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Abstract. To evaluate renewable energy alternatives under uncertainty, this study develops a hy-
brid decision support model combining fuzzy MCDM techniques with machine learning based
prediction and XAI tools to enhance transparency in energy planning. Six renewable sources
were assessed using Fuzzy TOPSIS and Fuzzy ELECTRE across six sustainability-related crite-
ria: cost, efficiency, environmental impact, ease of implementation, technological innovation, and
social acceptance. Entropy weighting was used to determine criterion importance. Fuzzy TOPSIS
ranked hydropower highest (closeness coefficient = 0.7142) and wave energy lowest (0.3290).
Fuzzy ELECTRE clarified dominance relationships among the options. For predictive analysis,
machine learning models XGBoost, CatBoost, and Gradient Boosting were trained to forecast
MCDM scores. XGBoost outperformed others (R² = 0.9999, MAE = 0.0003). Explainable AI
tools (SHAP and DALEX) revealed environmental impact and efficiency as the most influential
factors. This integrated framework supports transparent and data-driven renewable energy plan-
ning and can inform sustainable policy decisions.
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1 INTRODUCTION

The increasing global urgency to transition from fossil fuels to renewable energy sources
has amplified the need for transparent and data-driven decision-making mechanisms in
energy planning. Although renewable energy alternatives such as solar, wind, biomass,
geothermal, hydroelectric, and wave energy offer substantial environmental and eco-
nomic benefits, their evaluation involves conflicting criteria and uncertain data (Pandey
et al., 2021). Therefore, a structured multi-criteria decision-making (MCDM) approach
becomes critical to facilitate objective selection processes under these complex circum-
stances (Shatnawi et al., 2021).

In recent years, fuzzy MCDM techniques have been widely adopted to handle im-
precision and subjectivity in evaluating renewable energy options (Mardani et al., 2015).
Among these methods, Fuzzy TOPSIS and Fuzzy ELECTRE have attracted significant
attention due to their mathematical robustness and ability to process vague linguistic
evaluations (Santi et al., 2015; Ali et al., 2024). While Fuzzy TOPSIS determines the
relative closeness of each alternative to the ideal solution, Fuzzy ELECTRE analyses
dominance relationships among alternatives, particularly under uncertain or incomplete
information conditions. Despite their growing application, current research often fo-
cuses solely on ranking performance, overlooking the interpretability and transparency
of the decision-making outcomes.

To address this issue, explainable artificial intelligence (XAI) techniques namely
SHAP (Shapley Additive Explanations) and DALEX (Descriptive Machine Learning
Explanations) have been incorporated into this study. These tools are employed to an-
alyze and visualize the influence of decision criteria on the final scores produced by
machine learning models trained to replicate fuzzy MCDM outputs. In doing so, a trans-
parent and interpretable framework is introduced, enabling stakeholders to comprehend
the underlying rationale behind the ranking of energy sources.

The central research question of this study is as follows:
RQ: Can the ranking results produced by fuzzy MCDM methods be effectively

predicted by machine learning models and explained through SHAP and DALEX to
reveal the most influential criteria in renewable energy source evaluation?

Accordingly, the primary objective of this study is to develop an integrated method-
ological framework that combines fuzzy MCDM techniques with explainable machine
learning models to evaluate renewable energy alternatives. Specifically, Fuzzy TOP-
SIS and Fuzzy ELECTRE are applied to rank energy resources according to entropy-
weighted criteria. These scores are then predicted by supervised machine learning mod-
els, and the contribution of each criterion to the prediction is examined using SHAP and
DALEX, increasing the transparency of these prediction models.

Accordingly, the research objectives are as follows:

– To replicate the ranking results of fuzzy MCDM techniques using machine learn-
ing models and explain the underlying decision logic using SHAP and DALEX to
increase interpretability.

– To propose an integrated methodological framework that reconciles predictive ac-
curacy with interpretability by jointly generating and explaining energy resource
rankings.
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– To provide a transparent, auditable, and stakeholder-focused decision support sys-
tem for sustainable energy planning.

While multi-criteria decision-making (MCDM) techniques have been widely used
to address the complexity of energy planning under uncertainty, prior studies have often
lacked interpretability and predictive validation. For instance, a comprehensive review
highlights the increasing reliance on fuzzy and stochastic MCDM methods in civil and
energy-related domains (Antucheviciene et al., 2015; Lee and Chang, 2018). However,
these studies also acknowledge key methodological gaps, including the limited ability
to provide transparent reasoning behind decisions and the absence of integrated frame-
works combining uncertainty modeling with decision traceability. Similarly, Lee and
Chang’s (2018) comparative analysis, which evaluates renewable energy alternatives for
Taiwan using traditional MCDM methods (TOPSIS, ELECTRE, VIKOR, and WSM),
offers valuable insights into ranking accuracy and weight sensitivity. Nevertheless, these
methods primarily function as black-box mechanisms, offering little visibility into the
rationale behind each ranking outcome.

In contrast, the current study advances the literature by proposing an integrated
and interpretable decision-support framework that combines entropy-weighted fuzzy
MCDM techniques (Fuzzy TOPSIS and Fuzzy ELECTRE) with predictive machine
learning models and post-hoc explanation tools such as SHAP and DALEX. This hy-
brid architecture not only captures the inherent uncertainty in energy decision-making
through interval type-2 fuzzy modeling, but also enhances transparency by revealing
the influence of each decision criterion on model outputs. By bridging the methodolog-
ical gap between ranking accuracy and decision interpretability, the proposed approach
offers a novel, auditable, and context-aware solution for sustainable energy source eval-
uation.

