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Abstract. This article presents a technology-based solution for monitoring blackcurrant vegetation
using drones and artificial intelligence. The proposed system, implemented in a blackcurrant farm
in Latvia, includes a three-stage process: mapping, identification and segmentation, and
classification. Drones capture aerial images of the plantation, which are processed using tools like
WebODM and deep learning algorithms to create accurate field maps. Neural networks are
employed for identification, instance segmentation and classification of blackcurrant leaves into
categories such as healthy, nutrient-deficient, or diseased. The system incorporates several Al model
families—YOLO and ResNet —selected based on performance, accuracy, and resource efficiency.
The methodology enables high-throughput analysis of large horticultural areas, supporting growers
in decision-making by providing precise, visual insights into plant health. The approach
demonstrates the viability of integrating drone technology and Al for precision agriculture,
particularly in the specialized context of blackcurrant farming. The proposed technology, with
appropriate adjustments, can also be applied to the vegetation monitoring of other horticultural
crops.
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1. Introduction

Unmanned Aerial Vehicle (UAV), hereinafter referred to as a drone in this article, is
defined according to the Dictionary of Military and Associated Terms (Drone, 2005) as:
"A powered, aerial vehicle that does not carry a human operator, uses aerodynamic forces
to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or
recoverable, and can carry a lethal or nonlethal payload”. The term "drone," commonly
used in mass media, was introduced even before World War 11, as the first unmanned aerial
vehicles were named after bees and wasps.

Today, drone manufacturing costs and production volumes have reached a level that
allows their application across various fields, including precision agriculture. Scientific
reviews available in the literature analyse the latest advancements in drone technology
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used in precision farming. For example, Botta et al. (2022) compiled 184 publications
using data from Google Scholar and SCOPUS, while Uzhinskiy (2023) reviewed 164
works focusing on the application of Al methods in agriculture.

The authors of these studies unanimously conclude that drones can be effectively used
for crop vegetation monitoring, while agricultural operations should be performed using
ground-based equipment. During a flight, a drone can capture images of designated field
areas and transmit them for further analysis. Using machine learning methods, this enables
the detection of vegetation conditions and issues that determine necessary agronomic
actions. Thus, drones allow for rapid inspection of large agricultural areas and the
collection of crucial data on crop health and required maintenance tasks.

This study is practically oriented, with the main objective being the development of a
technology that integrates drones usage and artificial intelligence methods, described more
in detail in (Oditis et al., 2025). The system is designed to alert farmers about plant
diseases, pests, nutrient deficiencies, and other issues. The developed technology must be
user-friendly and economically viable.

The following chapters provide a description of the technology designed to support
blackcurrant cultivation using basic drones and imaging cameras. The proposed
technology was tested on a blackcurrant farm in Latvia, confirming the validity of the
chosen approach.

The structure of this study is as follows: Chapter 1 provides an overview of drone
usage in precision agriculture worldwide. Chapter 2 focuses specifically on drone
applications in horticulture. Chapter 3 presents the authors' proposed methodology for
assessing blackcurrant plantations. Chapter 4 offers a visualization of blackcurrant
plantation conditions. Chapter 5 discusses the obtained results and presents conclusions.

2. Drone application in horticulture

To feed the rapidly growing global population, agricultural enterprises must produce more
food without increasing cultivated land areas. This can be achieved by applying advanced
farming technologies. Some of these technologies are still in development, while others
are already offered by commercial companies. Today, farms can utilize a range of
advanced tools, such as satellite data, drones, autonomous platforms for agricultural
operations, sensors, and robots, to obtain detailed information about crop and soil
conditions and to perform specific agronomic tasks.

However, in many countries, including Latvia, the adoption of drone technology in
agriculture is still in its early stages. Among various scientific and technological
challenges being addressed to achieve sustainable development goals, the use of new
technologies and methodologies in agriculture has attracted the interest of the engineering
research community. The objective is to develop technologies suited for precision
agriculture that enhance the long-term profitability and efficiency of agricultural
production.

