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Abstract: This paper presents a theoretical framework for developing video-based debugging 

instruction using constructive-synthesizing modeling (CSM). The proposed framework formalizes 

the transformation of integrated development environment debugging logs into educational videos 

through CSM methodology, providing a systematic approach for creating visual representations of 

debugging processes. The CSM formalization enables reproducible conversion of temporal 

debugging sequences into structured educational content, with videos featuring synchronized code 

context, debugging actions, and explanatory annotations. We present a seven-phase implementation 

methodology for classroom integration, including structured video analysis, collaborative reflection, 

and expert-guided discussion phases. The framework establishes theoretical foundations for future 

empirical validation of video-based debugging instruction, addressing the critical gap between 

debugging's importance in professional practice and its treatment in educational contexts. 
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1. Introduction 

In modern programming curricula, the primary focus is on writing code, while tasks 

related to debugging are often relegated to a secondary position (Michaeli and Romeike, 

2019a; Rich et al., 2019). This creates a misconception that debugging is less crucial than 

programming. However, in real-world, these two processes are inextricably linked and 

require equal attention. 

Although debugging is a critically important component of programming, accounting 

for an estimated 40 to 60% of the time spent on programming, learning debugging 

strategies is often a skill that beginners are expected to develop on their own (Alaboudi 

and Latoza, 2023). As a result, students primarily learn debugging by working through 

their own mistakes, which can be quite frustrating. They must spend considerable time 

and effort hypothesizing the causes of errors while simultaneously tackling other 

cognitively demanding tasks, such as understanding and writing code (Ma et al., 2024). 

The purpose of this research is to develop a formal theoretical framework for 

converting debugging logs into educational videos using CSM, and to propose a classroom 
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methodology based on this visualization, establishing a foundation for future empirical 

studies on video-based debugging education. 

This paper addresses the gap between debugging importance and debugging 

instruction through a formal approach to debugging visualization. We explicitly note that 

this paper focuses on the theoretical framework. We provide the formal model for 

debugging process visualization, ensuring systematic and reproducible video generation. 

Empirical validation of educational effectiveness is beyond the current scope and 

represents important future work. 

2. Related Work 

2.1. The Educational Challenge: Debugging Instruction Gap 

Despite debugging's critical importance in professional software development, it remains 

severely underrepresented in formal computer science curricula. Recent systematic 

reviews confirm that debugging instruction is an underexplored area, with most 

educational interventions focusing on programming syntax rather than error detection and 

resolution strategies (Yang et al., 2024). The complexity of debugging as a cognitive 

process-requiring hypothesis formation, systematic testing, and analytical reasoning-

necessitates specialized pedagogical approaches distinct from traditional programming 

instruction (Jemmali et al., 2020). 

Current educational practices typically relegate debugging to incidental learning 

during programming assignments rather than explicit instruction (O'Dell, 2017). This 

approach fails to prepare students adequately, as evidenced by surveys showing that 

professional programmers receive virtually no formal debugging training, with most 

learning through self-directed workplace experience (Whalley et al., 2021). This 

educational gap creates a paradox where one of the most time-consuming aspects of 

professional development receives minimal systematic attention in academic settings. 

2.2. Evidence for Systematic Debugging Instruction and Pedagogical 

Approaches 

Empirical evidence demonstrates that debugging skills can be effectively taught through 

structured approaches. Systematic reviews of debugging interventions from 2010-2022 

reveal that well-designed programs consistently improve students' debugging accuracy, 

efficiency, and self-efficacy (Yang et al., 2024). Research has identified three critical 

cognitive processes in debugging: identification, isolation, and iteration (Hylton et al., 

2023), providing concrete frameworks for instructional design. 

Effective pedagogical approaches range from traditional hands-on programming 

(Michaeli and Romeike, 2019a) to structured error introduction methods (Kerslake, 2024). 

The scientific method has emerged as an influential framework, treating debugging as 

hypothesis-driven investigation through five sequential stages (O'Dell, 2017). Multi-

language approaches demonstrate effectiveness in developing generalizable skills 

(Wilkin, 2025), while contemporary research emphasizes combining direct instruction 

with deliberate practice (Yamamoto et al., 2016). 