The main contributions of this study are as follows:

– A comparative evaluation of Fuzzy TOPSIS and Fuzzy ELECTRE is conducted
to analyze their performance across various data structures in renewable energy
ranking.

– SHAP and DALEX are employed to interpret the outputs of machine learning
models trained on MCDM scores, thereby providing a transparent and explainable
decision-support mechanism for energy stakeholders.

– This study contributes to the limited literature on the integration of fuzzy MCDM
methods with machine learning and XAI in the energy sector, offering a novel
framework for transparent energy policy formulation.

– A unified analytical pipeline is proposed, combining prediction and explanation
of MCDM outputs within a single decision framework, thus establishing a new
methodological contribution to the literature.

The remainder of this paper is structured as follows: Section 2 reviews the relevant
literature on fuzzy MCDM and explainable AI in energy evaluation. Section 3 presents
the methodological framework and dataset. Section 4 discusses the empirical findings
and interpretation results. Finally, Section 5 concludes the study with key insights, con-
tributions to the literature, and recommendations for future research directions.
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2 Related Work

The increasing energy demand and the global transition toward sustainability have in-
tensified research on the comparative evaluation of renewable energy alternatives using
fuzzy multi-criteria decision-making (MCDM) methods. Among these, Fuzzy TOP-
SIS and Fuzzy ELECTRE are two of the most widely adopted techniques due to their
robustness in handling ambiguity and multi-dimensional criteria. However, recent lit-
erature highlights the need to move beyond method-centric classifications and instead
examine how different methods perform under varying data structures, criteria set, and
contextual priorities (Pramanik et al., 2021).

2.1 Studies Using Fuzzy TOPSIS and ELECTRE

Numerous reviews have documented the growing application of fuzzy MCDM meth-
ods across diverse sectors including energy, transportation, and environmental plan-
ning (Mardani et al., 2017). These methods have also been employed in transportation,
waste management, and water resource planning. However, the complexity of renew-
able energy systems—where economic, social, environmental, and policy dimensions
interact—makes comparative evaluation particularly challenging, thus increasing the
relevance of structured decision models.

Studies using Fuzzy TOPSIS and ELECTRE for renewable energy evaluation gener-
ally focus on ranking energy alternatives based on economic, environmental, and tech-
nological criteria. While Fuzzy TOPSIS is frequently applied to structured numerical
datasets and provides sensitivity to weight changes, Fuzzy ELECTRE is often preferred
in scenarios involving qualitative judgments and uncertainty (Chu and Nghiem, 2023;
Niu et al., 2020). A key difference lies in their mathematical foundations: TOPSIS is
distance based, while ELECTRE is dominance-based. This leads to variations in rank-
ing outcomes, especially when dealing with heterogeneous data or incomplete inputs.
Most studies apply these methods independently, with few offering head-to-head com-
parisons using the same dataset.

For instance, Mousavi-Nasab and Sotoudeh-Anvari (2017) proposed an integrated
fuzzy MCDM approach combining fuzzy DEMATEL, fuzzy grey relational analysis,
and fuzzy linear programming to solve the sustainable supplier selection problem un-
der imprecise conditions. Although not directly focused on energy, their method demon-
strates the flexibility of fuzzy models in managing structured decision problems with
quantifiable sustainability criteria. Karayel and Saraoğlu (2021) conducted a compara-
tive analysis of fuzzy TOPSIS and ELECTRE for selecting renewable energy sources in
Turkey, showing that each method responds differently to varying uncertainty levels and
data structures. Hernández et al. (2020) utilized fuzzy TOPSIS to assess energy alter-
natives in Turkey, emphasizing social acceptance and innovation using semi-structured
surveys. Molnar (2022) contributed to the broader understanding of model transparency
by outlining interpretable machine learning techniques such as SHAP and LIME, which
complement MCDM approaches when combined with predictive models. Alsaigh et al.
(2022), in turn, reviewed interpretable machine learning applications in energy systems
and discussed the challenges of making black-box models more transparent, particu-
larly in building energy management contexts (Barredo Arrieta et al., 2020).
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These comparative insights reveal that while Fuzzy TOPSIS excels in numerical,
well-structured environments, Fuzzy ELECTRE offers advantages under uncertain and
mixed-input conditions. Yet, the lack of direct comparative studies using a unified
dataset limits methodological benchmarking. This study addresses that gap by applying
both methods to the same decision matrix with entropy-based weights.

2.2 Studies Using SHAP and DALEX in Energy Systems

On the other hand, studies employing SHAP and DALEX in the energy domain pre-
dominantly focus on interpretability of machine learning models. These works typically
involve structured time series or sensor-based datasets, often applying ensemble mod-
els such as XGBoost or Random Forest. SHAP is commonly used for global and local
feature importance, while DALEX provides additional tools for model auditing and vi-
sualization. Additionally, the ability of SHAP and DALEX to visualize and quantify
decision pathways adds a critical layer of interpretability that is often missing in clas-
sical MCDM frameworks. However, these methods are generally disconnected from
MCDM logic and have not been applied to explain fuzzy decision outputs, highlighting
a methodological gap in existing literature (Yusuf et al., 2021).

For example, Zhou et al. (2023) used SHAP to identify key meteorological variables
in photovoltaic forecasting models. Rafique and Khan (2024) applied DALEX in wind
farm site selection using ensemble learning, enhancing transparency. Kumar and Singh
(2024) combined SHAP with a fuzzy-based load balancing model in smart grids to
improve control-system trust. These efforts demonstrate the growing interest in XAI
tools in energy-related decision contexts but still lack integration with fuzzy MCDM
frameworks.