2.1. General overview of drone applications
According to (Botta et al, 2022) and (Uzhinskiy, 2023), data from the Food and

Agriculture Organization (FAO) indicate that global food production must increase by
70% by 2050 to sustain the growing world population. However, in the European Union,
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the number of people employed in agriculture has decreased by 35% over the past decade,
and the expansion of agricultural land is largely unfeasible.

These factors have driven increased interest in advanced agricultural technologies,
including sensors, robots, drones, digitalization, and artificial intelligence (Al). Al and
machine learning are considered highly promising for detecting agricultural issues,
monitoring crop health, forecasting yields and prices, mapping harvests, and optimizing
pesticide and fertilizer use.

There are various research directions that discuss the use of modern technologies in
agriculture:  Internet of Things (loT) technologies in agriculture (Xu et al., 2022),
bibliometric analysis of drone use in farming (Rejeb et al., 2022), deep learning methods
for controlled-environment agriculture (Ojo et al., 2022), robotic harvesting technologies
(Mail et al., 2023), machine vision applications in agricultural robot navigation (Wang et
al., 2022), Al in agriculture (Oliveira et al., 2023), Agriculture 4.0 (Dayioglu et al., 2021),
(Abbasi et al., 2022).

Depending on the specific task, drones can offer similar capabilities to satellite image
analysis but with higher precision and flexibility. They can perform tasks such as soil
analysis (Huuskonen et al., 2018), (Zhou et al., 2023), (Bertalan et al., 2022 monitoring
sowing density and crop development (Wilke et al., 2021), (Koh et al., 2019), weed and
pest detection and classification (Ong et al., 2023), (Ong et al., 2023), (Tetilaetal., 2020),
(Mohidem et al., 2021), and yield prediction and maturity assessment (Kumar et al., 2023),
(Zeng et al., 2021), (Shahi et al., 2023).

In rare cases, drones can also be used for harvesting, precision fertilization (Chen et
al., 2022), (Song et al. 2023), (Su et. al. 2022), pesticide spraying (Anand et al., 2019),
(Ivi¢ et al., 2019), (Sinha, 2020) and even mechanical pest eradication. IoT and sensor
technologies provide farmers with real-time data on soil parameters, temperature,
atmospheric gases, weather conditions, and many other variables, often processed in
cloud-based IT infrastructures for further analysis and forecasting (Dhanaraju et al., 2020),
(Gagliardi et al., 2022), (Madushanki et al., 2019), (Bilotta et al., 2023).

2.2. Scope of drone applications

The use of artificial intelligence and cloud technology in drones has brought significant
improvements to smart agriculture. These new technologies can capture high-resolution
images, aerial maps, and thermal images, which can be utilized in various agricultural
applications, including:

e Soil analysis: Drones can be used for soil sampling, analysing soil moisture
levels, and assessing soil quality, helping farmers optimize fertilization and
irrigation processes,

e Planting: Drones can be used for precise seed sowing and/or seedling
planting, reducing labour and planting material costs,

e Crop spraying: Drones equipped with spraying systems can be used for the
precise distribution of pesticides, herbicides, and fertilizers, minimizing
environmental impact while saving time and financial resources,

e Irrigation management: Drones equipped with thermal sensors and infrared
cameras can identify areas needing irrigation, helping to optimize water use
and reduce waste,

e Yield mapping: Drones can generate yield maps, assisting farmers in
optimizing crop management and increasing overall production,
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e Livestock monitoring: Drones equipped with cameras can be used to monitor
livestock health and behaviour, as well as track animal locations,

e  Crop monitoring: Drones equipped with sensors and cameras can collect real-
time data on crop health, growth, and yield, creating crop health maps,

e Field mapping: Drones can create high-resolution field maps, providing data
on soil structure, topography, and plant populations, which can be used for
informed decision-making regarding planting, fertilization, and other crop
management practices,

e Pest and disease control: Drones can help to detect and map pest and disease
spread in crops, helping farmers take timely action.

