating diverse student needs and learning preferences.

Beyond debugging education, the formal CSM approach provides a foundation for

process visualization across multiple software engineering domains. Future research could

extend the framework to support code review, testing, and refactoring education,

establishing a comprehensive approach to software engineering process visualization that

addresses broader educational challenges in computer science curriculum.

6. Conclusion

This paper presents a comprehensive theoretical framework for debugging education

through video visualization, formalized using CSM methodology. The research addresses

a critical gap in computer science education by providing the approach to transforming

debugging processes into structured educational content. While empirical validation

remains essential for demonstrating practical effectiveness, this work establishes a

theoretical foundation that enables rigorous conceptualization of debugging visualization

and provides a blueprint for future implementation and testing.

The primary contribution lies in the formal specification of systematic transformation

rules for converting IDE debugging logs into educational videos with synchronized

content across three complementary information areas. This CSM-based formalization

ensures consistent, reproducible generation of educational materials from authentic

debugging sessions. The framework defines terminal specifications and operational

procedures that enable educators to systematically create video-based instruction without

requiring extensive technical expertise in video production.

The seven-phase teaching methodology provides a structured implementation pathway

that bridges theoretical framework with classroom practice. This methodology offers

educators concrete guidance for integrating video-based debugging instruction while

maintaining the authenticity and complexity of real-world debugging scenarios.

Future research will focus on empirical validation through controlled classroom

studies and comparative effectiveness assessments to demonstrate the framework's

practical value. The formal CSM foundation provides a robust basis for framework

extension to additional software engineering processes, suggesting broader applications in

computer science education. The theoretical groundwork established here enables

systematic investigation of video-based debugging instruction effectiveness, supporting

the development of evidence-based debugging education practices that can ultimately

improve student preparation for professional software development challenges.

References

Alaboudi, A., Latoza, T. D. (2023). What constitutes debugging? An exploratory study of debugging

episodes, Empirical Software Engineering, 28(5), 117. doi: 10.1007/s10664-023-10352-5.

Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S. (2021). A unified framework for

declarative debugging and testing, Information and Software Technology, 129, 106427. doi:

10.1016/j.infsof.2020.106427.

654 Shynkarenko and Zhevaho

Ding, L., Stacey, K. J., Yoon, M. (2024). Dialogue alongside or within lecturing videos for teaching

debugging, Journal of Research on Technology in Education, pp. 1–18. doi:

10.1080/15391523.2024.2404133.

Hylton, D., Sung, S. H., Ding, X., Van Vleet, M. J. (2023). Board 196: A Framework to Assess

Debugging Skills for Computational Thinking in Science and Engineering, 2023 ASEE Annual

Conference and Exposition - The Harbor of Engineering: Education for 130 Years. doi:

10.18260/1-2--42591.

Jemmali, C., Kleinman, E., Bunian, S., Almeda, M. V., Rowe, E., Seif El-Nasr, M. (2020). MAADS:

Mixed-methods approach for the analysis of debugging sequences of beginner programmers,

51st ACM Technical Symposium on Computer Science Education, pp. 86–92. doi:

10.1145/3328778.3366824.

Kerslake, C. (2024). Stump-the-Teacher: Using Student-generated Examples during Explicit

Debugging Instruction, 55th ACM Technical Symposium on Computer Science Education, pp.

653–658. doi: 10.1145/3626252.3630934.

Liu, Q., Paquette, L. (2023). Using submission log data to investigate novice programmers’

employment of debugging strategies, 13th International Learning Analytics and Knowledge

Conference, pp. 637–643. doi: 10.1145/3576050.3576094.

Ma, Q., Shen, H., Koedinger, K., Wu, S. T. (2024). How to Teach Programming in the AI Era?

Using LLMs as a Teachable Agent for Debugging, Artificial Intelligence in Education, AIED

2024, Lecture Notes in Computer Science, 14829, pp. 265–279. doi: 10.1007/978-3-031-

64302-6_19.

Michaeli, T., Romeike, R. (2019a). Current status and perspectives of debugging in the K12

classroom: a qualitative study, 2019 IEEE Global Engineering Education Conference, pp.

