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Abstract. This article presents a technology-based solution for monitoring blackcurrant vegetation 

using drones and artificial intelligence. The proposed system, implemented in a blackcurrant farm 

in Latvia, includes a three-stage process: mapping, identification and segmentation, and 

classification. Drones capture aerial images of the plantation, which are processed using tools like 

WebODM and deep learning algorithms to create accurate field maps. Neural networks are 

employed for identification, instance segmentation and classification of blackcurrant leaves into 

categories such as healthy, nutrient-deficient, or diseased. The system incorporates several AI model 

families—YOLO and ResNet —selected based on performance, accuracy, and resource efficiency. 

The methodology enables high-throughput analysis of large horticultural areas, supporting growers 

in decision-making by providing precise, visual insights into plant health. The approach 

demonstrates the viability of integrating drone technology and AI for precision agriculture, 

particularly in the specialized context of blackcurrant farming. The proposed technology, with 

appropriate adjustments, can also be applied to the vegetation monitoring of other horticultural 

crops. 
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1. Introduction 

Unmanned Aerial Vehicle (UAV), hereinafter referred to as a drone in this article, is 

defined according to the Dictionary of Military and Associated Terms (Drone, 2005) as: 

"A powered, aerial vehicle that does not carry a human operator, uses aerodynamic forces 

to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or 

recoverable, and can carry a lethal or nonlethal payload”. The term "drone," commonly 

used in mass media, was introduced even before World War II, as the first unmanned aerial 

vehicles were named after bees and wasps.  

Today, drone manufacturing costs and production volumes have reached a level that 

allows their application across various fields, including precision agriculture. Scientific 

reviews available in the literature analyse the latest advancements in drone technology 
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used in precision farming. For example, Botta et al. (2022) compiled 184 publications 

using data from Google Scholar and SCOPUS, while Uzhinskiy (2023) reviewed 164 

works focusing on the application of AI methods in agriculture.  

The authors of these studies unanimously conclude that drones can be effectively used 

for crop vegetation monitoring, while agricultural operations should be performed using 

ground-based equipment. During a flight, a drone can capture images of designated field 

areas and transmit them for further analysis. Using machine learning methods, this enables 

the detection of vegetation conditions and issues that determine necessary agronomic 

actions. Thus, drones allow for rapid inspection of large agricultural areas and the 

collection of crucial data on crop health and required maintenance tasks.  

This study is practically oriented, with the main objective being the development of a 

technology that integrates drones usage and artificial intelligence methods, described more 

in detail in (Oditis et al., 2025). The system is designed to alert farmers about plant 

diseases, pests, nutrient deficiencies, and other issues. The developed technology must be 

user-friendly and economically viable. 

The following chapters provide a description of the technology designed to support 

blackcurrant cultivation using basic drones and imaging cameras. The proposed 

technology was tested on a blackcurrant farm in Latvia, confirming the validity of the 

chosen approach.  

The structure of this study is as follows:  Chapter 1 provides an overview of drone 

usage in precision agriculture worldwide. Chapter 2 focuses specifically on drone 

applications in horticulture. Chapter 3 presents the authors' proposed methodology for 

assessing blackcurrant plantations. Chapter 4 offers a visualization of blackcurrant 

plantation conditions. Chapter 5 discusses the obtained results and presents conclusions. 

2. Drone application in horticulture 

To feed the rapidly growing global population, agricultural enterprises must produce more 

food without increasing cultivated land areas. This can be achieved by applying advanced 

farming technologies. Some of these technologies are still in development, while others 

are already offered by commercial companies. Today, farms can utilize a range of 

advanced tools, such as satellite data, drones, autonomous platforms for agricultural 

operations, sensors, and robots, to obtain detailed information about crop and soil 

conditions and to perform specific agronomic tasks.  

However, in many countries, including Latvia, the adoption of drone technology in 

agriculture is still in its early stages. Among various scientific and technological 

challenges being addressed to achieve sustainable development goals, the use of new 

technologies and methodologies in agriculture has attracted the interest of the engineering 

research community. The objective is to develop technologies suited for precision 

agriculture that enhance the long-term profitability and efficiency of agricultural 

production. 