These drone applications have gained significant research attention over the past five
years. Studies provide evidence of the potential of drones in agriculture. However, these
results remain a future vision that is not yet accessible to practitioners. Implementing such
technologies requires the involvement of highly qualified specialists and the establishment
of modern infrastructure.

2.3. Drone usage for crop monitoring

Drones are increasingly being used for crop monitoring. The most monitored crops are:

e Cereals: Frequently monitored during growth stages for yield prediction and
disease detection (Boursianis et al., 2022),

e Fruits and Vegetables: Crops such as grapes, citrus fruits, apples, tomatoes,
and potatoes are monitored to detect pests, diseases, and assess yield,

e Qil Crops (soybeans, sunflowers): Vegetation monitoring, plant health
assessment, and yield prediction,

e Specific crops (coffee, tea, cocoa, and tobacco) are primarily monitored for
early detection of diseases or pest infestations, as well as yield optimization.

However, drone usage in crop monitoring faces several limitations, as outlined in
studies by (Zou et al., 2021), (Shahi et al., 2023), and (di Gennaro et al., 2016). First,
drones can cover only a limited area per flight, making large-scale farm monitoring
challenging. Second, weather conditions, particularly wind and rain, can impact drone
operability, limiting data collection in unfavourable conditions. Third, drone operation
requires skilled personnel and specialized equipment, which can be costly and time-
consuming to maintain. Additionally, regulations vary by country; for example, in Latvia,
drones must remain within the certified operator’s line of sight.

Other factors influencing drone efficiency include crop height, density, size, weather
conditions, and sensor limitations. Despite these challenges, drone systems provide
farmers with valuable insights and data to optimize crop management, improve
productivity, and reduce pesticide and fertilizer usage.

24. Summary

The analysis of related works indicates that the application of drones in horticulture should
begin with plant vegetation monitoring, while agricultural technological operations should
remain reliant on ground-based traditional equipment. This is primarily due to the
relatively low payload capacity of drones compared to conventional agricultural
machinery.
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3. Proposed solution of technology

This section presents the authors' proposed technology for monitoring blackcurrant
vegetation using simple drones and artificial intelligence methods. The proposed solution
is applied in a blackcurrant farming operation in Latvia.

3.1. Informal description of solution

The technology is offered to blackcurrant growers for monitoring plantations using drones,
enabling the detection of healthy blackcurrant plants, fungal diseases, and nutrient
deficiencies. The system consists of three main stages:

e Mapping: Prepares maps of blackcurrant plantations with the required precision
(scale), links them to GPS (Global Positioning System) coordinates, records
drone flight routes, and specifies operations/photography to be performed during
flights.

o Identification and segmentation: Uses trained neural networks to extract
blackcurrant leaf clusters from the mapped images. Instance segmentation then
identifies individual blackcurrant leaves, which are passed to the classification
stage for further analysis.

e Classification: Uses trained neural networks to recognize healthy leaves, leaves
affected by fungal diseases, and leaves indicating nutrient deficiencies.

As a result, the study provides a blackcurrant plantation analysis tool that gathers
information on plantation conditions and visualizes it for growers, aiding decision-making
regarding necessary interventions.

3.2. Mapping of horticultural areas

The area captured in drone images is usually significantly smaller than the cultivated field
area in horticulture. This is determined by the technical parameters of the drone's camera
and the scale of the captured images. As a result, field maps must be "stitched" together
from individual drone images, which, when combined, form a complete field
representation.
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Additionally, stitching large image segments, as illustrated in Figure 1, can sometimes
be of poor quality. The figure shows the merging of two images taken by a drone from a
height of 45 meters, where visible discrepancies occur. These inconsistencies are caused
by the technical limitations of image capture—differences in altitude and angles between
images taken from different positions.