However, studies reveal that novice and expert debugging strategies differ 

substantially, with beginners struggling to generate comprehensive hypotheses and 
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lacking systematic evaluation strategies (Caballero et al., 2021; Liu and Paquette, 2023; 

Ma et al., 2024). Students typically exhibit surface-level approaches, prioritizing 

immediate fixes over systematic investigation (Hylton et al., 2023). These cognitive 

differences necessitate personalized learning approaches that address varying strengths 

across different knowledge domains (Ding et al., 2024; Zhang et al., 2022). Notably, even 

experienced educators show substantial variance in diagnostic approaches to identical 

scenarios (Wachter and Michaeli, 2024). 

2.3. Technology-Enhanced Instruction and Observational Challenges 

Technological advances have expanded debugging instruction possibilities through AI-

powered environments, visualization tools, and automated testing frameworks. Large 

language models enable novel approaches like the HypoCompass system, where students 

act as teaching assistants correcting LLM-generated code (Ma et al., 2024). Program 

visualization tools provide dynamic representations of execution flow, while automated 

testing frameworks offer systematic error detection approaches (Caballero et al., 2021). 

Enhanced error messaging systems show potential for improving debugging performance 

through better feedback mechanisms (Kerslake, 2024). 

However, a fundamental challenge exists: most student debugging occurs outside 

classroom settings, limiting educators' ability to observe and support skill development. 

Students debug autonomously during homework and personal projects, creating gaps 

between instruction and independent practice (Liu and Paquette, 2023). Researchers have 

explored various approaches for capturing debugging behaviors, including IDE debugging 

logs (Shynkarenko and Zhevaho, 2020a) and think-aloud protocols, but these methods 

face scalability limitations. 

2.4. Video-Based Approaches and Theoretical Framework Requirements 

Video-based instruction represents an emerging frontier for addressing debugging 

education challenges. Research demonstrates effectiveness of video-based learning for 

conveying complex procedural knowledge in programming contexts. Video vignettes 

prove particularly valuable for teacher education, enabling repeated observation of 

debugging scenarios difficult to capture naturally (Wachter and Michaeli, 2025; Ding et 

al., 2024; Hylton et al., 2023). These approaches offer dynamic representation of expert 

debugging processes, including temporal sequences of decisions and adaptive strategies. 

The application of CSM to debugging instruction represents a novel theoretical 

contribution. While CSM has proven effective in various educational contexts for 

transforming complex processes into structured learning materials, its systematic 

application to debugging visualization remains largely unexplored. The systematic 

transformation of IDE debugging logs into educational videos through CSM methodology 

addresses reproducibility challenges that have limited the scalability and theoretical 

grounding of previous debugging instruction research. 

This convergence of video-based instruction, debugging education requirements, and 

formal modeling approaches establishes the foundation for systematic, theoretically-

grounded instructional designs. The integration addresses multiple challenges 

simultaneously: providing observable representations of expert debugging processes, 

creating reusable instructional materials extending beyond individual classroom contexts, 

and establishing systematic frameworks for debugging instruction that can be empirically 
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evaluated and continuously improved. These foundations directly motivate the need for a 

formal theoretical framework that can systematically transform debugging processes into 

effective educational visualizations. 

3. Theoretical Framework: Constructive-Synthesizing 

Modeling for Debugging Visualization 

This section presents the application of CSM to debugging visualization, establishing a 

framework for converting debugging logs into educational videos. CSM provides a formal 

methodology for representing complex processes and their transformations by linking 

elements while considering their attributes, aggregates, and relational structures. The 

fundamental principles and ontological foundations of CSM, including the generalized 

constructor framework, have been established in previous work (Skalozub et al., 2017). 

Examples of CSM applications demonstrate its versatility across various domains 

(Shynkarenko and Zhevaho, 2020a; Shynkarenko and Zhevaho, 2021). 

CSM enables formal description and transformation of complex process data. In our 

system, IDE-generated logs are modeled as structured data and transformed into visual 

educational content. The CSM approach is suitable because: 

 it allows hierarchical decomposition of debugging events; 

 it facilitates rule-based transformations and interpretations; 

 it supports reproducibility and systematization in educational content generation. 