2.1. General overview of drone applications 

According to (Botta et al, 2022) and (Uzhinskiy, 2023), data from the Food and 

Agriculture Organization (FAO) indicate that global food production must increase by 

70% by 2050 to sustain the growing world population. However, in the European Union, 
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the number of people employed in agriculture has decreased by 35% over the past decade, 

and the expansion of agricultural land is largely unfeasible.   

These factors have driven increased interest in advanced agricultural technologies, 

including sensors, robots, drones, digitalization, and artificial intelligence (AI). AI and 

machine learning are considered highly promising for detecting agricultural issues, 

monitoring crop health, forecasting yields and prices, mapping harvests, and optimizing 

pesticide and fertilizer use.  

There are various research directions that discuss the use of modern technologies in 

agriculture:  Internet of Things (IoT) technologies in agriculture (Xu et al., 2022), 

bibliometric analysis of drone use in farming (Rejeb et al., 2022), deep learning methods 

for controlled-environment agriculture (Ojo et al., 2022), robotic harvesting technologies 

(Mail et al., 2023), machine vision applications in agricultural robot navigation (Wang et 

al., 2022), AI in agriculture (Oliveira et al., 2023), Agriculture 4.0 (Dayioglu et al., 2021), 

(Abbasi et al., 2022). 

Depending on the specific task, drones can offer similar capabilities to satellite image 

analysis but with higher precision and flexibility. They can perform tasks such as soil 

analysis (Huuskonen et al., 2018), (Zhou et al., 2023), (Bertalan et al., 2022 monitoring 

sowing density and crop development (Wilke et al., 2021), (Koh et al., 2019), weed and 

pest detection and classification  (Ong et al., 2023), (Ong et al., 2023),  (Tetila et al., 2020), 

(Mohidem et al., 2021), and yield prediction and maturity assessment (Kumar et al., 2023), 

(Zeng et al., 2021), (Shahi et al., 2023).  

In rare cases, drones can also be used for harvesting, precision fertilization (Chen et 

al., 2022), (Song et al. 2023), (Su et. al. 2022), pesticide spraying (Anand et al., 2019), 

(Ivič et al., 2019), (Sinha, 2020) and even mechanical pest eradication. IoT and sensor 

technologies provide farmers with real-time data on soil parameters, temperature, 

atmospheric gases, weather conditions, and many other variables, often processed in 

cloud-based IT infrastructures for further analysis and forecasting (Dhanaraju et al., 2020), 

(Gagliardi et al., 2022), (Madushanki et al., 2019), (Bilotta et al., 2023).  

2.2. Scope of drone applications 

The use of artificial intelligence and cloud technology in drones has brought significant 

improvements to smart agriculture. These new technologies can capture high-resolution 

images, aerial maps, and thermal images, which can be utilized in various agricultural 

applications, including: 

 Soil analysis: Drones can be used for soil sampling, analysing soil moisture 

levels, and assessing soil quality, helping farmers optimize fertilization and 

irrigation processes, 

 Planting: Drones can be used for precise seed sowing and/or seedling 

planting, reducing labour and planting material costs, 

 Crop spraying: Drones equipped with spraying systems can be used for the 

precise distribution of pesticides, herbicides, and fertilizers, minimizing 

environmental impact while saving time and financial resources, 

 Irrigation management: Drones equipped with thermal sensors and infrared 

cameras can identify areas needing irrigation, helping to optimize water use 

and reduce waste, 

 Yield mapping: Drones can generate yield maps, assisting farmers in 

optimizing crop management and increasing overall production, 
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 Livestock monitoring: Drones equipped with cameras can be used to monitor 

livestock health and behaviour, as well as track animal locations, 

 Crop monitoring: Drones equipped with sensors and cameras can collect real-

time data on crop health, growth, and yield, creating crop health maps, 

 Field mapping: Drones can create high-resolution field maps, providing data 

on soil structure, topography, and plant populations, which can be used for 

informed decision-making regarding planting, fertilization, and other crop 

management practices, 

 Pest and disease control: Drones can help to detect and map pest and disease 

spread in crops, helping farmers take timely action.  

These drone applications have gained significant research attention over the past five 

years. Studies provide evidence of the potential of drones in agriculture. However, these 

results remain a future vision that is not yet accessible to practitioners. Implementing such 

technologies requires the involvement of highly qualified specialists and the establishment 

of modern infrastructure. 