2.3 SHAP and DALEX for Explaining MCDM Outcomes

While prior studies have explored SHAP and DALEX for model interpretability, their
application to post-hoc explanation of fuzzy MCDM results such as closeness coeffi-
cients (TOPSIS) or dominance scores (ELECTRE) has been rarely investigated (Jong
and Ahmed, 2024). In this context, SHAP and DALEX are not merely used for explain-
ing machine learning outputs, but rather to quantify how much each original criterion
(e.g., cost, efficiency, environmental impact) contributes to the final scores produced
by Fuzzy TOPSIS and ELECTRE. This allows for a transparent breakdown of MCDM
outcomes, making the decision process both explainable and auditable.

In this study, MCDM scores are modeled using XGBoost, and SHAP/DALEX are
applied to interpret how the input criteria influence these scores. This novel integration
provides both interpretability and validation, supporting decision-makers in understand-
ing not just what the ranking is, but why it was formed. This responds to growing calls
in the literature to enhance explainability in energy-related AI-supported decisions.

2.4 Research Contribution

This study integrates SHAP and DALEX with fuzzy MCDM to enhance transparency
in evaluating renewable energy alternatives. While prior research has used XAI in en-
ergy contexts, their combined use with fuzzy decision-making remains underexplored.
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By quantifying criterion influence, the proposed framework offers a novel, explainable,
and auditable approach for renewable energy planning and future decision-critical ap-
plications.

3 PROPOSED COMPUTATIONAL FRAMEWORK

To address the complexity and uncertainty inherent in evaluating renewable energy al-
ternatives, this study adopts a structured computational framework. The approach com-
bines fuzzy multi-criteria decision-making (MCDM) techniques with machine learning
(ML) and explainable artificial intelligence (XAI) methods to ensure both accuracy and
transparency. Initially, Fuzzy TOPSIS and Fuzzy ELECTRE were applied to rank alter-
natives based on entropy-weighted evaluation criteria.

These MCDM techniques were selected for their capacity to handle imprecise and
linguistic information. Subsequently, supervised ML models were trained to predict the
MCDM scores, and model interpretability was enhanced using SHAP and DALEX. A
visual overview of the methodological flow is presented in Figure 1.

Fig. 1: Workflow of the proposed fuzzy MCDM–ML–XAI integration

3.1 Research Flow and Dataset

Linguistic evaluations of renewable energy alternatives based on six sustainability-
related criteria are presented in Table 1. To ensure full transparency and traceability,
their application to each alternative is explained in detail in the Interval Type-2 Fuzzy
Decision Matrix (Table 2).These qualitative evaluations are derived from a synthesis of
peer reviewed articles, technical reports, and official data sources. This specially con-
structed dataset evaluates six renewable energy alternatives solar, wind, hydro, geother-
mal, biomass, and wave energy across six decision criteria using linguistic variables.
Each criterion is selected to balance the four pillars of sustainable development: envi-
ronmental, technical, economic, and social factors (Shao et al., 2020). The relevance of
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these criteria has been validated by prior studies and global frameworks such as the UN
Sustainable Development Goals and IEA strategic energy reports.

Fig. 2: Membership functions of linguistic variables represented as Triangular Fuzzy Numbers
(TFNs).

Table 1: Comparison of Renewable Energy Types by Key Criteria

Type Cost Eff. Env. Impact Ease Tech. Innov. Soc. Acc.
Solar Low Low Very Low Very High High Very High
Wind Low Medium Low High Medium High
Biomass High Medium High Medium Low Low
Geothermal Medium Low Medium Low Medium Medium
Hydroelectric Medium Very High Very High Low Very Low Very High
Wave Very High Low Low Very Low Very High Medium

To operationalize the linguistic assessments in a mathematical framework, a stan-
dardized set of linguistic terms (Very Low, Low, Medium, High, and Very High) was
used. These terms were chosen due to their wide acceptance in the fuzzy decision-
making literature and their ability to reflect imprecise human judgments (Zadeh, 1975).
Each term was then mapped to a corresponding Triangular Fuzzy Number (TFN) based
on predefined membership functions. The membership function graphs of the linguistic
variables are provided in Figure2. To better account for expert-based uncertainty and
subjectivity, TFNs were extended to Interval Type-2 Fuzzy Numbers (IT2 FNs) by in-
corporating binary evaluations from distinct expert profiles (Kahraman et al., 2015).
This improved representation supports more detailed modeling of uncertainty in sus-
tainability related evaluations. The final decision matrix containing IT2 FNs for all al-
ternatives and criteria is presented in Table2
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(a) Very Low (b) Low

(c) Medium (d) High

(e) Very High

Fig. 3: Workflow illustrations for different fuzzy MCDM–ML–XAI scenarios.



664 Özkurt et al.

Table 2: Interval Type-2 Fuzzy Decision Matrix for renewable energy alternatives.

Alternative Cost
(C1)

Efficiency
(C2)

Environmental
Impact (C3)

Ease of
Impl. (C4)

Tech.
Innov. (C5)

Soc.
Acc. (C6)

Solar (0.0, 0.1, 0.4) (0.0, 0.1, 0.4) (0.0, 0.1, 0.2) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
Wind (0.0, 0.1, 0.4) (0.3, 0.5, 0.7) (0.0, 0.1, 0.2) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0)
Biomass (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.0, 0.1, 0.4) (0.0, 0.1, 0.4)
Geothermal (0.3, 0.5, 0.7) (0.0, 0.1, 0.4) (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7)
Hydroelectric (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.0, 0.1, 0.4) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0)
Wave (0.9, 1.0, 1.0) (0.0, 0.1, 0.4) (0.0, 0.1, 0.2) (0.7, 0.9, 1.0) (0.0, 0.1, 0.2) (0.3, 0.5, 0.7)

3.2 Criteria Definition and Entropy Weights

The entropy weighting method was chosen to calculate the relative importance of the
evaluation criteria due to both the structure of the dataset and the nature of the criteria
involved.