We detail the formalization of this process through constructors, terminals, and 

interpretation rules. Each debugging session is treated as a sequence of events, where 

frames are generated per event and assembled chronologically into a video. 

Previous applications of CSM to debugging contexts formalized the data collection 

process, resulting in a constructor for generating debugging action logs and a Microsoft 

Visual Studio IDE extension that records debugging activities in structured event logs 

(Shynkarenko and Zhevaho, 2020b). 

The current research extends this foundation by formalizing the conversion of textual 

debugging logs into video-based visualizations. This transformation addresses the 

observational challenges identified in debugging education while providing a theoretically 

grounded approach to creating scalable educational content that captures the temporal, 

contextual, and strategic dimensions of expert debugging practices. 

The first stage of this construction involves specializing the generalized constructor 

 C = S↦ CV = VVV 

where C – generalized constructor; M – carrier, which includes terminals and non-

terminals, as well as a set of rules;  – a set of operations and relationships for elements 

M;  – information support for construction; S↦ – specialization operation of the 

constructor. 

Terminals and their attributes: 

 sessionslog – debugging event log, which contains an array of debugging sessions; 

 index,sizesessions – array of sessions with its attributes: index – the index of the session 
in the array, size – the size of the array; 
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 events,start,endsession – a debugging session, which consists of an events array and the 
timestamps for the start and end of the debugging process; 

 index,sizeevents – array of events with its attributes: index – the index of the event in 
the array, size – the size of the array; 

 name,context, timestampevent – an event in the development environment during debugging 
with its attributes: name – the name of the event, context – the context, a dynamic 
structure object containing information about the event's surroundings, such as the 
file the user is working with, the line number where the event occurred, etc. (the 
structure of the object may vary for different events), timestamp – timestamp when 
the event occurred; 

 framesvideo – a generated video file consisting of a frames sequence; 

 index,sizeframes – array of frames with its attributes: index – the index of the frame in 
the array, size – the size of the array; 

 info,code,commentframe – a generated frame for the video, based on an event from the 
IDE with its attributes: info – the upper section of the frame, containing information 
about the debugging (number of sessions, total session time), code – the main 
section of the frame, which includes code and visual elements of the event, comment 
– the side section, containing a natural language explanation of the event. 

Operations on attributes: 

 ○(t) – operation of setting the attribute values of terminal t by an external executor; 

 ≈(a,i,t) – operation of retrieving the element at index i from array a and setting its 
value in terminal t; 

 ⋮(a,i,f,b) – operation of generating frame f based on the element retrieved at index i 
from array a and adding it to array b at index i; 

 ≡(lo,ro,t) – operation of comparing the value lo with the value ro, and setting 1 if 
they are equal, or 0 otherwise, in t; 

 ≠(lo,ro,t) – operation of comparing the value lo with the value ro, and setting 1 if 
they are not equal, or 0 otherwise, in t; 

 ±(video) – operation of creating a video based on the frames from the given terminal 
video. 

Let's perform the interpretation 

CV = VVVCA = AVAAAI↦ CVAI = VAIVAIVAI

where VA – set of algorithms for forming in the basic algorithmic structure (BAS); I↦ 

– interpretation operation. 

CVAI in addition to the algorithms for executing operations from the BAS, it includes 

the following algorithms: 𝐴1|𝑡
𝑡  , 𝐴2|  ,𝑎,𝑖,𝑡

𝑡   𝐴3|  ,𝑎,𝑖,𝑓,𝑏
𝑏  𝐴4|  ,𝑙𝑜,𝑟𝑜,𝑡

𝑡  𝐴5|  ,𝑙𝑜,𝑟𝑜,𝑡
𝑡  𝐴6|  ,𝑣𝑖𝑑𝑒𝑜

𝑣𝑖𝑑𝑒𝑜  which 

perform the corresponding operations: ○(t), ≈(a,i,t), ⋮(a,i,f,b), ≡(lo,ro,t), ≠(lo,ro,t), 

±(video). 

Let's perform the concretization 

 CVAI ↦K CVAIK (LOG) = KKK 
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where LOG – event log provided for conversion into a video; ↦K – concretization 

operation. 

Construction initial condition: σ – the non-terminal from which the derivation 

begins, with initial values i = 1, j = 1, and also t0 = 1, t1 = 0. If ti = 0, the corresponding 

rule is not executed. 