2.3. Drone usage for crop monitoring 

Drones are increasingly being used for crop monitoring. The most monitored crops are: 

 Cereals: Frequently monitored during growth stages for yield prediction and 

disease detection (Boursianis et al., 2022),  

 Fruits and Vegetables: Crops such as grapes, citrus fruits, apples, tomatoes, 

and potatoes are monitored to detect pests, diseases, and assess yield, 

 Oil Crops (soybeans, sunflowers): Vegetation monitoring, plant health 

assessment, and yield prediction, 

 Specific crops (coffee, tea, cocoa, and tobacco) are primarily monitored for 

early detection of diseases or pest infestations, as well as yield optimization.  

However, drone usage in crop monitoring faces several limitations, as outlined in 

studies by (Zou et al., 2021), (Shahi et al., 2023), and (di Gennaro et al., 2016). First, 

drones can cover only a limited area per flight, making large-scale farm monitoring 

challenging. Second, weather conditions, particularly wind and rain, can impact drone 

operability, limiting data collection in unfavourable conditions. Third, drone operation 

requires skilled personnel and specialized equipment, which can be costly and time-

consuming to maintain. Additionally, regulations vary by country; for example, in Latvia, 

drones must remain within the certified operator’s line of sight. 

Other factors influencing drone efficiency include crop height, density, size, weather 

conditions, and sensor limitations. Despite these challenges, drone systems provide 

farmers with valuable insights and data to optimize crop management, improve 

productivity, and reduce pesticide and fertilizer usage.  

2.4. Summary 

The analysis of related works indicates that the application of drones in horticulture should 

begin with plant vegetation monitoring, while agricultural technological operations should 

remain reliant on ground-based traditional equipment. This is primarily due to the 

relatively low payload capacity of drones compared to conventional agricultural 

machinery. 
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3. Proposed solution of technology 

This section presents the authors' proposed technology for monitoring blackcurrant 

vegetation using simple drones and artificial intelligence methods. The proposed solution 

is applied in a blackcurrant farming operation in Latvia. 

3.1. Informal description of solution  

The technology is offered to blackcurrant growers for monitoring plantations using drones, 

enabling the detection of healthy blackcurrant plants, fungal diseases, and nutrient 

deficiencies. The system consists of three main stages: 

 Mapping:  Prepares maps of blackcurrant plantations with the required precision 

(scale), links them to GPS (Global Positioning System) coordinates, records 

drone flight routes, and specifies operations/photography to be performed during 

flights. 

 Identification and segmentation: Uses trained neural networks to extract 

blackcurrant leaf clusters from the mapped images. Instance segmentation then 

identifies individual blackcurrant leaves, which are passed to the classification 

stage for further analysis. 

 Classification: Uses trained neural networks to recognize healthy leaves, leaves 

affected by fungal diseases, and leaves indicating nutrient deficiencies. 

As a result, the study provides a blackcurrant plantation analysis tool that gathers 

information on plantation conditions and visualizes it for growers, aiding decision-making 

regarding necessary interventions. 

3.2. Mapping of horticultural areas 

The area captured in drone images is usually significantly smaller than the cultivated field 

area in horticulture. This is determined by the technical parameters of the drone's camera 

and the scale of the captured images. As a result, field maps must be "stitched" together 

from individual drone images, which, when combined, form a complete field 

representation. 

 

 
Figure 1. Example with combination of two images from neighbour fields that can’t be stitched 

together (images taken from height of 45 meters) 
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Additionally, stitching large image segments, as illustrated in Figure 1, can sometimes 

be of poor quality. The figure shows the merging of two images taken by a drone from a 

height of 45 meters, where visible discrepancies occur. These inconsistencies are caused 

by the technical limitations of image capture—differences in altitude and angles between 

images taken from different positions. 

3.3. Selection and storage of image capturing routes  

Since the horticultural field is created from several smaller images captured by the drone, 

additional actions need to be taken before capturing the image:  

 marking the drone's starting point and determining the GPS coordinates; 

 selecting the drone's flight route and image capture points so that, for example, 

using the WebODM (Web (a)), the images can be "stitched" together into field 

maps;  

 the images must be captured efficiently, without interrupting the drone's flight;  

 routes must be encoded and saved in .csv format for later use; 

 the drone camera settings need to be adjusted to capture images with sufficient 

precision. 