The criteria used in the study Cost, Efficiency, Environmental Impact, Ease of Im-
plementation, Technological Innovation, and Social Acceptance represent a diverse set
of factors blending quantitative and qualitative dimensions. While some criteria, such
as Cost and Efficiency, can be approximated numerically, others, such as Ease of Imple-
mentation and Social Acceptance, are more interpretative and context sensitive. Given
this mixed structure, entropy provides a transparent and objective framework to deter-
mine which criteria have greater impact based solely on their observed variation among
alternatives (Garg et al., 2015). This approach ensures that the weighting process is
data driven and reproducible and avoids potential bias introduced by subjective weight-
ing schemes. It also supports the study’s aim of creating a fair and explainable decision
model.

To begin with, a decision matrix x̃ij was created based on fuzzy evaluations of six
renewable energy alternatives according to six sustainability related criteria. To elimi-
nate scale effects, the matrix was scaled proportionally by each entry according to their
column totals to create a normalized decision matrix x∗

ij . The entropy value for each
criterion was then calculated using Equation 1:

ej = − 1

lnm

m∑
i=1

x∗
ij lnx

∗
ij (1)

This formulation is based on the classical entropy weight method as described by
Garg et al. (2015). Following the entropy calculation, the degree of divergence for each
criterion was computed as dj = 1 − ej , indicating the criterion’s ability to differenti-
ate between alternatives. A higher dj implies greater discriminative power. Finally, the
normalized weight of the criteria was obtained using Equation 2:

wj =
dj∑n
j=1 dj

(2)

The normalized weights are computed according to the entropy-based divergence
measure, also following the method of Garg et al. (2015).
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3.3 Fuzzy TOPSIS Procedure

To rank renewable energy alternatives under uncertainty and ambiguity, this study uses
the Fuzzy TOPSIS method extended with Interval Type-2 Fuzzy Numbers (IT2 FNs) to
better handle linguistic and imprecise data (Yucesan et al., 2019). This method is partic-
ularly well-suited for sustainability assessments, where both qualitative and quantitative
factors coexist and evaluations often rely on subjective expert judgments (Ezhilarasan
and Vijayalakshmi, 2020).

The decision matrix used in this stage consists of six alternatives and six assess-
ment criteria. Each criterion value is represented as an IT2 FN reflecting linguistic as-
sessments such as Low, Medium, and High, which are initially derived from expert
informed literature sources and then converted into fuzzy numbers. This structure al-
lows for a more robust modeling of uncertainty and variability found in the assessment
of renewable energy systems.

The entropy based weights calculated in the previous step are directly integrated into
the Fuzzy TOPSIS algorithm to provide an objective weighting scheme. These weights
proportionally adjust the impact of each criterion in subsequent calculations.

In the fuzzy TOPSIS procedure, first the fuzzy decision matrix is normalized. The
normalized fuzzy values are multiplied by the entropy derived weights, preserving both
the fuzziness and the objective importance. Then, the fuzzy positive ideal solution
(FPIS) and fuzzy negative ideal solution (FNIS) are determined using Equation 3.

d∗i =

n∑
j=1

d(ṽij , ṽ
∗
j ), d−i =

n∑
j=1

d(ṽij , ṽ
−
j ) (3)

The distance of each alternative to FPIS and FNIS is calculated using a fuzzy dis-
tance metric (e.g., the vertex method or Euclidean distance adapted to IT2 FNs). Finally,
a proximity coefficient indicating the relative proximity of each alternative to the ideal
solution is calculated according to Equation 4. The alternatives are ranked according to
their decreasing proximity values.

CCi =
d−i

d∗i + d−i
(4)

This method effectively combines the linguistic flexibility of fuzzy logic with a
rigorous and explainable ranking process, enabling transparent evaluation of energy
alternatives in the presence of subjective judgments and data driven weightings.

3.4 Fuzzy ELECTRE Procedure

To complement the TOPSIS-based assessment, this study employs the Fuzzy ELEC-
TRE method, a dominance-oriented multi-criteria decision-making approach enhanced
with Interval Type-2 Fuzzy Numbers (IT2 FNs) to effectively model uncertainty and
subjectivity in expert evaluations. Unlike compensatory methods, ELECTRE captures
pairwise dominance and incomparability, making it suitable for decision problems in-
volving conflicting and imprecise criteria (Taherdoost and Madanchian, 2023).
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The decision matrix constructed from linguistic evaluations across six sustainability-
related criteria was paired with entropy-based weights to ensure objectivity in compar-
isons. While Fuzzy TOPSIS ranks alternatives by closeness to an ideal, ELECTRE
highlights cases where alternatives partially dominate, are indifferent, or are incompa-
rable, providing deeper insight into the structure of trade offs (Alper and Başdar, 2017).

Given the mixed and partially contradictory nature of the dataset, ELECTRE offers
a complementary, relation based perspective that enhances decision transparency and
supports more nuanced interpretation in renewable energy planning.

In the application of the Fuzzy ELECTRE method, the process starts with the con-
struction of a fuzzy decision matrix using interval type-2 fuzzy assessments derived
from expert-informed literature. These assessments reflect both qualitative and quantita-
tive aspects of six renewable energy alternatives across six sustainability based criteria.
In the second step, the decision matrix is normalized and combined with entropy-based
weights to form a weighted normalized matrix to ensure comparability and objectivity.