3.3. Selection and storage of image capturing routes

Since the horticultural field is created from several smaller images captured by the drone,
additional actions need to be taken before capturing the image:
o marking the drone's starting point and determining the GPS coordinates;
e selecting the drone's flight route and image capture points so that, for example,
using the WebODM (Web (a)), the images can be "stitched" together into field
maps;
e the images must be captured efficiently, without interrupting the drone's flight;
e routes must be encoded and saved in .csv format for later use;
e the drone camera settings need to be adjusted to capture images with sufficient
precision.
The route can be created using the Mission Planner program. It is necessary to create
a route for the drone to fly and capture images that can later be stitched together. The
overall image route is calculated based on the drone's flight altitude and camera parameters
(e.g., the angle the camera captures) to ensure adequate overlap between images. As a
result, a route will be obtained for the drone to follow, an example of which can be seen
in the image prepared by the authors in Figure 2, which illustrates the mapping issues—
low trees and uncovered areas.

The automatic flight is provided by the Litchi program. It is available both on the
computer's website to create the route and on mobile phones to fly the route.

= .-
& Survey (Gnd)

Figure 2. Routes where a drone could fly into a tree (image links)
or not the entire area covered (image right)
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3.4. Drone image processing

WebODM is used to merge drone flight images by detecting overlapping images using
GPS coordinates, stitching them together, and correcting perspective distortions. This
creates a cohesive aerial view for further analysis.

The image processing stage focuses on detecting and isolating individual blackcurrant
leaf instances through instance segmentation and subsequent identification methods.
Instance segmentation algorithms are applied to drone images to accurately separate each
leaf from the background and other plant structures. Each leaf instance is identified
separately, which enables detailed classification in the next stage. Segmentation and
identification are crucial for preparing high-quality data for precision agriculture.

Trained Al models are used for segmentation and identification, fine-tuned specifically
for blackcurrant leaf detection. Fine-tuning enhances the models' ability to recognize
unique leaf structures and subtle variations, improving classification accuracy. This
customization ensures high-precision results in identifying leaves and detecting plant
health conditions. This pipeline enables an efficient and automated leaf classification
system, supporting precision agriculture applications.

3.5. ldentification

For the identification step, a training and validation dataset was created, consisting of 102
images (Figure 3). Each image was annotated using the open-source web-based annotation
tool CVAT (WEB (b)) The dataset annotations were exported in YOLO (You Only Look
Once) and COCO formats to support various deep learning frameworks.

Figure 3. Leaf cluster marking in the field image

Several models were considered for analysing the images obtained in the identification
step, focusing on accuracy, speed, and resource efficiency. The following models were
selected for training: Faster R-CNN, ResNet50 FPN, Faster R-CNN X101-FPN,
RetinaNet R101, YOLOvV8x, YOLOV9e, and YOLOV10x. This model selection was based
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on proven performance in object detection and instance recognition across various
datasets.

Faster R-CNN models (ResNet50 FPN, X101-FPN) are known for high precision,
particularly in complex scenes. Feature Pyramid Network (FPN) enables the model to
analyse objects at multiple scales effectively.

RetinaNet R101 was chosen for its effectiveness in handling imbalanced datasets. It
uses focal loss, which improves the detection of less frequent classes by reducing the
influence of dominant classes.

YOLO series models (YOLOv8X, YOLOv9e, YOLOvV10x) have high-speed
performance, making them ideal for real-time applications in resource-constrained
environments while maintaining strong identification performance.

This diverse model combination allows for a comprehensive comparison of accuracy
vs. performance trade-offs, ensuring the most optimal identification model is selected.

3.6. Instance segmentation

The segmentation step allows extracting blackcurrant leaves from the leaf clusters
identified in the previous identification step. Instance segmentation is essential to
achieving high accuracy by isolating each leaf as a separate object within the image. By
precisely delineating each leaf instance, a higher level of granularity and detail is ensured
in the subsequent classification process. This approach enables algorithms to analyse each
leaf individually, thereby improving classification accuracy by accounting for subtle
differences such as leaf shape, size, and potential disease symptoms. Instance
segmentation plays a crucial role in ensuring high-quality data acquisition and precise
result interpretation.

