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Abstract. In the modern knowledge era, the exponential growth of digital solutions has led to the 

generation of vast amounts of data. This necessitates the development of data and knowledge-

driven advanced techniques to extract insights and support informed decision-making. Within this 

context, the detection of anomalies, data points that deviate significantly from expected patterns, 

becomes crucial as these anomalies can arise due to diverse factors, including sensor errors, data 

corruption, and changes in underlying processes, all of which may impact system performance, 

accuracy, and overall efficiency. This paper thoroughly examines the diverse frameworks and 

architectures established for anomaly detection across multiple domains. It highlights the 

complexity associated with the nature of anomalies, which are often domain-specific and 

contextually bound, thereby presenting significant challenges in devising a universal framework 

capable of addressing anomalies regardless of the domain or context of the application. To address 

these challenges, the author proposes a comprehensive anomaly detection framework feature set 

(ADF2S) that captures the functional, structural, and operational dimensions of anomaly detection 

frameworks. The proposed anomaly detection framework feature set (ADF2S) and its cross-

framework evaluation contribute a practical foundation for researchers and practitioners, 

supporting the development of anomaly detection frameworks capable of balancing scalability, 

interpretability, and resilience. 

Keywords. anomaly detection, anomaly detection framework, knowledge discovery, machine 

learning, anomaly detection framework feature set (ADF2S). 

1. Introduction 

In an era of exponential growth of data, the ability to detect anomalous behaviour within 

large and complex datasets has become more critical than ever. From cybersecurity 

threats and fraud detection to industrial system failures and health monitoring, anomaly 

detection serves as a foundational technique for ensuring reliability, security, and 

efficiency across domains. Anomalies, also known as outliers, novelties, or exceptions, 

represent patterns in data that deviate significantly from expected behaviour (Chandola 

et al., 2009). Their identification is often an early indication of critical events or hidden 

knowledge (Pimentel et al., 2014). Anomaly detection is naturally related to the broader 

field of knowledge discovery. As a central step in the knowledge discovery process, 
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anomaly detection enables the extraction of actionable and previously unknown insights 

from massive datasets. In this context, machine learning plays a crucial role by providing 

scalable, adaptable, and intelligent models capable of identifying complex and subtle 

deviations from norms (Aggarwal, 2013). Whether through supervised, unsupervised, or 

semi-supervised approaches, machine learning techniques are frequently at the core of 

modern anomaly detection frameworks. The importance of anomaly detection has grown 

rapidly with the increasing volume, velocity, and variety of data generated in real-time 

from various systems.  

The presence of sensors, interconnected systems, and user-driven digital platforms 

has led to environments where millions of data points are produced every second. This 

data presents unique challenges, including the high dimensionality of data, concept drift, 

class imbalance, and lack of labelled data, particularly for rare or unknown anomalies 

(Goldstein and Uchida, 2016). These difficulties necessitate sophisticated frameworks 

capable of adaptive learning, contextual awareness, and explainability. Beyond technical 

complexity, anomaly detection also faces conceptual and operational challenges. The 

very definition of what constitutes an “anomaly” is often domain-specific and context-

dependent (Chandola, et al., 2009). In some scenarios, anomalies may reflect genuine 

faults; in others, may reveal novelties or trends (Pimentel et al., 2014). Thus, frameworks 

must be precise in identifying irregularities and flexible enough to interpret their 

significance in a dynamic environment (Ahmed et al., 2015). New frontiers are being 

explored in areas such as explainable AI and graph-based anomaly detection, which 

integrate expert feedback into the learning process (Choi et al.,2022) (Eberle and Holder, 

2015). As such, anomaly detection is an actual research area that adapts to emerging 

technological, societal, and methodological shifts. 

2. From knowledge to knowledge discovery: foundations for 

anomaly detection 

In the context of modern data-driven systems, the concept of knowledge extends far 

beyond raw information. Knowledge can be broadly defined as structured, 

contextualised, and actionable information, which enables informed decision-making, 

problem-solving, and innovation (Nonaka and Takeuchi, 1995). Unlike data, which 

consist of unprocessed facts, or information, which refers to organized data imbued with 

meaning, knowledge reflects an integration of experience, interpretation, and insight. 