The route can be created using the Mission Planner program. It is necessary to create 

a route for the drone to fly and capture images that can later be stitched together. The 

overall image route is calculated based on the drone's flight altitude and camera parameters 

(e.g., the angle the camera captures) to ensure adequate overlap between images. As a 

result, a route will be obtained for the drone to follow, an example of which can be seen 

in the image prepared by the authors in Figure 2, which illustrates the mapping issues—

low trees and uncovered areas.  

The automatic flight is provided by the Litchi program. It is available both on the 

computer's website to create the route and on mobile phones to fly the route. 

 
 

Figure 2. Routes where a drone could fly into a tree (image links)  

or not the entire area covered (image right) 
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3.4. Drone image processing 

WebODM is used to merge drone flight images by detecting overlapping images using 

GPS coordinates, stitching them together, and correcting perspective distortions. This 

creates a cohesive aerial view for further analysis. 

The image processing stage focuses on detecting and isolating individual blackcurrant 

leaf instances through instance segmentation and subsequent identification methods. 

Instance segmentation algorithms are applied to drone images to accurately separate each 

leaf from the background and other plant structures. Each leaf instance is identified 

separately, which enables detailed classification in the next stage. Segmentation and 

identification are crucial for preparing high-quality data for precision agriculture. 

Trained AI models are used for segmentation and identification, fine-tuned specifically 

for blackcurrant leaf detection. Fine-tuning enhances the models' ability to recognize 

unique leaf structures and subtle variations, improving classification accuracy. This 

customization ensures high-precision results in identifying leaves and detecting plant 

health conditions. This pipeline enables an efficient and automated leaf classification 

system, supporting precision agriculture applications. 

3.5. Identification 

For the identification step, a training and validation dataset was created, consisting of 102 

images (Figure 3). Each image was annotated using the open-source web-based annotation 

tool CVAT (WEB (b)) The dataset annotations were exported in YOLO (You Only Look 

Once) and COCO formats to support various deep learning frameworks. 

 

 

Figure 3. Leaf cluster marking in the field image 

Several models were considered for analysing the images obtained in the identification 

step, focusing on accuracy, speed, and resource efficiency. The following models were 

selected for training: Faster R-CNN, ResNet50 FPN, Faster R-CNN X101-FPN, 

RetinaNet R101, YOLOv8x, YOLOv9e, and YOLOv10x. This model selection was based 
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on proven performance in object detection and instance recognition across various 

datasets.  

Faster R-CNN models (ResNet50 FPN, X101-FPN) are known for high precision, 

particularly in complex scenes. Feature Pyramid Network (FPN) enables the model to 

analyse objects at multiple scales effectively.  

RetinaNet R101 was chosen for its effectiveness in handling imbalanced datasets.  It 

uses focal loss, which improves the detection of less frequent classes by reducing the 

influence of dominant classes.  

YOLO series models (YOLOv8x, YOLOv9e, YOLOv10x) have high-speed 

performance, making them ideal for real-time applications in resource-constrained 

environments while maintaining strong identification performance. 

 This diverse model combination allows for a comprehensive comparison of accuracy 

vs. performance trade-offs, ensuring the most optimal identification model is selected. 

3.6. Instance segmentation 

The segmentation step allows extracting blackcurrant leaves from the leaf clusters 

identified in the previous identification step.  Instance segmentation is essential to 

achieving high accuracy by isolating each leaf as a separate object within the image. By 

precisely delineating each leaf instance, a higher level of granularity and detail is ensured 

in the subsequent classification process. This approach enables algorithms to analyse each 

leaf individually, thereby improving classification accuracy by accounting for subtle 

differences such as leaf shape, size, and potential disease symptoms. Instance 

segmentation plays a crucial role in ensuring high-quality data acquisition and precise 

result interpretation.   