A dedicated instance segmentation dataset was created using images captured with a
Nikon D3300 DSLR camera equipped with a 24.2 MP DX-format CMOS sensor. The
images were taken in the same blackcurrant fields where automated drone missions were
conducted. The dataset includes images of blackcurrant leaves from various angles to
enhance diversity and improve model training by simulating different perspectives. A total
of 87 annotated images were compiled, with annotations created using the same tool as
the identification dataset—CVAT (Computer Vision Annotation Tool). The dataset
contains a single object type: "blackcurrant leaf,” with each object annotated using
segmentation mask contour points.

Several popular segmentation models were considered, with an in-depth analysis of
YOLO models (YOLOv5-seg, YOLOvV7-seg, YOLOvV8-seg, YOLOV9-seq), as referenced
in (Oditis et al., 2025). Additionally, the SAM model family (SAM, SAM2) and Mask R-
CNN were evaluated theoretically based on literature sources (Chegini, 2023).). Each
model offers different approaches to instance segmentation, with unique advantages and
limitations.

YOLO models, known for their speed and efficiency, making them ideal for real-time
applications like video surveillance and robotics (Oditis et al., 2025). However, their
accuracy in complex segmentation tasks may be lower compared to more sophisticated
models.

SAM (Segment Anything Model) family (SAM, SAM2) offers general-purpose
segmentation, capable of segmenting any object with minimal input (e.g., a point or
bounding box). It does not require task-specific training data, making it highly versatile.
However, it lacks real-time processing speed.
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Mask R-CNN is well-known for its high accuracy, especially in detecting overlapping
and complex objects. Heavy computational requirements make it less suitable for real-
time applications. Mask R-CNN is best suited for precision tasks like medical image
analysis or autonomous driving.

A summarized model comparison is provided in Table 1. Based on the analysis, the
YOLO model family was selected for instance segmentation, and further training will be
conducted to determine the most optimal model for the task.

Although Mask R-CNN demonstrates higher accuracy, the specific requirements of
the task call for instance segmentation of a single object type, prioritizing the solution's
speed. This decision is based on the fact that a single field image covers approximately
260 sectors to be analysed, which require instance segmentation. Additionally, when
surveying one hectare of field, about 7,500 images are obtained, meaning that instance
segmentation must be performed on approximately 1.9 million sectors per hectare. These
data strongly suggest the use of the YOLO solution for further analysis.

Table 1. Comparison of Instance Segmentation Models

Model Strengths Weaknesses Suitable Real-time
Applications |Performance
YOLO Fast, efficient for |Lower accuracy | Video Excellent for
(YOLOv8-seg, |real-time tasks in complex surveillance, real-time tasks
YOLOV9-seq) segmentation robotics
tasks
SAM (SAM, Universal object |Lacks real-time | General Not suitable for
SAM2) segmentation with | processing segmentation | real-time tasks
minimal input speed tasks
Mask R-CNN | High accuracy, Resource- Medical image |Low real-time
especially for intensive, slow, |analysis, performance but
segmenting not suitable for |autonomous excellent
overlapping and | real-time tasks |driving accuracy
complex objects

3.7. Classification

This chapter describes the blackcurrant leaf classification process and the conceptually
chosen solutions. The classification process involves multi-class data classification,
utilizing pre-trained models adapted to the specific dataset. These models are trained on
pre-processed datasets to ensure accuracy and efficiency in blackcurrant leaf analysis. The
use of artificial intelligence tools provides a generalized solution adaptable to various data
types and classification criteria.

By analysing drone-acquired field images and evaluating blackcurrant bushes, three
leaf classes were identified: “Healthy Leaf”, “Leaf with Nutrient Deficiency”, “Leaf with
Fungal Disease”. It was also observed that some leaf instances exhibit characteristics of
multiple classes, making multi-class classification necessary. In this chapter, the only
object type under consideration is the blackcurrant leaf. This classification structure is
sufficient to test the effectiveness of the selected approach. If needed, the set of classes
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can be expanded without altering the classification process, implementation, or planned
solution. The class definitions were determined with input from a domain expert.