Construction completion condition: all sessions and events from the external 

executor's event log are processed and a video is generated. 

Sequential execution of rules will be denoted as ∏ 𝑠𝑖
𝑛
𝑖=1 . 

The first rule performs the initial processing of the provided event log 

 𝑠1 =< 𝜎 → log• ∏ 𝛼𝑖
𝑠𝑖𝑧𝑒↲𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠↲𝑙𝑜𝑔
𝑖=1 >, 

 𝑔1 =<○ (log) >, 

where  𝑏 ↲ 𝑎 – identifies attribute b of object a. 

Each log consists of debugging sessions, and each session consists of events series. An 

event refers to actions such as setting a breakpoint, step-by-step execution of code, 

viewing the call stack, and other standard debugging tools in the IDE, each accompanied 

by relevant contextual information, such as the file name and line number. 

The second rule involves processing the sessions 

 𝑠2 =< 𝛼𝑖 → session• ∏ 𝛽𝑗
𝑠𝑖𝑧𝑒↲𝑒𝑣𝑒𝑛𝑡𝑠↲𝑠𝑒𝑠𝑠𝑖𝑜𝑛
𝑗=1 >,  

 𝑔2 =<≈ (𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ↲ log, i, session) >. 

Each event has an action and context. The action determines the visual effect and 

comment to be applied in the frame. The context specifies the particular file and line 

number to be displayed in the main area of the frame. 

The third rule involves creating a frame for each event 

 𝑠3 =< 𝛽𝑗 →𝑡0
frame• 𝛽𝑗 >,  

𝑔3 =<⋮ (𝑒𝑣𝑒𝑛𝑡𝑠 ↲ session, j, frame, frames ↲ video), 
    ≡ (𝑗, 𝑠𝑖𝑧𝑒 ↲ 𝑒𝑣𝑒𝑛𝑡𝑠 ↲ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑡1),                

              ≠ (𝑗, 𝑠𝑖𝑧𝑒 ↲ 𝑒𝑣𝑒𝑛𝑡𝑠 ↲ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑡0) >. 

The video consists of individual frames, where each frame visually represents a 

separate event or state transition in the debugging process (Figure 1). 
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Figure 1. Example frame from the debugging process visualization 

Each frame is composed of three areas (Shynkarenko and Zhevaho, 2024): 

 upper area (process information): displays aggregated data from session logs, such 
as the number of sessions and their duration. This area remains unchanged for all 
frames of the current session; 

 main area (program text): the context (file name and line number) of each event is 
used to display the corresponding section of the code. This area is dynamically 
updated as the video progresses through the events; 

 side area (event comments): each event is marked with a timestamp and 
accompanied by a brief explanation, such as "Breakpoint set at line 42." If there is 
a pause of more than 5 seconds between events, a comment indicating the duration 
of inactivity is inserted. 

Actions like setting or hitting a breakpoint trigger a visual cue, highlighting the 

corresponding line in the main area. 

The fourth rule involves the final assembly of frames into a single video file after all 

events have been processed 

 𝑠4 =< 𝛽𝑗 →𝑡1
𝑣𝑖𝑑𝑒𝑜 >,  

 𝑔4 =< ±(video) >. 

Frames are arranged in chronological order based on their timestamps, preserving the 

sequence of events that occurred during the debugging session. Periods of inactivity are 

marked with comments in the appropriate area, and the video transitions to the next active 

frame to ensure that the video is as informative as possible, without an excessive number 

of static frames where nothing happens. 
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4. Proposed Teaching Methodology 

This section outlines an approach to teaching debugging programs based on process 

visualization videos (Shynkarenko and Zhevaho, 2024). The implementation of the CSM-

based debugging visualization follows a structured seven-phase approach designed to 

maximize learning effectiveness while providing measurable outcomes for future 

empirical validation. The process consists of the following key steps (Figure 2): 

4.1. Task assignment 
 

Students receive programming assignments or debugging challenges carefully selected to 

demonstrate specific debugging strategies or common error patterns. The task selection 

process emphasizes bugs that represent typical debugging scenarios encountered in 

professional practice, ensuring that students engage with realistic problem-solving 

contexts. Clear task objectives and expected outcomes are provided to establish learning 

goals, while bug complexity is calibrated to match students' current skill levels to maintain 

appropriate challenge without overwhelming novice debuggers. The assignments 

incorporate both syntax and logic errors to provide comprehensive practice across 

different categories of debugging challenges, enabling students to develop versatile error 

detection and resolution capabilities. 