Pairwise comparisons are then made to calculate the concordance and incongruence
sets for each alternative; these sets measure the extent to which one alternative domi-
nates the other on certain criteria. These sets are then summed to form fuzzy dominance
indices for all pairs of alternatives Equation 5. A threshold value is calculated based on
the average dominance strength and is used to construct pairwise dominance matrices
Table 3, Table 4 that capture the effective concordance and incongruence relationships
Equation 6.

Ĩk,j =
∑

j∈Sk,j

w̄j (5)

Ī =
1

n(n− 1)

n∑
k=1

n∑
ℓ=1

Ĩk,ℓ (6)

Table 3: Concordance Matrix
A1 A2 A3 A4 A5 A6

A1 0.000 0.820 0.820 0.820 0.675 0.675
A2 0.355 0.000 1.000 0.655 0.510 0.855
A3 0.180 0.345 0.000 0.510 0.000 0.690
A4 0.345 0.655 1.000 0.000 0.165 0.855
A5 0.500 0.830 1.000 0.835 0.000 1.000
A6 0.325 0.490 0.660 0.315 0.310 0.000

Finally, the effective dominance matrix is obtained by combining the concordance
and incongruence matrices Equation 7. This allows the identification of dominant, in-
different, or incomparable relationships among alternatives and forms the basis for the
final ranking. This process enhances the robustness of the evaluation by capturing non-
compensatory, asymmetric, and uncertain relationships among energy options.
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Table 4: Discrepancy Matrix
A1 A2 A3 A4 A5 A6

A1 0.00000000 0.15124047 0.15124047 0.85702932 0.90744281 0.15124047
A2 0.45940980 0.00000000 0.00000000 0.70578885 0.75620234 0.53597809
A3 0.88049487 0.83157849 0.00000000 0.70578885 0.75620234 0.65083054
A4 0.88049487 0.83157849 0.00000000 0.00000000 0.53597809 0.53597809
A5 0.73374572 0.68482934 0.00000000 0.03713664 0.00000000 0.00000000
A6 1.00000000 1.00000000 0.83333333 0.83333333 1.00000000 0.00000000

fk,j =

{
1, if Ĩk,j ≥ Ī

0, otherwise
, hk,j = fk,j ⊗ gk,j (7)

3.5 Machine Learning Models and Settings

To estimate the decision scores produced by the Fuzzy TOPSIS and Fuzzy ELEC-
TRE methods, this study used a set of advanced gradient boosting algorithms known
for their accuracy and ability to model nonlinear relationships. Among these, Extreme
Gradient Boosting (XGBoost) was selected due to its proven robustness in handling
high-dimensional inputs and its built-in regularization capabilities, which help reduce
overfitting (Chen and Guestrin, 2016); this is especially valuable in datasets where de-
cision criteria interact in complex ways. LightGBM was integrated into the modeling
pipeline to further increase training speed and memory efficiency, especially in larger
input domains (Ke et al., 2017). Its leaf-wise tree growth strategy enables deeper explo-
ration of feature interactions, which aligns well with the multi criteria structure of the
dataset.

Considering that some of the evaluation features are derived from linguistic vari-
ables, the inclusion of CatBoost provided an advantage in capturing latent categori-
cal patterns without requiring extensive preprocessing. The sequential boosting mech-
anism also supports model stability, which is essential for downstream explainabil-
ity. In addition to these state of-the art techniques, classical Gradient Boosting and
AdaBoost were used to benchmark performance and examine the trade off between
simplicity and model expressiveness. Gradient Boosting offers a modular and flexible
modeling approach, while AdaBoost provides valuable interpretability, especially un-
der less complex, near-linear data conditions (Bahad and Saxena, 2020). Additionally,
Histogram-Based Gradient Boosting was considered due to its fast training capabilities
via histogram-based splitting, which is effective when working with numerical approx-
imations of fuzzy data.

All models were trained using k-fold cross-validation and their hyperparameters
(such as learning rate, maximum depth, and number of predictors) were tuned via
grid search. Performance was evaluated using standard regression metrics, including
R², Mean Absolute Error (MAE), and Mean Squared Error (MSE).
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3.6 Explainable AI Approach (SHAP, DALEX)

To enhance the transparency and interpretability of the predictive models developed in
this study, a set of explainable artificial intelligence (XAI) techniques was employed.
While gradient boosting algorithms such as XGBoost, LightGBM, and CatBoost of-
fer high predictive accuracy, they are often regarded as black-box models due to their
complex internal structures. In decision-making contexts, particularly those involving
sustainability and public policy, understanding how a model arrives at its predictions is
as important as the predictions themselves.

To address this need, two complementary XAI frameworks were utilized: SHAP
(Shapley Additive Explanations) and DALEX (Descriptive Machine Learning Expla-
nations). SHAP provides a game theoretic foundation for quantifying the contribution
of each input feature to individual predictions, allowing for local interpretability (Lund-
berg and Lee, 2017). This made it possible to identify which criteria (e.g., cost, envi-
ronmental impact, social acceptance) most strongly influenced the predicted scores of
specific renewable energy alternatives.

In parallel, DALEX was used to generate global model explanations, such as fea-
ture importance rankings and accumulated local effect (ALE) plots. These visual tools
helped reveal the overall structure and behavior of each model across the entire dataset.
Together, SHAP and DALEX offered both fine grained and holistic insights, ensuring
that the models remained transparent and aligned with the principles of fair and ac-
countable decision support (Baniecki et al., 2021).

The integration of XAI techniques not only facilitated model diagnostics and valida-
tion, but also reinforced trust in the model outputs an essential factor when supporting
high stakes decisions such as renewable energy investment planning.