The training and validation dataset was collected from the same blackcurrant fields
where automated drone missions were conducted. After image acquisition, data annotation
was performed, where leaf instances were manually segmented and assigned to their
respective classes. The dataset consists of:

. 118 images of leaves classified as "Healthy Leaf",

. 109 images of leaves classified as "Leaf with Nutrient Deficiency",

. 102 images of leaves classified as "Leaf with Fungal Disease",

« 57 images containing instances belonging to multiple classes.

(See Figure 4 for reference.)

Figure 4. Leaf examples: fungal disease, healthy leaf, leaf with nutrient deficiency

For the classification task, three families of artificial intelligence models popular for

multi-class image classification were examined:
e ResNet, including ResNet50, ResNet101, and ResNet152;
o EfficientNet covering models from EfficientNet-BO0 to EfficientNet-B7;
¢  VGGNet, including VGG16 and VGG19.

ResNet (Residual Network) architectures are designed to address issues in deep neural
networks, such as the vanishing gradient problem. They use "skip" connections, allowing
information to bypass certain layers, enabling the training of very deep networks without
performance degradation, which is common in traditional deep networks .

EfficientNet is a highly efficient neural network architecture optimized for both
accuracy and resource usage. It employs a compound scaling approach, simultaneously
adjusting the network'’s width, depth, and resolution to enhance performance.

VGGNet is a classical deep neural network for image classification, known for its
simple and structured architecture. It primarily relies on convolutional layers with 3x3
filters. However, this design results in high computational complexity and memory
requirements, making it slower compared to more modern architectures (Simonyan,
2015).

For the classification process, the ResNet family was selected, with ResNet50,
ResNet100, and ResNet512 models considered during training. This choice was based on
ResNet’s high accuracy and performance, which surpass those of the VGGNet models.
From the comparison in Table 2, it is evident that ResNet effectively mitigates the gradient
vanishing problem, allowing the training of deeper networks without performance loss.
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While EfficientNet is highly efficient in resource utilization, ResNet provides an optimal
balance between accuracy and speed, which is crucial for blackcurrant leaf classification,
where high reliability and processing speed are required. These advantages make ResNet

the most suitable model family for successfully executing the given task.

Table 2. Comparison of Classification Model Families

Model Strengths Weaknesses Application Efficiency /
family areas Resource
usage
ResNet Solves the gradient | Deeper Image Efficient in
vanishing problem |architecture may |classification, |training deep
in deep networks | be challenging to |data analysis, |networks
using "skip" train with small | computer without
connections data vision performance
loss
EfficientNet | Optimizes both Higher Mobile High efficiency,
accuracy and complexity in the |applications, Al | low resource
resource usage optimization solutions requirements
through process
proportional
scaling
VGGNet Simple High Image Low efficiency
architecture, clear |computational classification, |and high
and intuitive complexity, computer memory
slower compared | vision, early requirements
to modern models | research
applications
Mask R- High gccur.acy, Resou_rce- Medical image Low real-time
CNN especially in intensive, slow, analysis, performance,
segmenting not suitable for | 3utonomous but excellent
overlapping and real-time tasks driving accuracy
complex objects

3.8. Summary

The proposed technology utilizes several artificial intelligence methods for a specific
application — monitoring the vegetation of blackcurrants. The selected methods proved to
be sufficiently effective for this particular application.




Technology for Blackcurrant Plantations Control Using Drones 751

4. Fields history

For every farm, it is beneficial to maintain a field record journal that logs all activities
within a specific agricultural area, including completed horticultural operations, the use of
crop materials, and plant protection products. Several information systems already exist
to support such functionalities.

This study, however, focuses on collecting field images, offering a different
perspective on historical data—both visually and through insights derived from image
analysis. The goal of our research is to develop a solution that allows for visual tracking
of field changes over time while also providing timely detection of plant health issues
identified through image analysis.

4.1. Field surveying process

To ensure field history tracking:

e identify the surveyed fields (this information is used to plan drone flight and
photography routes),

e conduct field surveys using drones to capture images and link them to specific
geolocations,

o analyse the images to identify plant health issues,

e visualize the extracted information on a map for better interpretation and
decision-making.