With the digital transformation of industries and services, knowledge workers - 

individuals who engage in tasks involving critical thinking, analysis, and problem-

solving - have become central to organizational value creation (Davenport, 2005). As 

data volume and complexity increase, manual or intuitive methods for deriving 

knowledge become insufficient, paving the way for computational support in uncovering 

patterns and relationships (Jansevskis and Osis, 2024). The paradox of today’s digital 

ecosystem lies in the fact that while organisations are inundated with data, they often 

lack knowledge. Extracting useful, actionable insights from terabytes or petabytes of 

data demands systems that go beyond storage and computation, require systems that 

understand the semantics of information and can detect deviations from expected 

patterns (Thudumu et al., 2020). This is where knowledge discovery becomes 

indispensable. 
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Knowledge Discovery in Databases (KDD) refers to the process of identifying valid, 

novel, potentially useful, and ultimately understandable patterns in data (Fayyad et al., 

1996). This process focuses on transforming data into knowledge through a sequence of 

operations, including data selection, preprocessing, transformation, data mining, and 

interpretation/evaluation (Frawley et al., 1992). Within this process, data mining plays a 

crucial role by applying algorithms to extract patterns from data (Al-Faouri, 2023). In 

this context, anomaly detection is one of the core data mining tasks, alongside 

classification, clustering, and association rule learning (Klosgen and Zytkow, 1996). In 

contrast to traditional analytical approaches, knowledge discovery enables systems to 

identify unexpected behaviours, emergent trends, and hidden structures, which are often 

indicated by anomalies. 

3. Overview of anomaly detection 

Anomaly detection has been an intriguing field for researchers and practitioners that has 

been studied for centuries (Nassif et al., 2021). Numerous distinct methods and 

approaches have been developed over time to detect anomalies across different 

applications, domains, and contexts. Starting from statistical methods to machine 

learning and neural networks, anomaly detection methods have been developed and 

reshaped by employing sophisticated and complex methods that improve the 

performance and efficiency of such systems (Mishra and Kumar, 2022). The concept of 

anomalies is defined as patterns in data that do not conform to a well-defined notion of 

expected behaviour (Barnard and Stryker, 2023). As such, patterns or behaviours in data 

that deviate from normal behaviour are referred to as anomalies or outliers, depending on 

the domain or context in which anomaly detection techniques are applied (Steenwinckel 

et al., 2021) (Injadat et al., 2018). Examples of such applications include fraud detection, 

loan application processing, monitoring of medical conditions, cybersecurity intrusion 

detection, and fault detection for predictive maintenance (Nassif et al., 2021). 

4. Anomaly detection frameworks 

An essential consideration in the development of anomaly detection frameworks is the 

acknowledgement of the domain-specific nature of anomalies (Alam et al., 2019). This 

characteristic introduces significant challenges in creating a generic framework capable 

of detecting all forms of anomalies, regardless of domain-specific conditions or data 

characteristics (Pang et al., 2021). The complexity associated with high-dimensional data 

and contextual anomalies cannot be understated, as they prevent the generalizability of 

detection approaches across different applications (Choi et al., 2021). Moreover, there is 

a need for a comprehensive taxonomy that systematically analyses the diverse anomaly 

detection frameworks’ features and capabilities based on their characteristics and level 

of granularity (Feng et al., 2025) (Zhou et al., 2022). 

Anomaly detection can signal system faults, cyberattacks, or inefficiencies, making 

their timely and accurate detection crucial for operational resilience and efficiency 

(Cauteruccio et al., 2021) (Fan and You, 2024). Over the past decade, anomaly detection 

frameworks have evolved from rule-based approaches to sophisticated machine learning 
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driven systems capable of processing complex, high-dimensional, and temporal data 

(Chai et al., 2022). Modern anomaly detection frameworks and architectures often 

integrate components, including feature selection, model ensemble, time-series analysis, 

and explainability. These components are crucial for identifying relevant patterns and 

attributing anomalous behaviour to specific systemic or operational contexts. The 

effectiveness of such frameworks largely depends on how they leverage selected 

features, whether statistical, contextual, or domain-specific, to inform the detection 

process (Alam et al., 2019). 