4.2. Action logging 
 

Students work on the debugging task while specialized IDE extensions automatically 

capture all debugging actions during their work sessions (Shynkarenko and Zhevaho, 

2020b). The logging system records timestamps, action types, code contexts, and decision 

points without interfering with the debugging process. Successful implementation requires 

ensuring that debugging extensions are properly installed and activated across all student 

workstations prior to session commencement. Instructors must verify that log collection 

mechanisms are functioning correctly before students begin their debugging work and 

establish appropriate time limits for debugging sessions to maintain focused learning 

experiences. Students are informed about data collection procedures and privacy measures 

to maintain transparency and comply with educational data protection requirements, while 

the non-intrusive nature of the logging system allows students to engage naturally with 

debugging tasks without awareness of the monitoring process affecting their problem-

solving approaches. 

4.3. Video creation 
 

Based on the CSM framework, the constructor processes collected logs to generate 

standardized educational videos from representative debugging sessions selected for their 

pedagogical value (Shynkarenko and Zhevaho, 2024). Each video maintains consistent 

visual formatting with session metadata displayed in the upper area, code context in the 

main viewing area, and action annotations positioned in the side area, incorporating 

synchronized code visualization, timing information, and strategically placed highlights. 

The automated generation process allows for configuration of video parameters including 

playback speed, annotation density, and visual emphasis to optimize educational 

effectiveness. Generated videos undergo quality review to ensure educational value and 
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clarity before classroom implementation, with supplementary materials prepared as 

needed to support specific learning objectives and provide additional context for complex 

debugging scenarios. 

4.4. Video presentation 
 

The instructional video is shown in class, serving as a foundation for discussion and 

analysis. Students view generated videos in classroom settings through structured 

observation protocols that begin with introducing the debugging scenario and learning 

objectives to establish context. Video playback incorporates strategic pauses at critical 

junctures to facilitate discussion and allow students to process complex debugging 

decisions. During viewing, students are encouraged to take detailed notes on debugging 

strategies, patterns, and decision points, while initial observation focuses on identifying 

debugging approaches without instructor commentary to promote independent analysis. 

The instructor highlights key decision points and debugging techniques during subsequent 

discussion phases, and multiple videos can be compared to demonstrate different 

debugging approaches to the same or similar problems, providing students with 

comprehensive exposure to various problem-solving methodologies and enabling 

comparative analysis of debugging effectiveness. 

4.5. Initial analysis 
 

Students provide initial observations and analysis of the debugging process shown in the 

video, developing critical thinking and analytical skills through structured examination of 

debugging strategies. Initial analysis involves students identifying and commenting on key 

actions visible in the video, such as incorrect breakpoints or inefficient navigation, while 

focusing on strategy identification to determine what debugging approaches were 

employed. Students examine decision points to understand why certain actions were taken, 

evaluate the effectiveness of strategies to identify which techniques worked well, and 

consider alternatives to explore what could have been done differently. This phase 

emphasizes hypothesis generation and evaluation as students observe debugging 

strategies, identify effective techniques, and propose potential improvements. The teacher 

assesses students' understanding through their analytical commentary and outlines areas 

for improvement, fostering metacognitive awareness as students develop deeper insights 

into debugging methodology and decision-making processes. 

4.6. Feedback collection 
 

Structured collection of observations from both students and instructor using standardized 

forms ensures comprehensive documentation of the debugging process analysis. Students 

document their observations using standardized forms that capture technical observations 

about specific debugging techniques used, process analysis of the overall debugging 

workflow, learning insights regarding new strategies discovered, and improvement 

suggestions for better approaches identified. These forms systematically cover identified 

debugging strategies, decision rationale, alternative approaches, and error patterns, 

creating a foundation for comparative analysis across different debugging sessions. 