This type of solution is designed for horticulturists. Their main interest is tracking
long-term changes in fields, especially in crop cultivation involving perennial plants such
as blackcurrants. In such cases, even historical images taken from the same vantage point
can provide valuable insights into field conditions, moisture levels, pest infestations,
disease development, and more.

Although the functionalities may seem simple, this type of solution comes with certain
technical challenges. First, to obtain images suitable for whole-field analysis, several
hundred photos per hectare must be captured, making the imaging process time-
consuming and requiring multiple drone flights. Second, storing historical images can be
space-intensive, considering that blackcurrant plantations typically cover between 2 to 20
hectares. Third, analysing such a vast number of images is time-consuming, as it involves
identifying and classifying thousands of leaves.

To address these technical challenges, it is important to recognize that a complete
photographic record of the entire field is not necessary to assess the condition of
blackcurrant plantations. A similar approach is used in soil fertility assessment, where
sampling is conducted systematically at predetermined intervals—for example, every 20
meters. In this case, evaluating one hectare would require only 36 images, significantly
reducing storage and analysis demands. This approach would still provide sufficiently
representative information about the field’s condition and the spread of potential issues.

4.2. Field browser functions

The field browser provides the following key functions:
e Field survey planning — defining field boundaries, preferably using the territorial
division applied by the Rural Support Service.
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e Drone flight planning — setting flight routes and photography points, including
altitude and camera parameter configuration.

e Automated drone flight execution — performing flights autonomously and saving
captured images.

e Image analysis — conducting segmentation, identification, and classification
using a pre-trained neural network.

e Blackcurrant plantation condition monitoring — allowing selection of a specific
field for evaluation, enables to view images in different resolutions and
timeframes (field images can be viewed on different dates, switching between
them changes the displayed field area and resolution).

A sample result of the field browser operation is shown in Figure 5. A map of a 5-
hectare blackcurrant plantation was created using a drone, with a portion of the area
undergoing in-depth analysis—including segmentation, identification, and classification.
This analysis provides an overview of the plantation’s condition, revealing healthy leaves
— 97.4%, fungal disease presence — 1.7%, nutrient deficiency detected — 1.0% of the
surveyed area. This assessment of the plantation’s condition provides valuable insights for
the agronomist, enabling informed decisions on necessary crop management actions.
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Figure 5. Blackcurrant Field Condition (Nutrient Deficiency: 1.0%, Fungal Disease: 1.7%,
Healthy Leaves: 97.4%).

5. Discussion

The study results demonstrate new technologies for monitoring blackcurrant vegetation.
Instead of traditional visual assessments by horticulturists, an automated system is
proposed, offering several advantages: precise crop evaluation using Al methods,
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applicability to large blackcurrant plantations, economic efficiency, and ease of
implementation.

However, these achievements should be considered a first step toward precision
agriculture in blackcurrant cultivation, requiring further development. The proposed
approach relies on blackcurrant leaf analysis, which means it can only detect diseases
affecting leaves, while issues affecting roots and stems—such as blackcurrant clearwing
moth (Synanthedon tipuliformis) and blackcurrant bud mite (Eriophyes ribis)—remain
undetected.

Similarly, yield prediction requires an alternative approach, possibly analysing entire
blackcurrant bushes rather than just leaves. Pest infestations can also only be partially
identified through leaf analysis.

Nevertheless, other blackcurrant cultivation challenges, such as crown rust, can be
identified using similar methods by analysing different plant parts, segmenting them in
images, and classifying them based on the specific problem being addressed.

5.1. Additional applications of the method

A diligent horticulturist monitors not only the spread of blackcurrant diseases but also
frost damage, flowering progress, yield ripening time and volume predictions, and other
vegetation-related events. Although these aspects were not the primary focus of this study,
they could be addressed by modifying the proposed method—for example, by segmenting
and classifying flower buds and berry clusters accordingly.