In this research, three influential anomaly detection frameworks are analysed in 

depth to examine how each leverages selected features for anomaly identification. These 

frameworks were chosen following a systematic review of 54 anomaly detection 

frameworks identified through searches of scientific databases (Scopus, ScienceDirect, 

and IEEE Xplore) using the terms “anomaly detection framework” and “anomaly 

detection architecture”. Framework selection was guided by the following criteria: [1] 

the framework was published within the past ten years; and [2] the corresponding 

publication achieved a Field-Weighted Citation Impact (FWCI) of at least five according 

to Scopus, indicating a substantial contribution to the domain. In addition to these 

criteria, the selected frameworks represent distinct architectural paradigms and 

methodological diversity, thereby providing a comprehensive cross-section of the 

anomaly detection landscape. Based on these criteria, the following state-of-the-art 

anomaly detection frameworks were selected: “Opprentice: Towards Practical and 

Automatic Anomaly Detection Through Machine Learning” (Liu et al., 2015), “An 

Ensemble Learning Framework for Anomaly Detection in Building Energy 

Consumption” (Araya et al., 2017), and “Time-Series Anomaly Detection Service at 

Microsoft” (Ren et al., 2019). Collectively, these frameworks serve as representative 

examples of the broader design space, encompassing supervised and unsupervised 

learning, ensemble-based modelling, time-series anomaly detection, domain-specific 

integration, and production-grade scalability. Moreover, they have demonstrated 

significant impact in both academia and industry, as reflected in their citation volume, 

adoption, and influence on subsequent research and industrial solutions. 

4.1. Opprentice: automatic anomaly detection through machine learning 

Among the foundational contributions to the field of anomaly detection, the framework 

depicted in Figure 1, proposed in the research article “Opprentice: Towards Practical and 

Automatic Anomaly Detection Through Machine Learning”, stands out for its practical 

orientation and system-level applicability (Liu et al., 2015). Unlike traditional methods 

that often require expert intervention for algorithm selection and parameter tuning, 

Opprentice introduces an end-to-end, automated anomaly detection system that leverages 

a meta-learning strategy to dynamically select the most appropriate detection algorithm 

based on the characteristics of the input data (Liu et al., 2015). This feature enhances 

usability and lowers the technical barrier for deployment in real-world monitoring 

systems. The framework is structured around several key components: a data collector 

and repository, a feature extractor, a model training and selection engine, and a runtime 

detector. Together, these components enable the system to process large volumes of 

heterogeneous system metrics, train and select the most suitable detection model, and 
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then apply this model for real-time anomaly detection with minimal computational 

overhead.  

 
 

Figure 1: Opprentice anomaly detection architecture (Liu et al., 2015) 

The framework is particularly relevant in large-scale IT operations and cloud 

environments, where telemetry data is generated continuously and must be processed in 

real time (Liu et al., 2015). By validating the approach on extensive production datasets, 

the study demonstrates high detection accuracy and low false-positive rates, thereby 

offering a scalable and efficient solution for anomaly detection in operational settings. 

The Opprentice anomaly detection framework contributes significant value to the 

domain by bridging the gap between theoretical models and practical, large-scale 

deployments. Moreover, it has influenced the design of subsequent industrial-grade 

detection systems, underscoring its enduring relevance and foundational role in the 

evolution of automated, machine learning–based anomaly detection frameworks. 

4.2. Ensemble anomaly detection framework in energy consumption 

The second selected framework in Figure 2, developed focuses on smart buildings, 

where energy consumption data presents a challenging time series prediction problem. In 

their work, the authors proposed an Ensemble Anomaly Detection (EAD) framework 

specifically designed to detect anomalous patterns in building energy consumption data 

(Araya et al., 2017). The EAD framework is based upon the core principles of Collective 

Contextual Anomaly Detection using the Sliding Window (CCAD-SW) framework, 
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adapted by the authors. The results indicated that the EAD framework improved the 

sensitivity of the CCAD-SW by 3.6% and reduced the false alarm rate by 2.7% (Araya et 

al., 2017). As a result, it demonstrates the effectiveness of the ensemble approach in 

enhancing anomaly detection capabilities. 

 

 

Figure 2: Ensemble anomaly detection (EAD) framework (Araya et al., 2017) 

The primary aim of the framework is to enhance the accuracy and robustness of 

anomaly detection in the presence of complex, multivariate, and temporally dynamic 

energy usage profiles. The EAD framework employs a heterogeneous ensemble learning 

approach that integrates multiple base learners, including One-Class Support Vector 

Machines (OC-SVM), Isolation Forests, and Autoencoders, each capturing distinct 

characteristics of the data (Araya et al., 2017). By aggregating the outputs of these 

individual models, the ensemble produces a composite anomaly score that is more 

resilient to the limitations of any single method (Araya et al., 2017). These predictive 

components are trained to estimate expected energy consumption based on historical 

data and contextual variables. Anomalies are then inferred from deviations between 

predicted and observed values. The EAD framework enhances robustness and reliability 

by combining the outputs of pattern-based and prediction-based models using an 

ensemble approach. It is found that the optimal detection threshold for the ensemble is 

the result of an independent optimization process, emphasizing the importance of 

ensemble calibration. 