Teacher assessments complement student perspectives by providing expert evaluation of 

strategy effectiveness and learning outcomes, while the structured feedback format 
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enables systematic data collection that supports both immediate learning objectives and 

longer-term curriculum refinement based on observed student comprehension patterns and 

skill development trajectories. 

4.7. Discussion 
 

Facilitated comprehensive discussion consolidates learning and develops debugging best 

practices as students and teacher exchange opinions and analyze the debugging process. 

This phase enables identification of misconceptions and reinforcement of effective 

practices through comparative analysis of different debugging strategies observed during 

the video session. Students work collaboratively to identify common debugging patterns 

and anti-patterns, developing a shared understanding of what constitutes effective versus 

problematic debugging approaches. The discussion synthesizes observations and insights 

to help students internalize effective debugging strategies while developing debugging 

heuristics for future application in their own programming work. Through guided 

conversation, students develop metacognitive awareness of their debugging processes and 

create personal debugging strategy guides that capture the most valuable techniques and 

decision-making frameworks learned during the session, establishing individualized 

references that can support their ongoing debugging skill development and promote 

transfer of learning to new programming contexts. 

 

 
Figure 2. Steps of teaching debugging methodology 

After the first discussion, the video is shown again, giving students the opportunity to 

review their conclusions and further analyze the programmer's actions. The final 
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discussion helps to consolidate skills and deepen understanding of the debugging process. 

This iterative approach allows observing how students' understanding of the debugging 

process has changed after the discussion and exchange of opinions. 

This methodology enables students to improve their debugging skills while developing 

critical thinking. The iterative approach, realized through repeated viewing and analysis, 

allows for a deeper understanding of the debugging process. Comparative analysis of 

students' opinions with the teacher's expert assessment helps identify gaps in 

understanding and adjust the learning process accordingly. Additionally, by recording all 

student activities in logs, which are then used to generate videos, this approach also helps 

prevent cheating, as it becomes clear when tasks were not completed independently. 

This approach addresses three critical limitations in current debugging education: (1) 

lack of process observability, (2) insufficient authentic examples, and (3) limited 

opportunities for comparative analysis. The video-based method enables students to 

observe debugging processes that would otherwise remain invisible during independent 

work. 

5. Discussion 

5.1. Theoretical Contributions 

This research establishes three primary theoretical contributions to debugging education. 

First, it provides the formal framework for debugging process visualization using CSM 

methodology, enabling systematic analysis and comparison of debugging strategies across 

different educational contexts. Second, it defines systematic transformation rules for 

converting temporal debugging events into structured educational content, creating 

reproducible pathways from raw debugging data to pedagogical materials. Third, it 

establishes a theoretical foundation for video-based debugging instruction that can guide 

future empirical research and curriculum development. 

The CSM-based approach addresses a fundamental challenge in debugging education: 

converting invisible cognitive processes into observable educational content. By 

formalizing the transformation of debugging logs into educational videos, the framework 

enhances process visibility while maintaining rigor and practical applicability. The 

automated video generation methodology enables systematic debugging education 

without requiring extensive instructor expertise in video production, offering a scalable 

solution to the widespread gap between debugging's professional importance and its 

educational treatment. 

The formal framework structure enables systematic replication and adaptation across 

different educational environments and debugging platforms. This standardization 

potential represents a significant advancement over ad hoc approaches that have limited 

transferability and theoretical grounding. The formal foundation provided by CSM 

ensures that the video generation process can be systematically evaluated, refined, and 

extended to accommodate diverse educational contexts and student populations. 

5.2. Implementation Considerations 

While the theoretical framework demonstrates significant potential, several practical 

considerations must be addressed for successful implementation. Scalability represents a 

primary concern, as large-scale deployment requires efficient algorithms for log 
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processing and video generation. The computational complexity increases with session 

length and event frequency, necessitating optimization strategies to ensure practical 

deployment in resource-constrained educational environments. 

The framework's current focus on IDE-based debugging activities may limit universal 

applicability across diverse development environments. Adaptation to command-line 

debugging, web development platforms, or mobile development environments may 

require framework extensions to accommodate different debugging tools and practices. 

However, the formal CSM foundation provides a systematic basis for such extensions, 

suggesting that adaptability challenges represent implementation rather than fundamental 

theoretical limitations. 