Beyond plant vegetation monitoring, the method can also be applied to optimizing
agricultural operations. By identifying disease-affected field areas, maintenance tasks
such as targeted spraying can be carried out only in infected regions. This would lead to
significant savings in materials and labour resources.

A promising direction for further development is integrating the method into dynamic
robotic management. By transferring real-time data from the blackcurrant plant analysis
module to an agricultural operations execution robot, it would be possible to perform
precise interventions only where necessary, further increasing efficiency and
sustainability.

5.2. Limitations of the method’s application

When analysing the benefits of the proposed method, it is also important to highlight its
limitations.

One key limitation is the lack of precision in determining nutrient deficiencies. While
the method can detect a deficiency, it cannot specify which particular nutrient—
potassium, phosphorus, or nitrogen—is lacking. Currently, this type of analysis is
performed using soil and plant agrochemical testing, which involves manually collecting
soil and leaf samples. This process requires significant labor resources.

A more advanced approach involves spectral analysis of plants, which can provide
more precise nutrient deficiency diagnostics. However, this requires more complex
imaging cameras and advanced processing methods, which are not yet widely available
due to high costs and a lack of specialists.

Additionally, leaves are just one indicator of plant health, but they do not reveal all
potential issues. For example, pest infestations, such as the blackcurrant clearwing moth,
which primarily affects the stems rather than the leaves, cannot be detected using this
method. Furthermore, yield estimation—a crucial aspect from an economic perspective—
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is not covered by this approach. Addressing these gaps requires further research and
development in this field.

6. Conclusions

Key conclusions of the conducted research and its application results:

1.

Integration of Drones and Al is Effective for Precision Agriculture. The
proposed system successfully integrates drone-based imaging with artificial
intelligence methods to monitor blackcurrant plantations. This approach enables
accurate, large-scale assessment of plant health conditions while reducing the
need for manual inspection.

Modular Architecture Ensures Flexibility and Scalability. The system's modular
structure—mapping, identification and segmentation, and classification—allows
for flexibility in adapting the pipeline to different crops or environmental
conditions. Each module can be fine-tuned or replaced independently to improve
performance.

Mapping functions can be implemented using standard solutions available in
commercial drone systems or through adapting open-source solutions for
blackcurrant cultivation. Identification and segmentation solutions must be
developed individually in collaboration with industry experts—in this project’s
case, blackcurrant growers. This includes training a neural network for leaf
recognition and transmitting the identified leaf information for classification. The
classification task involves training a neural network to recognize specific
characteristics of blackcurrant leaves, which is the project's final goal and of
interest to horticulturists.

YOLO Models Balance Speed and Accuracy for High-Volume Analysis.
While models like Mask R-CNN offer higher segmentation accuracy, the YOLO
model family was selected for its superior processing speed, making it more
suitable for handling the large volume of images required in agricultural drone
surveys.

ResNet Models Provide Robust Classification Capabilities. The ResNet family
of models proved optimal for classifying blackcurrant leaves due to their ability
to train deep networks efficiently. Their balance of accuracy and computational
efficiency makes them suitable for real-world deployment in agricultural settings.
System Supports Informed Decision-Making for Growers. By providing detailed
visualizations and health assessments of blackcurrant plantations, the system aids
growers in making timely decisions regarding interventions such as fertilization
or disease management.

Field-Validated Data Collection Enhances Reliability. The use of annotated
datasets created from real blackcurrant fields ensures that the models are trained
and validated with realistic, domain-specific data, improving the accuracy and
practical applicability of the system.

Potential for Wider Application. Although developed specifically for
blackcurrants, the solution demonstrates potential for adaptation to other types of
crops and agricultural monitoring tasks, supporting broader applications in
precision horticulture.

Following the identification of fungal diseases and nutrient deficiencies, potential
future applications include yield prediction, pest detection, and identification of other
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plant diseases. A key challenge remains improving the speed of image analysis, as
computational demands may exceed the capabilities of simple and inexpensive hardware.
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