4.3. Time series anomaly detection service at Microsoft 

In this research, the authors present a comprehensive framework for time-series anomaly 

detection that represents a production-scale system deployed at Microsoft, as illustrated 

in Figure 3. The framework is designed for real-time monitoring of time-series data 

across a range of cloud-based applications, including Office and Azure, and emphasizes 
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scalability, automation, and low latency (Ren et al., 2019). To achieve these objectives, 

the authors propose a novel algorithm that combines Spectral Residual (SR) and 

Convolutional Neural Network (CNN) techniques. This work represents the first 

application of the SR model, originally developed for visual saliency detection, to the 

domain of time-series anomaly detection (Ren et al., 2019). The integration of SR and 

CNN significantly enhances detection performance, leading to substantial improvements 

in anomaly detection accuracy and robustness. 

 
 

Figure 3: Time series anomaly detection system at Microsoft (Ren et al., 2019) 

The proposed framework outperforms existing state-of-the-art models, achieving an 

F1-score improvement of over 20% on Microsoft production data (Ren et al., 2019), 

demonstrating the effectiveness of the combined approach in real-world applications. It 

is designed to be general and efficient, enabling seamless integration with online 

monitoring systems and providing rapid alerts for critical metrics, essential for large-

scale, real-time operations. The framework maintains an unsupervised learning approach 

by generating synthetic anomalies to train the CNN. In practical deployments, it has 

allowed product teams to detect issues more quickly, reduce manual intervention, and 

accelerate diagnostic processes. 

5. Anomaly detection framework feature set 

The design and evaluation of anomaly detection frameworks require a structured 

understanding of the core capabilities these systems must possess. Based on a 

comprehensive review of the literature and the analysis of existing state-of-the-art 

frameworks mentioned in the previous section, the author proposes a feature set that 
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captures the most crucial dimensions along which anomaly detection frameworks can be 

characterised. As shown in Figure 4, the proposed Anomaly Detection Framework 

Feature Set (ADF2S) includes: Data Handling & Input Capabilities, Anomaly Detection 

Type Support, Detection Techniques Flexibility, Adaptability, Explainability and 

Interpretability, and Data Quality Aware Anomaly Detection. Each feature of the ADF2S 

is further divided into subcategories, which represent specific mechanisms, data 

properties, or learning paradigms relevant to the main feature. 

 

 

 
 

                                Figure 4: Anomaly detection framework feature set (ADF2S) 

 

The primary categories in ADF2S capture high-level functional dimensions, such as data 

handling, detection techniques, and adaptability, because they reflect broad system-level 

requirements that recur across domains. However, these high-level capabilities are too 

coarse to meaningfully differentiate between frameworks. To address this, each main 

feature is decomposed into sub-features that represent the concrete technical 

mechanisms, algorithmic paradigms, or system design choices through which the high-

level capability is operationalized. The hierarchical structure aligns with the way this 

research organizes anomaly detection methods and system capabilities. Grouping 

conceptually related mechanisms under a shared parent feature ensures that the 

taxonomy maintains conceptual coherence and follows established scientific 

conventions. Overall, the feature set taxonomy provides a conceptual platform for 

evaluating the completeness, flexibility, and domain suitability of anomaly detection 

frameworks, enabling a nuanced discussion of how design choices affect system 

performance and applicability. 
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The review followed an iterative synthesis approach: first, a broad corpus of anomaly 

detection studies, including machine learning–based approaches, time-series models, and 

system-level architectures, was examined to identify recurring functional requirements 

and modelling practices. These concepts were then cross-referenced with capabilities 

described in research articles and industry-grade platforms to ensure practical relevance 

and contemporary applicability. Features were grouped and refined through thematic 

clustering, allowing coherent high-level categories and their corresponding sub-features 

to emerge. This methodology ensured that the resulting ADF2S taxonomy is grounded in 

scientific knowledge while reflecting operational considerations observed in real-world 

anomaly detection deployments. Consequently, the feature set represents an evidence-

based synthesis of the key conceptual and technical elements consistently highlighted 

across both academic literature and industrial implementations. 

5.1. Data handling and input capabilities anomaly detection feature 

The capability of an anomaly detection framework largely depends on its ability to 

effectively handle and process the data on which it operates. The data handling and input 

capability feature captures a framework’s flexibility in accommodating diverse data 

types, processing paradigms, and levels of structural complexity (Goldstein and Uchida, 

2016). This feature is further subdivided into three components: multi-modal data 

support, data processing, and multivariate support, each of which plays a critical role in 

defining the framework’s operational scope and applicability across domains. 