4 ANALYSIS AND RESULTS

It is not enough to just rank renewable energy alternatives; the logic behind these rank-
ings must also be made visible. For this purpose, the decision scores obtained with
Fuzzy TOPSIS and ELECTRE methods were predicted with different machine learning
algorithms and interpreted in detail with explainable artificial intelligence techniques.
The findings reveal the potential to increase both the accuracy and transparency of de-
cision support systems.

4.1 Fuzzy TOPSIS Rankings

In the analysis conducted with the Fuzzy TOPSIS method, the proximity of each alter-
native to the ideal solution was expressed numerically Table 5. According to the results,
hydroelectric energy stands out as the strongest candidate with a proximity coefficient
of 0.7142. This is followed by solar (0.6676) and wind energy (0.6206), and these three
sources can be considered as priority options for sustainable energy investments.

While geothermal energy (0.5824) exhibited a medium level performance, biomass
(0.4294) and especially wave energy (0.3290) were at the end of the list with low scores.
This distribution shows that TOPSIS offers a meaningful and consistent ranking among



Fuzzy MCDM and XAI for Renewable Energy Ranking 669

Table 5: Fuzzy TOPSIS method results
Alternative Ci Value
Solar Energy 0.6676
Wind Energy 0.6206
Biomass Energy 0.4294
Geothermal Energy 0.5824
Hydroelectric Energy 0.7142
Wave Energy 0.3290

the alternatives based on the principle of proximity to the ideal solution. The results
obtained facilitate balanced decisions in energy planning from both environmental and
economic perspectives.

4.2 Fuzzy ELECTRE Dominance Scores

The Fuzzy ELECTRE method offers a different perspective on multi-criteria decision
problems by revealing not only the ranking but also the dominance relationships among
the alternatives Table 6. According to the results obtained, hydroelectric and solar en-
ergy are the most dominant options with dominance scores of 3.0. Wind and geother-
mal energy were able to leave only one alternative behind. Biomass and wave energy
remained in the weakest position, not being able to dominate any alternative.

Table 6: Dominance numbers of alternatives (ELECTRE results)
Alternative Dominance Number
Solar 3.0
Wind 1.0
Biomass 0.0
Geothermal 1.0
Hydroelectric 3.0
Wave 0.0

This ranking reflects the power of ELECTRE to reveal the prominent relationships
in multi-criteria decision environments. The method makes an important contribution
in terms of showing which options are more dominant than others, especially in cases
where there are conflicting or ambiguous criteria.

4.3 ML Prediction Performance

The accuracy of Fuzzy TOPSIS and ELECTRE scores obtained from decision mod-
els has been tested with various machine learning algorithms. In particular, tree-based
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boosting methods such as XGBoost, CatBoost, and GradientBoost have stood out with
their high success rates. These models were able to predict multi-criteria decision data
with very low error rates and their overall accuracy was at the level of R2 ≈ 1.

While CatBoost and XGBoost showed almost perfect performance in predicting
Fuzzy TOPSIS scores (R2 = 1.0000 and 0.9999, respectively), GradientBoost also
attracted attention as a strong alternative. On the other hand, LightGBM and HistGra-
dientBoost achieved relatively lower success under limited data conditions. AdaBoost
showed the lowest performance with higher error rates in both methods (see Table 7).

Table 7: Performance of machine learning models for Fuzzy TOPSIS
Model R2 MAE MSE
XGBoost 0.9999 0.0003 0.0000
LightGBM 0.9749 0.0076 0.0001
CatBoost 1.0000 0.0003 0.0000
AdaBoost 0.9165 0.0146 0.0003
GradientBoost 0.9987 0.0016 0.0000
HistGradientBoost 0.9810 0.0069 0.0001

A similar picture was observed in Fuzzy ELECTRE scores Table 8. XGBoost and
CatBoost provided high compliance despite ELECTRE’s more complex and ranking-
based structure, while AdaBoost was inadequate in modeling this structure.

Table 8: Performance of machine learning models for Fuzzy ELECTRE
Model R2 MAE MSE
XGBoost 1.0000 0.0005 0.0000
LightGBM 0.9495 0.1883 0.0631
CatBoost 0.9999 0.0100 0.0002
AdaBoost 0.9021 0.2991 0.1223
GradientBoost 0.9975 0.0432 0.0031
HistGradientBoost 0.9552 0.1825 0.0559

These findings show that gradient boosting models in particular provide generaliz-
able, consistent and reliable estimates on both proximity-based (TOPSIS) and dominance-
based (ELECTRE) multi criteria decision data. This makes them extremely suitable for
integration with explainable decision support systems.

It should be noted that some machine learning models appear as an average square
error (MSE) values, especially for XGboost and Catboost, as absolute resets in Table 5
and 6 (i.e. 0.0000). This is not an anomaly, but rather the result of extremely low error
values obtained due to the adaptation of the proximity provided by these models. When
the actual MSE values are in the range of 10−6 or smaller, they turn into four decimal
places during formatting, which causes a value shown 0.0000. Therefore, zero MSE
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values reflect high model sensitivity rather than any calculation problem or excessive
stuck.

4.4 XAI Findings on Criterion Impact

Not only making accurate predictions, but also explaining how these predictions are
formed is of great importance in decision support systems. In this study, the inter-
nal logic behind model decisions was analyzed with explainable artificial intelligence
(XAI) tools such as SHAP and DALEX, focusing on the XGBoost model that provides
the highest accuracy.

SHAP analysis of fuzzy TOPSIS scores showed that decisions were determined
mainly by environmental impact (C3) and efficiency (C2) criteria. These two criteria
provided the highest contribution in terms of both average effect size and precision in
model predictions. SHAP values revealed that criteria such as social acceptance (C6)
and cost (C1) were also moderately effective in the model, while factors such as ease of
implementation (C4) and technological innovation (C5) played a relatively lesser role
Figure 4.