1030–1038. doi: 10.1109/educon.2019.8725282.

Michaeli, T., Romeike, R. (2019b). Improving Debugging Skills in the Classroom, 14th Workshop

in Primary and Secondary Computing Education, 15, pp. 1–7. doi:

10.1145/3361721.3361724.

O'Dell, D. H. (2017). The Debugging Mindset: Understanding the psychology of learning strategies

leads to effective problem-solving skills, Queue, 15(1), pp. 71–90. doi:

10.1145/3055301.3068754.

Rich, K. M., Strickland, C., Binkowski, T. A., Franklin, D. (2019). A K-8 Debugging Learning

Trajectory Derived from Research Literature, 50th ACM Technical Symposium on Computer

Science Education, pp. 745–751. doi: 10.1145/3287324.3287396.

Shynkarenko, V., Zhevaho, O. (2020a). Constructive Modeling of the Software Development

Process for Modern Code Review, 2020 IEEE 15th International Conference on Computer

Sciences and Information Technologies (CSIT), pp. 392–395. doi:

10.1109/csit49958.2020.9322002.

Shynkarenko, V., Zhevaho, O. (2020b). Development of a toolkit for analyzing software debugging

processes using the constructive approach, Eastern-European Journal of Enterprise

Technologies, 5(2 (107)), pp.29–38. doi: 10.15587/1729-4061.2020.215090.

Shynkarenko, V., Zhevaho, O. (2021). Application of Constructive Modeling and Process Mining

Approaches to the Study of Source Code Development in Software Engineering Courses,

Journal of Communications Software and Systems, 17(4), pp.342–349. doi: 10.24138/jcomss-

2021-0046.

Shynkarenko, V., Zhevaho, O. (2024). A Video-Based Approach to Learning Debugging

Techniques. 14th International Scientific and Practical Programming Conference, UkrPROG

2024. CEUR Workshop Proceedings, 3806, pp. 462–473. Available at https://ceur-

ws.org/Vol-3806/S_18_Shynkarenko_Zhevaho.pdf.

Skalozub, V., Ilman, V., Shynkarenko, V. (2017). Development of ontological support of

constructive-synthesizing modeling of information systems, Eastern-European Journal of

Enterprise Technologies, 6(4 (90)), pp.58–69. doi: 10.15587/1729-4061.2017.119497.

 Constructive-synthesizing Modeling of Debugging Process Visualization 655

Wachter, H., Michaeli, T. (2024). Analyzing Teachers’ Diagnostic and Intervention Processes in

Debugging Using Video Vignettes, 17th International Conference on Informatics in Schools:

Situation, Evolution, and Perspectives, 15228, pp.167–179. doi: 10.1007/978-3-031-73474-

8_13.

Whalley, J., Settle, A., Luxton-Reilly, A. (2021). Analysis of a Process for Introductory Debugging,

23rd Australasian Computing Education Conference, pp.11–20. doi:

10.1145/3441636.3442300.

Wilkin, G. A. (2025). "Debugging: From Art to Science" A Case Study on a Debugging Course and

Its Impact on Student Performance and Confidence, 56th Annual SIGCSE Technical

Symposium on Computer Science Education, pp.1225–1231. doi: 10.1145/3641554.3701893.

Yamamoto, R., Noguchi, Y., Kogure S., Yamashita, K., Konishi, T., Itoh, Y. (2016). Design of a

learning support system and lecture to teach systematic debugging to novice programmers,

24th International Conference on Computers in Education: Think Global Act Local. doi:

10.58459/icce.2016.1178.

Yang, S., Baird. M., O'Rourke, E., Brennan, K., Schneider, B. (2024). Decoding Debugging

Instruction: A Systematic Literature Review of Debugging Interventions, ACM Transactions

on Computing Education, 24(4), pp.1–44. doi: 10.1145/3690652.

Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., Fan, A. X. (2022). Combining latent profile analysis

and programming traces to understand novices’ differences in debugging, Education and

Information Technologies, 28(4), pp.4673–4701. doi: 10.1007/s10639-022-11343-7.

Received April 27, 2025, revised July 1, 2025, accepted July 19, 2025

https://doi.org/10.1007/s10639-022-11343-7