Modern systems generate data from heterogeneous sources, including sensors, logs, 

network traffic, and structured time-series metrics. Anomaly detection frameworks that 

support multi-modal data can integrate insights across different data representations, 

enabling a more holistic understanding of system behaviour. In this taxonomy, multi-

modal data is categorized into three subtypes: time-series data, graph data, and log data. 

Time-series data is the most prevalent input format for anomaly detection, particularly in 

domains such as industrial monitoring, finance, and healthcare (Choi et al., 2021) 

(Thudumu et al., 2020). Frameworks must process temporally ordered observations to 

capture trends, seasonality, and temporal anomalies (Ren et al., 2019). 

Graph-structured data, increasingly important in cybersecurity, social networks, and 

network infrastructure, encodes relationships among entities. Frameworks supporting 

graph data can identify structural or topological anomalies, such as compromised nodes 

or anomalous information flows (Eberle and Holder, 2015). Log data, common in IT and 

software systems, consists of unstructured or semi-structured textual records. Effective 

anomaly detection frameworks parse, tokenize, and extract patterns from logs to detect 

deviations in event sequences or semantic content (Filzmoser et al., 2008). 

Anomaly detection frameworks also differ in their data ingestion and analysis 

strategies, which are broadly categorized as batch processing and real-time streaming. 

Batch processing involves analysing data in fixed intervals or accumulated batches and 

is well-suited for retrospective analysis, scheduled system checks, or environments 

where immediate response is not critical (Xu et al., 2023). Due to its computational 

simplicity and ease of implementation, this approach is commonly adopted by traditional 

frameworks (Araya et al., 2017). In contrast, real-time streaming enables continuous 

processing of incoming data streams, allowing anomalies to be detected as they occur. 

Such capabilities are essential in domains requiring near real-time responses, including 
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financial fraud detection, cloud service monitoring, and fault detection in critical 

infrastructure (Ren et al., 2019). 

In complex systems, anomalies often arise from interactions among multiple 

variables rather than from isolated data streams. The multivariate support sub-feature 

captures a framework’s ability to model these interdependencies (Wang et al., 2025). 

Univariate approaches analyse each data stream independently and, while 

computationally efficient, may fail to detect correlated anomalies spanning multiple 

variables. Multivariate approaches, by contrast, analyse multiple data streams 

simultaneously, enabling the detection of more complex and interrelated anomaly 

patterns. Collectively, these data handling and input capabilities define how effectively 

an anomaly detection framework can operate across varying data types, processing 

requirements, and system complexities. 

5.2. Anomaly detection type support anomaly detection feature 

The anomaly detection type support feature characterizes the types of anomalies a 

framework is capable of identifying, which are closely related to the nature of the 

underlying data. Broadly, anomalies are commonly classified into three categories: point 

anomalies, contextual anomalies, and collective anomalies (Chandola et al., 2009). A 

point anomaly occurs when an individual data instance significantly deviates from the 

rest of the dataset and is therefore considered anomalous. This is the simplest and most 

commonly addressed form of anomaly. Examples include a sudden spike in a patient’s 

blood pressure or an unusually large transaction amount in a banking system. A 

contextual anomaly arises when a data instance is anomalous only within a specific 

context, despite appearing normal in other circumstances (Chandola et al., 2009). In such 

cases, contextual information, such as time, location, or environmental conditions, is 

essential for correct interpretation. For example, a temperature of 10 °C may be normal 

during winter but anomalous during summer in a given region. Collective anomalies 

refer to groups of related data instances that are anomalous when considered together, 

even though individual instances within the group may not appear anomalous on their 

own (Araya et al., 2017). These anomalies often emerge from sequential or correlated 

patterns in the data. A typical example is a series of login attempts from different IP 

addresses within a short time window, which may indicate a coordinated attack (Choi et 

al., 2021). Because collective anomalies are not easily identifiable at the level of 

individual data points, long-term contextual and temporal analysis is particularly 

important for their detection. Consequently, support for different anomaly types 

constitutes a critical characteristic of anomaly detection frameworks. It influences the 

choice of detection techniques, contextual modelling strategies, and overall system 

design, thereby aligning framework capabilities with the specific anomaly patterns 

present in the target application domain. 