A dedicated instance segmentation dataset was created using images captured with a 

Nikon D3300 DSLR camera equipped with a 24.2 MP DX-format CMOS sensor. The 

images were taken in the same blackcurrant fields where automated drone missions were 

conducted. The dataset includes images of blackcurrant leaves from various angles to 

enhance diversity and improve model training by simulating different perspectives. A total 

of 87 annotated images were compiled, with annotations created using the same tool as 

the identification dataset—CVAT (Computer Vision Annotation Tool). The dataset 

contains a single object type: "blackcurrant leaf," with each object annotated using 

segmentation mask contour points. 

Several popular segmentation models were considered, with an in-depth analysis of 

YOLO models (YOLOv5-seg, YOLOv7-seg, YOLOv8-seg, YOLOv9-seg), as referenced 

in (Oditis et al., 2025). Additionally, the SAM model family (SAM, SAM2) and Mask R-

CNN were evaluated theoretically based on literature sources (Chegini, 2023).). Each 

model offers different approaches to instance segmentation, with unique advantages and 

limitations.   

YOLO models, known for their speed and efficiency, making them ideal for real-time 

applications like video surveillance and robotics (Oditis et al., 2025). However, their 

accuracy in complex segmentation tasks may be lower compared to more sophisticated 

models. 

SAM (Segment Anything Model) family (SAM, SAM2) offers general-purpose 

segmentation, capable of segmenting any object with minimal input (e.g., a point or 

bounding box). It does not require task-specific training data, making it highly versatile. 

However, it lacks real-time processing speed. 
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Mask R-CNN is well-known for its high accuracy, especially in detecting overlapping 

and complex objects. Heavy computational requirements make it less suitable for real-

time applications. Mask R-CNN is best suited for precision tasks like medical image 

analysis or autonomous driving.  

A summarized model comparison is provided in Table 1. Based on the analysis, the 

YOLO model family was selected for instance segmentation, and further training will be 

conducted to determine the most optimal model for the task.  

Although Mask R-CNN demonstrates higher accuracy, the specific requirements of 

the task call for instance segmentation of a single object type, prioritizing the solution's 

speed. This decision is based on the fact that a single field image covers approximately 

260 sectors to be analysed, which require instance segmentation. Additionally, when 

surveying one hectare of field, about 7,500 images are obtained, meaning that instance 

segmentation must be performed on approximately 1.9 million sectors per hectare. These 

data strongly suggest the use of the YOLO solution for further analysis.  

 
Table 1. Comparison of Instance Segmentation Models 

Model Strengths Weaknesses Suitable 

Applications 
Real-time 

Performance 

YOLO 

(YOLOv8-seg, 

YOLOv9-seg) 

Fast, efficient for 

real-time tasks 
Lower accuracy 

in complex 

segmentation 

tasks 

Video 

surveillance, 

robotics 

Excellent for 

real-time tasks 

SAM (SAM, 

SAM2) 
Universal object 

segmentation with 

minimal input 

Lacks real-time 

processing 

speed 

General 

segmentation 

tasks 

Not suitable for 

real-time tasks 

Mask R-CNN High accuracy, 

especially for 

segmenting 

overlapping and 

complex objects  

Resource-

intensive, slow, 

not suitable for 

real-time tasks 

Medical image 

analysis, 

autonomous 

driving 

Low real-time 

performance but 

excellent 

accuracy 

 

3.7. Classification 

This chapter describes the blackcurrant leaf classification process and the conceptually 

chosen solutions. The classification process involves multi-class data classification, 

utilizing pre-trained models adapted to the specific dataset. These models are trained on 

pre-processed datasets to ensure accuracy and efficiency in blackcurrant leaf analysis. The 

use of artificial intelligence tools provides a generalized solution adaptable to various data 

types and classification criteria. 

By analysing drone-acquired field images and evaluating blackcurrant bushes, three 

leaf classes were identified: “Healthy Leaf”, “Leaf with Nutrient Deficiency”, “Leaf with 

Fungal Disease”. It was also observed that some leaf instances exhibit characteristics of 

multiple classes, making multi-class classification necessary. In this chapter, the only 

object type under consideration is the blackcurrant leaf. This classification structure is 

sufficient to test the effectiveness of the selected approach. If needed, the set of classes 
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can be expanded without altering the classification process, implementation, or planned 

solution. The class definitions were determined with input from a domain expert. 