Fig. 4: Feature importance based on SHAP values for the XGBoost model using Fuzzy TOPSIS

A similar order was observed in the DALEX analysis, but it was observed that
technological innovation and cost criteria in particular had a close effect on each other.
This consistency of SHAP and DALEX contributes to the understanding of the decision-
making mechanism of the model at both local and general levels Figure 5.
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Fig. 5: Feature importance based on SHAP values for the XGBoost model using Fuzzy TOPSIS

On the other hand, a significant change was observed in the analyses of Fuzzy
ELECTRE scores. In both SHAP (Figure 6) and DALEX (Figure 7) analyses, the cost
(C1) criterion stood out as the most dominant factor by far. This was followed by the
ease of implementation (C4) and social acceptance (C6) criteria. Performance-oriented
criteria such as environmental impact (C3) and efficiency (C2) remained of secondary
importance in this method. This situation is directly related to the structure of the ELEC-
TRE method, which is based on dominance relations instead of ranking.

Fig. 6: Feature importance based on SHAP values for the XGBoost model (Fuzzy ELECTRE)
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Fig. 7: Global feature importance (drop-out loss) for the XGBoost model using DALEX (Fuzzy
ELECTRE)

In addition, in the DALEX analysis, it was observed that the greatest increase in
the error rate of the model occurred when the C1 cost criterion was removed; this once
again confirmed the decisiveness of the criterion on the decision.

All these findings show that the method used in decision models can change not
only the results, but also the hierarchy of impact of the criteria. The integration of XAI
tools such as SHAP and DALEX not only increased the model performance; It has
also created a reliable basis for sustainable energy policies by making decision-making
processes more transparent and auditable.

5 DISCUSSION

Building on the results, this section discusses how renewable energy alternatives were
ranked by different decision-making models and interprets the key factors behind these
rankings using explainable artificial intelligence techniques.

Hydroelectric energy was identified as the most suitable alternative by both Fuzzy
TOPSIS (CC = 0.7142) and Fuzzy ELECTRE (dominance = 3.0), which aligns with the
findings of Iqbal et al. (2023) and Kalbar et al. (2013), emphasizing hydro’s consistent
performance across multiple criteria. Its strong performance can be attributed to high
efficiency, social acceptance, and relatively low environmental emissions per kWh. This
result contrasts with the findings of Zhang et al. (2021) and Li et al. (2022), where solar
energy was often ranked higher due to its affordability and innovation potential. The
discrepancy likely stems from the weight structure in our study particularly the em-
phasis on “Ease of Implementation” and “Environmental Impact” as well as the use of
Interval Type-2 Fuzzy modeling, which more effectively captures nuanced uncertainty.

Unexpectedly, wave energy ranked lowest in both methods (TOPSIS CC = 0.3290,
ELECTRE dominance = 0.0), despite recent studies highlighting its innovation poten-
tial (Amini and McDonald, 2020). This underperformance is likely due to undeveloped
infrastructure and high costs (LCOE up to $0.87/kWh) that outweighed its technologi-
cal appeal in the overall evaluation (Ke et al., 2017).

SHAP and DALEX analyses yielded clear and transparent insights into which cri-
teria most heavily influenced the rankings. In the Fuzzy TOPSIS + XGBoost model,
“Environmental Impact” and “Efficiency” emerged as the most influential features,
with global SHAP values of 0.024 and 0.021, respectively. This finding is consistent
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with Salcedo Sanz et al. (2019), who emphasize the importance of environmental and
performance-related attributes in evaluating innovative sources such as wave energy.

In contrast, in the Fuzzy ELECTRE + XGBoost model, “Cost” and “Ease of Imple-
mentation” dominated, with SHAP values of 0.54 and 0.32. This mirrors the findings
of Karayel and Saraoğlu (2021), where economic feasibility frequently superseded en-
vironmental priorities.

Moreover, the 2022 IEA Levelized Cost of Energy (LCOE) report indicates that
many renewable technologies particularly solar and wind have achieved cost levels
comparable to conventional fossil fuels. This supports the SHAP driven observation
that “Cost” is a critical decision factor and provides essential context for its prominence
in our ELECTRE based model (International Energy Agency, 2022).

A comparative analysis between Fuzzy TOPSIS and ELECTRE revealed both con-
sistencies and divergences. Hydroelectric energy ranked highest in both methods, indi-
cating strong multi criteria performance. However, differences emerged among the mid-
dle ranked alternatives: solar energy ranked second in TOPSIS (CC = 0.6676) and tied
with hydroelectric energy in ELECTRE (dominance = 3.0), while wind and geother-
mal sources were demoted to lower ranks (dominance = 1.0 each) in ELECTRE. This
variation can be attributed to methodological differences: TOPSIS favors proximity to
an ideal solution, whereas ELECTRE emphasizes pairwise dominance relationships,
which can lead to reordering in marginal cases. These findings highlight the sensitivity
of MCDM outputs to the internal logic of each method and emphasize the importance
of using multiple models for robust decision support.

Among the tested machine learning models, XGBoost consistently achieved supe-
rior predictive performance. Its success stems from its ability to handle high dimen-
sional, small scale datasets while using regularization to avoid overfitting. The Interval
Type-2 fuzzy structure in our dataset involved nonlinear, overlapping criteria an area
where XGBoost’s second order optimization and pruning strategies excelled. SHAP
analysis further revealed that “Environmental Impact” and “Cost” exerted asymmetric
and nonlinear effects, something that XGBoost captured more effectively than mod-
els like AdaBoost or histogram based learners. These strengths explain XGBoost’s low
prediction error and consistent interpretability across both decision frameworks (Singh
and Nagahara, 2024).