5.3. Detection techniques flexibility anomaly detection feature 

The detection technique flexibility feature captures the range of methods and algorithms 

employed by anomaly detection frameworks across different system architectures. 

Statistical anomaly detection techniques represent some of the earliest approaches in this 

domain (Chandola et al., 2012). These methods model normal data behaviour using 
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statistical assumptions and identify anomalies as deviations from the learned 

distribution. Common statistical approaches include parametric techniques such as 

Gaussian distribution modelling, hypothesis testing, and time-series models (Bhuyan et 

al., 2014). In recent decades, machine learning–based techniques have become 

increasingly prominent in anomaly detection. Machine learning aims to automate 

knowledge acquisition from data examples (Bose and Mahapatra, 2001) and is widely 

used to construct models that distinguish between normal and anomalous patterns 

(Mahapatra and Bose, 2001). Advanced machine learning algorithms are particularly 

effective in handling high-dimensional data and learning complex patterns, thereby 

improving detection accuracy and efficiency (Herr et al., 2021). 

Based on the availability of labelled data, anomaly detection techniques are 

commonly categorized into supervised, unsupervised, and semi-supervised approaches. 

Supervised anomaly detection relies on labelled datasets containing both normal and 

anomalous instances. In this setting, a predictive model is trained to discriminate 

between the two classes. However, supervised approaches face several challenges, 

including the severe imbalance between normal and anomalous samples and the 

difficulty of obtaining accurate and representative labels for anomalies (Chatterjee and 

Ahmed, 2022). Additionally, discrepancies between training and testing anomaly 

distributions can degrade performance. In contrast, unsupervised anomaly detection does 

not require labelled training data and operates under the assumption that anomalies are 

rare compared to normal instances. These methods identify deviations based on inferred 

data structure or distribution. While widely applicable, unsupervised approaches may 

produce high false alarm rates when the underlying assumptions about anomaly rarity or 

data distribution do not hold (Nassif et al., 2021). Consequently, much recent research 

has focused on improving unsupervised techniques, particularly for large-scale and 

unlabelled datasets (Pang et al., 2021). 

Semi-supervised anomaly detection occupies a middle ground, where training data 

consists only of labelled normal instances. Any data point that deviates from the learned 

normal behaviour is flagged as anomalous. Because anomaly labels are not required, 

semi-supervised methods are often more practical than fully supervised approaches. 

Many semi-supervised techniques can also be adapted to operate in an unsupervised 

manner by assuming that training data contains very few anomalies, which minimally 

affect model learning (Nassif et al., 2021). Across application domains such as finance, 

manufacturing, and the Internet of Things (IoT), supervised, unsupervised, and semi-

supervised machine learning approaches have been extensively studied and applied (Torr 

and Murray, 1993) (Marsland, 2001). Recent studies suggest that semi-supervised 

methods often outperform supervised approaches in real-world settings, particularly 

when labelled anomaly data are scarce or incomplete (Sunny et al., 2022). These 

techniques are especially suitable for high-dimensional datasets with large proportions of 

unlabelled data, a common characteristic in many operational environments (Filzmoser 

et al., 2008). 

5.4. Adaptability anomaly detection feature 

The adaptability feature captures a framework’s ability to maintain accuracy and 

relevance in dynamic environments where data distributions evolve. In real-world 

systems, such as cloud infrastructure and financial markets, the assumption of 
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stationarity rarely holds (Chatterjee and Ahmed, 2022). Consequently, anomaly 

detection models must incorporate mechanisms to respond to shifting behavioural 

patterns, commonly referred to as concept drift, to prevent performance degradation over 

time (Chatterjee and Ahmed, 2022). This dimension comprises three interrelated sub-

features that collectively define a framework’s adaptability: concept drift handling, 

model real-time update support, and self-tuning adaptation. 

Concept drift refers to gradual changes in the underlying data distribution that alter 

the definition of normal behaviour. If left unaddressed, such changes can lead to 

increased false positives or missed anomalies. Frameworks that support concept drift 

handling can detect these shifts and adjust their internal models accordingly, for 

example, by recalibrating decision boundaries, retraining models, or updating statistical 

parameters (Chatterjee and Ahmed, 2022). 

Model real-time update support denotes a framework’s ability to incrementally 

update its models in response to incoming data, rather than relying on full retraining. 

This capability is critical in real-time applications where batch retraining is 

computationally expensive or insufficiently responsive to rapid system changes (Zuo et 

al., 2019). In anomaly detection, real-time updates enable continuous model refinement 

as new patterns emerge, allowing for rapid adaptation. Frameworks with this capability 

are particularly well suited to streaming data environments, such as network monitoring 

and predictive maintenance in sensor networks (Choi et al., 2021). 