The training and validation dataset was collected from the same blackcurrant fields 

where automated drone missions were conducted. After image acquisition, data annotation 

was performed, where leaf instances were manually segmented and assigned to their 

respective classes. The dataset consists of: 

• 118 images of leaves classified as "Healthy Leaf", 

• 109 images of leaves classified as "Leaf with Nutrient Deficiency", 

• 102 images of leaves classified as "Leaf with Fungal Disease", 

• 57 images containing instances belonging to multiple classes. 

(See Figure 4 for reference.) 

 

Figure 4. Leaf examples: fungal disease, healthy leaf, leaf with nutrient deficiency 

For the classification task, three families of artificial intelligence models popular for 

multi-class image classification were examined:  

 ResNet, including ResNet50, ResNet101, and ResNet152; 

 EfficientNet covering models from EfficientNet-B0 to EfficientNet-B7; 

 VGGNet, including VGG16 and VGG19. 

ResNet (Residual Network) architectures are designed to address issues in deep neural 

networks, such as the vanishing gradient problem. They use "skip" connections, allowing 

information to bypass certain layers, enabling the training of very deep networks without 

performance degradation, which is common in traditional deep networks .  

EfficientNet is a highly efficient neural network architecture optimized for both 

accuracy and resource usage. It employs a compound scaling approach, simultaneously 

adjusting the network's width, depth, and resolution to enhance performance.  

VGGNet is a classical deep neural network for image classification, known for its 

simple and structured architecture. It primarily relies on convolutional layers with 3x3 

filters. However, this design results in high computational complexity and memory 

requirements, making it slower compared to more modern architectures (Simonyan, 

2015).  

For the classification process, the ResNet family was selected, with ResNet50, 

ResNet100, and ResNet512 models considered during training. This choice was based on 

ResNet’s high accuracy and performance, which surpass those of the VGGNet models. 

From the comparison in Table 2, it is evident that ResNet effectively mitigates the gradient 

vanishing problem, allowing the training of deeper networks without performance loss. 
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While EfficientNet is highly efficient in resource utilization, ResNet provides an optimal 

balance between accuracy and speed, which is crucial for blackcurrant leaf classification, 

where high reliability and processing speed are required. These advantages make ResNet 

the most suitable model family for successfully executing the given task. 

 
Table 2. Comparison of Classification Model Families 

Model 

family 

Strengths  Weaknesses Application 

areas 

Efficiency / 

Resource 

usage 

ResNet Solves the gradient 

vanishing problem 

in deep networks 

using "skip" 

connections 

Deeper 

architecture may 

be challenging to 

train with small 

data 

Image 

classification, 

data analysis, 

computer 

vision 

Efficient in 

training deep 

networks 

without 

performance 

loss 

EfficientNet Optimizes both 

accuracy and 

resource usage 

through 

proportional 

scaling 

Higher 

complexity in the 

optimization 

process 

Mobile 

applications, AI 

solutions 

High efficiency, 

low resource 

requirements 

VGGNet Simple 

architecture, clear 

and intuitive 

High 

computational 

complexity, 

slower compared 

to modern models 

Image 

classification, 

computer 

vision, early 

research 

applications 

Low efficiency 

and high 

memory 

requirements 

Mask R-

CNN 

 

High accuracy, 

especially in 

segmenting 

overlapping and 

complex objects 

Resource-

intensive, slow, 

not suitable for 

real-time tasks 

Medical image 

analysis, 

autonomous 

driving 

 

Low real-time 

performance, 

but excellent 

accuracy 

3.8. Summary 

The proposed technology utilizes several artificial intelligence methods for a specific 

application – monitoring the vegetation of blackcurrants. The selected methods proved to 

be sufficiently effective for this particular application. 
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4. Fields history 

For every farm, it is beneficial to maintain a field record journal that logs all activities 

within a specific agricultural area, including completed horticultural operations, the use of 

crop materials, and plant protection products. Several information systems already exist 

to support such functionalities. 

This study, however, focuses on collecting field images, offering a different 

perspective on historical data—both visually and through insights derived from image 

analysis. The goal of our research is to develop a solution that allows for visual tracking 

of field changes over time while also providing timely detection of plant health issues 

identified through image analysis.  