Privacy and ethical considerations require careful attention throughout 

implementation. Comprehensive activity logging raises legitimate privacy concerns that 

must be addressed through transparent data collection policies, secure storage practices, 

and explicit user consent protocols. Students must be clearly informed about what data is 

collected, how it will be used, who can access it, and how long it will be retained. Clear 

opt-out mechanisms should be provided for non-educational activities, ensuring that 

personal projects remain private while maintaining the educational benefits of the system. 

5.3. Framework Validation 

The theoretical nature of this contribution necessitates comprehensive empirical validation 

to demonstrate practical effectiveness. Future validation should employ mixed-methods 

approaches combining quantitative performance measures with qualitative learning 

outcome assessments. Quantitative measures should include pre/post debugging task 

completion times, error identification accuracy rates, debugging strategy sophistication 

scores, and long-term retention assessments to establish measurable learning outcomes. 

Qualitative validation requires student confidence self-reports, debugging strategy 

articulation quality assessments, instructor observation protocols, and focus group 

feedback on video effectiveness. Think-aloud protocols during video viewing can provide 

insights into cognitive processing, while longitudinal tracking of debugging competency 

development can assess sustained learning impacts. 

Controlled experiments comparing video-based instruction with traditional debugging 

education approaches will establish relative effectiveness across diverse student 

populations. These studies should include randomized controlled trials with pre/post 

assessments and qualitative investigations of student learning experiences to provide 

comprehensive evaluation of the framework's educational value. 

5.4. Future Research Directions 

Several critical research directions emerge from this theoretical foundation. Empirical 

validation studies represent the immediate priority, requiring controlled experiments to 

demonstrate the framework's educational effectiveness compared to traditional 

approaches. Cognitive load assessment investigations will determine how video 

complexity and presentation timing affect learning outcomes for students with varying 

programming experience levels. 

Cross-platform adaptation research can extend the framework to support multiple IDEs 

and programming languages, enhancing universal applicability and addressing current 

limitations in platform coverage. Long-term retention studies will provide longitudinal 
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assessment of debugging skill retention following video-based instruction, establishing 

the durability of learning outcomes. 

The development of adaptive video generation capabilities represents an advanced 

research direction, enabling personalized video content based on individual learning 

patterns and debugging skill levels. Such adaptations could optimize learning efficiency 

while accommodating diverse student needs and learning preferences. 

Beyond debugging education, the formal CSM approach provides a foundation for 

process visualization across multiple software engineering domains. Future research could 

extend the framework to support code review, testing, and refactoring education, 

establishing a comprehensive approach to software engineering process visualization that 

addresses broader educational challenges in computer science curriculum. 

6. Conclusion 

This paper presents a comprehensive theoretical framework for debugging education 

through video visualization, formalized using CSM methodology. The research addresses 

a critical gap in computer science education by providing the approach to transforming 

debugging processes into structured educational content. While empirical validation 

remains essential for demonstrating practical effectiveness, this work establishes a 

theoretical foundation that enables rigorous conceptualization of debugging visualization 

and provides a blueprint for future implementation and testing. 

The primary contribution lies in the formal specification of systematic transformation 

rules for converting IDE debugging logs into educational videos with synchronized 

content across three complementary information areas. This CSM-based formalization 

ensures consistent, reproducible generation of educational materials from authentic 

debugging sessions. The framework defines terminal specifications and operational 

procedures that enable educators to systematically create video-based instruction without 

requiring extensive technical expertise in video production. 

The seven-phase teaching methodology provides a structured implementation pathway 

that bridges theoretical framework with classroom practice. This methodology offers 

educators concrete guidance for integrating video-based debugging instruction while 

maintaining the authenticity and complexity of real-world debugging scenarios. 

Future research will focus on empirical validation through controlled classroom 

studies and comparative effectiveness assessments to demonstrate the framework's 

practical value. The formal CSM foundation provides a robust basis for framework 

extension to additional software engineering processes, suggesting broader applications in 

computer science education. The theoretical groundwork established here enables 

systematic investigation of video-based debugging instruction effectiveness, supporting 

the development of evidence-based debugging education practices that can ultimately 

improve student preparation for professional software development challenges. 
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