Self-tuning adaptation refers to internal mechanisms that automatically adjust 

detection parameters, such as thresholds, sensitivity levels, or window sizes, without 

manual intervention (Alam et al., 2019). This capability reduces reliance on domain 

expert tuning, thereby improving scalability and deployment efficiency. By adapting to 

variations in noise levels, system load, and behavioural patterns, self-tuning mechanisms 

help anomaly detection frameworks maintain robust performance across changing 

operational conditions. 

5.5. Explainability and interpretability anomaly detection feature 

In modern anomaly detection frameworks, explainability and interpretability have 

emerged as essential features, particularly in safety-critical and regulated application 

domains (Zhong et al., 2023). These capabilities describe the extent to which a model’s 

decision-making process, specifically its anomaly detection outcomes, can be 

understood, traced, and justified by human users. As anomaly detection systems are 

increasingly integrated into operational pipelines, the ability to explain why a particular 

data point is classified as anomalous is critical for establishing trust, ensuring 

accountability, and enabling informed responses (Choi et al., 2022). This feature 

dimension comprises two primary subcomponents: feature attribution and visual 

interpretability, each contributing in distinct ways to user understanding of the detection 

process. 
Feature attribution refers to a framework’s ability to identify and quantify the 

influence of individual input features on an anomaly detection decision. In machine 

learning–based systems, particularly those employing ensemble or deep learning 

methods, detection mechanisms are often opaque (Zhong et al., 2023). Feature 

attribution techniques mitigate this opacity by producing saliency scores or importance 

rankings that highlight which variables or input patterns contributed most strongly to an 
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anomaly decision. For example, when a spike in network latency is flagged as 

anomalous, feature attribution may indicate that the deviation is driven primarily by 

unusual memory usage rather than CPU load. Such insights are essential for root cause 

analysis, model validation, and debugging by domain experts (Choi et al., 2022). In 

addition, model-agnostic explanation methods can be integrated to provide interpretable 

outputs even for black-box models. 

Visual interpretability concerns the presentation of anomaly detection results through 

intuitive and informative visual representations. Effective visualization enables system 

operators and analysts to assess the validity of detected anomalies, explore deviations 

across time and variables, and make informed decisions based on system feedback. By 

rendering complex statistical or algorithmic outputs accessible to non-technical 

stakeholders, visual interpretability significantly enhances the usability and operational 

integration of anomaly detection frameworks (Zhong et al., 2023). 

5.6. Data quality-aware anomaly detection feature 

Anomaly detection frameworks are rarely applied to fully reliable data sources; instead, 

they typically operate under conditions of uncertainty, noise, missing values, or partial 

system failure. To maintain performance and reliability under such conditions, 

frameworks must incorporate mechanisms that recognize and adapt to data quality 

issues. This motivates the inclusion of data quality–aware anomaly detection as an 

important feature dimension, emphasizing that effective anomaly detection must be 

sensitive to the integrity, completeness, and reliability of input data (Kittler et al., 2014). 

When properly integrated, data quality awareness improves detection precision and the 

trustworthiness of system outputs. This feature dimension is defined by three key 

subcategories. 
Data quality handling refers to a framework’s ability to process and remain robust to 

common data inconsistencies, including noise, missing values, and outliers. In many 

domains, such as sensor networks, log telemetry, and business analytics, data 

degradation is unavoidable (Kittler et al., 2014). To mitigate its impact, frameworks 

employ preprocessing or model-level strategies, such as imputation, smoothing, or 

robust statistical techniques, ensuring that detected anomalies are not artefacts of poor 

data quality (Alam et al., 2019). Data quality handling focuses on input resilience, and 

data integrity monitoring concerns a framework’s ability to detect failures in the data 

collection, transmission, or storage pipeline. These failures may include corrupted files, 

communication breakdowns, timestamp misalignment, or format inconsistencies, all of 

which can compromise anomaly detection results. Frameworks equipped with integrity 

monitoring mechanisms may enforce schema validation, track metadata consistency, or 

generate alerts when data streams deviate from expected structural norms (Sunny et al., 

2022). This capability is particularly important in automated pipelines, where detection 

reliability depends on the integrity of upstream data sources. Beyond technical integrity, 

data reliability and trustworthiness capture a framework’s ability to assess and 

communicate confidence in both the input data and its anomaly detection outputs. This 

may involve assigning reliability scores to data sources, quantifying uncertainty in model 

predictions, or flagging results derived from potentially compromised inputs. 