4.1. Field surveying process 

To ensure field history tracking: 

 identify the surveyed fields (this information is used to plan drone flight and 

photography routes), 

 conduct field surveys using drones to capture images and link them to specific 

geolocations, 

 analyse the images to identify plant health issues, 

 visualize the extracted information on a map for better interpretation and 

decision-making. 

This type of solution is designed for horticulturists. Their main interest is tracking 

long-term changes in fields, especially in crop cultivation involving perennial plants such 

as blackcurrants. In such cases, even historical images taken from the same vantage point 

can provide valuable insights into field conditions, moisture levels, pest infestations, 

disease development, and more. 

Although the functionalities may seem simple, this type of solution comes with certain 

technical challenges. First, to obtain images suitable for whole-field analysis, several 

hundred photos per hectare must be captured, making the imaging process time-

consuming and requiring multiple drone flights. Second, storing historical images can be 

space-intensive, considering that blackcurrant plantations typically cover between 2 to 20 

hectares. Third, analysing such a vast number of images is time-consuming, as it involves 

identifying and classifying thousands of leaves. 

To address these technical challenges, it is important to recognize that a complete 

photographic record of the entire field is not necessary to assess the condition of 

blackcurrant plantations. A similar approach is used in soil fertility assessment, where 

sampling is conducted systematically at predetermined intervals—for example, every 20 

meters. In this case, evaluating one hectare would require only 36 images, significantly 

reducing storage and analysis demands. This approach would still provide sufficiently 

representative information about the field’s condition and the spread of potential issues. 

4.2. Field browser functions  

The field browser provides the following key functions: 

 Field survey planning – defining field boundaries, preferably using the territorial 

division applied by the Rural Support Service. 
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 Drone flight planning – setting flight routes and photography points, including 

altitude and camera parameter configuration. 

 Automated drone flight execution – performing flights autonomously and saving 

captured images. 

 Image analysis – conducting segmentation, identification, and classification 

using a pre-trained neural network. 

 Blackcurrant plantation condition monitoring – allowing selection of a specific 

field for evaluation, enables to view images in different resolutions and 

timeframes (field images can be viewed on different dates, switching between 

them changes the displayed field area and resolution). 

A sample result of the field browser operation is shown in Figure 5. A map of a 5-

hectare blackcurrant plantation was created using a drone, with a portion of the area 

undergoing in-depth analysis—including segmentation, identification, and classification. 

This analysis provides an overview of the plantation’s condition, revealing healthy leaves 

– 97.4%, fungal disease presence – 1.7%, nutrient deficiency detected – 1.0% of the 

surveyed area. This assessment of the plantation’s condition provides valuable insights for 

the agronomist, enabling informed decisions on necessary crop management actions. 

 

 

Figure 5. Blackcurrant Field Condition (Nutrient Deficiency: 1.0%, Fungal Disease: 1.7%, 

Healthy Leaves: 97.4%). 

5. Discussion 

The study results demonstrate new technologies for monitoring blackcurrant vegetation. 

Instead of traditional visual assessments by horticulturists, an automated system is 

proposed, offering several advantages: precise crop evaluation using AI methods, 
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applicability to large blackcurrant plantations, economic efficiency, and ease of 

implementation. 

However, these achievements should be considered a first step toward precision 

agriculture in blackcurrant cultivation, requiring further development. The proposed 

approach relies on blackcurrant leaf analysis, which means it can only detect diseases 

affecting leaves, while issues affecting roots and stems—such as blackcurrant clearwing 

moth (Synanthedon tipuliformis) and blackcurrant bud mite (Eriophyes ribis)—remain 

undetected. 

Similarly, yield prediction requires an alternative approach, possibly analysing entire 

blackcurrant bushes rather than just leaves. Pest infestations can also only be partially 

identified through leaf analysis. 

Nevertheless, other blackcurrant cultivation challenges, such as crown rust, can be 

identified using similar methods by analysing different plant parts, segmenting them in 

images, and classifying them based on the specific problem being addressed. 

5.1. Additional applications of the method 

A diligent horticulturist monitors not only the spread of blackcurrant diseases but also 

frost damage, flowering progress, yield ripening time and volume predictions, and other 

vegetation-related events. Although these aspects were not the primary focus of this study, 

they could be addressed by modifying the proposed method—for example, by segmenting 

and classifying flower buds and berry clusters accordingly. 