The relationship between SHAP and DALEX results further reinforces the model’s
transparency. SHAP highlighted local (instance level) contributions, while DALEX
captured global feature behavior via dropout loss. Interestingly, both approaches con-
sistently identified “Environmental Impact” and “Cost” as dominant features across
MCDM scenarios. In the Fuzzy TOPSIS model, “Environmental Impact” was empha-
sized by both SHAP and DALEX. In the ELECTRE based model, both tools highlighted
“Cost” and “Ease of Implementation.” These overlaps indicate that local feature impor-
tance identified by SHAP is statistically corroborated by DALEX, creating a robust and
trustworthy interpretability layer for decision-makers (Alsaigh et al., 2022).

The fact that “Environmental Impact” received the highest SHAP value carries
strategic implications for energy planning. It signals a growing societal and regula-
tory prioritization of sustainability. For policymakers, this suggests that low-emission
and ecologically responsible solutions should be prioritized, even if they are not the
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cheapest or most efficient options. In this context, hydroelectric and solar energy gain
strategic weight. The findings also imply that technologies with high efficiency but poor
environmental profiles may be deprioritized. Thus, environmental sustainability is no
longer a supporting metric; it has become a central decision driver in energy planning.

This study contributes to the literature by integrating fuzzy MCDM models with
explainable AI (XAI) methods (Zhao and Wang, 2023). Unlike traditional approaches
that merely produce rankings, the proposed hybrid framework also interprets the ra-
tionale behind model decisions, offering greater transparency and accountability for
high-stakes applications such as renewable energy investment (see Iqbal et al., 2022;
Kömürcü et al., 2023).

In response to the research question “Can the ranking results produced by fuzzy
MCDM methods be effectively predicted by machine learning models and explained
through SHAP and DALEX to reveal the most influential criteria in renewable energy
source evaluation?” the findings of this study provide a clear affirmative. The XG-
Boost based models achieved high predictive accuracy in replicating the fuzzy MCDM
outcomes, demonstrating their capacity to approximate complex decision structures.
Furthermore, the integration of SHAP and DALEX enabled a nuanced interpretabil-
ity layer: SHAP clarified instance-level contributions, while DALEX provided global
insights into feature behavior. Both tools consistently identified the dominant criteria
aligned with the observed rankings such as “Environmental Impact” in Fuzzy TOPSIS
and “Cost” in Fuzzy ELECTRE. This convergence not only validates the explainability
framework but also confirms that machine learning models, when paired with appropri-
ate XAI tools, can effectively support and elucidate the logic of fuzzy MCDM rankings
in the context of renewable energy evaluation.

Despite its methodological strengths, this study has certain limitations that may af-
fect the generalizability of its findings. First, the analysis is based on a predefined set
of criteria and alternatives, which may not reflect evolving regional or national pri-
orities. Second, the fuzzy MCDM and XAI models used are sensitive to input design;
changes in fuzzification method, weighting, or feature encoding could influence results.
The dataset itself was limited in temporal granularity and geographic scope. Moreover,
while XGBoost performed well in accuracy, it may fail to detect complex causal rela-
tionships that more dynamic or deep learning models could reveal. Future work could
expand the dataset, include real time data sources, and explore ensemble XAI models
to improve both internal and external validity.

6 CONCLUSION

In this study, a hybrid decision support framework was developed by integrating fuzzy
multi criteria decision making (Fuzzy TOPSIS and Fuzzy ELECTRE), entropy based
weighting, and explainable machine learning techniques to evaluate renewable energy
alternatives under uncertainty. The methodology followed a multi stage approach: lin-
guistic expert assessments were modeled using interval type-2 fuzzy numbers, criteria
weights were objectively calculated using the entropy method, and two fuzzy MCDM
techniques were applied to rank six energy alternatives. The resulting scores were then
predicted using state of the art machine learning models, with XGBoost showing the
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highest accuracy. Finally, the contribution of each criterion to the decision outcomes
was interpreted using SHAP and DALEX, enhancing both transparency and trust in the
process.

The results indicate that hydroelectric energy consistently ranked highest across
both decision models, while wave and biomass energy alternatives performed poorly.
Environmental impact, efficiency, and cost emerged as the most decisive criteria, de-
pending on the method applied. This study contributes to the literature by not only
combining robust MCDM and ML models but also incorporating explainability through
XAI, allowing stakeholders to understand why a decision is made not just what it is.
The proposed framework offers practical value for policymakers and energy planners
seeking auditable and transparent tools.

To operationalize the proposed framework in real world settings, a structured imple-
mentation roadmap is recommended. Initially, relevant datasets—such as meteorolog-
ical records, economic indicators, and regional energy consumption statistics—should
be consolidated into a centralized and secure database infrastructure. Subsequently,
rigorous data preprocessing procedures, including the imputation of missing values,
normalization of measurement scales, and correction of class imbalances, must be ap-
plied to ensure high data integrity. The hybrid Fuzzy MCDM ML model should then
be trained and validated using region-specific parameters to reflect localized priorities
and policy objectives. Once validated, the decision-support system should be deployed
through an accessible and user oriented software platform, enabling stakeholders to
simulate multiple policy scenarios and evaluate the projected impacts of alternative
strategies. Finally, a continuous monitoring and adaptive feedback mechanism should
be integrated to update model parameters based on new data, thereby ensuring sustained
relevance and adaptability under evolving environmental and policy conditions.

Future work may extend the framework with real time data streams, additional en-
ergy alternatives, stakeholder-specific preferences, time dependent criteria weights, and
more sophisticated learning architectures such as deep learning or ensemble XAI ap-
proaches to further enhance predictive performance and decision transparency.
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