Beyond plant vegetation monitoring, the method can also be applied to optimizing 

agricultural operations. By identifying disease-affected field areas, maintenance tasks 

such as targeted spraying can be carried out only in infected regions. This would lead to 

significant savings in materials and labour resources. 

A promising direction for further development is integrating the method into dynamic 

robotic management. By transferring real-time data from the blackcurrant plant analysis 

module to an agricultural operations execution robot, it would be possible to perform 

precise interventions only where necessary, further increasing efficiency and 

sustainability.  

5.2. Limitations of the method’s application  

When analysing the benefits of the proposed method, it is also important to highlight its 

limitations. 

One key limitation is the lack of precision in determining nutrient deficiencies. While 

the method can detect a deficiency, it cannot specify which particular nutrient—

potassium, phosphorus, or nitrogen—is lacking. Currently, this type of analysis is 

performed using soil and plant agrochemical testing, which involves manually collecting 

soil and leaf samples. This process requires significant labor resources. 

A more advanced approach involves spectral analysis of plants, which can provide 

more precise nutrient deficiency diagnostics. However, this requires more complex 

imaging cameras and advanced processing methods, which are not yet widely available 

due to high costs and a lack of specialists. 

Additionally, leaves are just one indicator of plant health, but they do not reveal all 

potential issues. For example, pest infestations, such as the blackcurrant clearwing moth, 

which primarily affects the stems rather than the leaves, cannot be detected using this 

method. Furthermore, yield estimation—a crucial aspect from an economic perspective—
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is not covered by this approach. Addressing these gaps requires further research and 

development in this field. 

6. Conclusions 

Key conclusions of the conducted research and its application results: 

1.  Integration of Drones and AI is Effective for Precision Agriculture. The 

proposed system successfully integrates drone-based imaging with artificial 

intelligence methods to monitor blackcurrant plantations. This approach enables 

accurate, large-scale assessment of plant health conditions while reducing the 

need for manual inspection. 

2. Modular Architecture Ensures Flexibility and Scalability. The system's modular 

structure—mapping, identification and segmentation, and classification—allows 

for flexibility in adapting the pipeline to different crops or environmental 

conditions. Each module can be fine-tuned or replaced independently to improve 

performance. 

3. Mapping functions can be implemented using standard solutions available in 

commercial drone systems or through adapting open-source solutions for 

blackcurrant cultivation. Identification and segmentation solutions must be 

developed individually in collaboration with industry experts—in this project’s 

case, blackcurrant growers. This includes training a neural network for leaf 

recognition and transmitting the identified leaf information for classification. The 

classification task involves training a neural network to recognize specific 

characteristics of blackcurrant leaves, which is the project's final goal and of 

interest to horticulturists. 

4. YOLO Models Balance Speed and Accuracy for High-Volume Analysis. 

While models like Mask R-CNN offer higher segmentation accuracy, the YOLO 

model family was selected for its superior processing speed, making it more 

suitable for handling the large volume of images required in agricultural drone 

surveys. 

5. ResNet Models Provide Robust Classification Capabilities. The ResNet family 

of models proved optimal for classifying blackcurrant leaves due to their ability 

to train deep networks efficiently. Their balance of accuracy and computational 

efficiency makes them suitable for real-world deployment in agricultural settings. 

6. System Supports Informed Decision-Making for Growers. By providing detailed 

visualizations and health assessments of blackcurrant plantations, the system aids 

growers in making timely decisions regarding interventions such as fertilization 

or disease management. 

7. Field-Validated Data Collection Enhances Reliability. The use of annotated 

datasets created from real blackcurrant fields ensures that the models are trained 

and validated with realistic, domain-specific data, improving the accuracy and 

practical applicability of the system. 

8. Potential for Wider Application. Although developed specifically for 

blackcurrants, the solution demonstrates potential for adaptation to other types of 

crops and agricultural monitoring tasks, supporting broader applications in 

precision horticulture. 

Following the identification of fungal diseases and nutrient deficiencies, potential 

future applications include yield prediction, pest detection, and identification of other 
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plant diseases. A key challenge remains improving the speed of image analysis, as 

computational demands may exceed the capabilities of simple and inexpensive hardware. 
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