 ADF2S Feature Set of Anomaly Detection Framework Based on Knowledge Discovery  63 

 

6. Anomaly detection frameworks' alignment with feature sSet 

This research introduces the Anomaly Detection Framework Feature Set (ADF2S) to 

analyze the selected anomaly detection frameworks. The objective is to assess how 

ADF2S aligns with the architectural and functional characteristics of these frameworks. 

Accordingly, a systematic evaluation of Opprentice (Liu et al., 2015), the Ensemble 

Anomaly Detection (EAD) framework (Araya et al., 2017), and the Microsoft Time-

Series Anomaly Detection service (Ren et al., 2019) is conducted using the proposed 

ADF2S. Table 1 summarizes the presence or absence of each feature, while the 

subsequent discussion provides interpretative insights into the architectural focus, 

strengths, and limitations of each framework. The evaluation follows a structured 

feature-mapping methodology, in which each ADF2S feature and sub-feature is 

examined against the technical descriptions, architectural details, and methodological 

explanations reported in the corresponding publications. For each feature, the degree of 

support is assessed using a three-level classification scheme: (✓) Supported, indicating 

that the framework explicitly implements or relies on the feature as part of its core 

design; (✗) Not Supported / Not Mentioned, indicating that no evidence of the feature is 

provided or that the capability is absent; and (!) Partially Supported, denoting cases in 

which a feature is indirectly present, incompletely supported, applied only in a limited 

context, or implied without full integration into the framework’s operational pipeline. 

This interpretive classification enables a consistent and reproducible evaluation across 

heterogeneous frameworks, particularly given the diversity of algorithmic approaches, 

data modalities, and architectural assumptions represented in the selected works. 
The Opprentice framework places strong emphasis on data preprocessing and the use 

of supervised machine learning for anomaly classification. It supports both univariate 

and multivariate time-series data and employs an ensemble of statistical detectors for 

feature extraction prior to classification using a Random Forest model (Liu et al., 2015). 

This design enables effective detection of point anomalies in well-labelled batch 

datasets. Opprentice also incorporates a basic self-tuning adaptation mechanism through 

threshold smoothing, providing limited adaptive behaviour. However, the framework 

does not support real-time streaming and instead relies on periodic batch retraining. In 

addition, Opprentice lacks model real-time update capabilities, support for contextual or 

collective anomaly types, and feature attribution mechanisms for interpretability. The 

framework also does not explicitly address data integrity monitoring or provide 

explainable outputs, which limits its applicability in regulated or safety-critical 

environments. 

The Ensemble Anomaly Detection (EAD) framework is specifically tailored to the 

energy consumption domain and employs supervised learning through a combination of 

pattern-based collective contextual anomaly detection using sliding windows (CCAD-

SW) and prediction-based detectors, including Support Vector Regression (SVR) and 

Random Forest models (Araya et al., 2017). 
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It supports multivariate data by integrating contextual features such as weather 

conditions and occupancy information, and is among the few frameworks that explicitly 

address collective anomalies. EAD’s primary strengths lie in its high detection accuracy 

within its target domain and its modular ensemble-based architecture. Nevertheless, the 

framework is fundamentally batch-oriented and lacks support for real-time streaming, 

incremental model updates, and adaptive threshold tuning. Moreover, EAD does not 

incorporate data quality assessment mechanisms or provide explainability and 

interpretability features, such as analytics or feature analysis. 

The Microsoft Time-Series Anomaly Detection service represents a production-grade 

system designed for scalability and operational efficiency (Ren et al., 2019). It is 

engineered to process millions of time-series metrics daily and supports unsupervised 

and semi-supervised detection techniques based on the integration of Spectral Residual 

(SR) and Convolutional Neural Networks (CNNs). The framework offers real-time 

streaming capabilities, adaptive learning, and concept drift handling through synthetic 

anomaly generation and feedback mechanisms. It also includes interpretability support in 

the form of dashboards, reports, and diagnostic outputs, making it well-suited for cloud 

service monitoring and enterprise telemetry analysis. Additionally, it does not explicitly 

address data integrity monitoring or data reliability and trustworthiness assessment. 

While visual diagnostics enhance operational transparency, the framework lacks fine-

grained feature-level attribution methods characteristic of more recent explainable 

machine learning approaches. 

Although the selected anomaly detection frameworks demonstrate advanced 

capabilities and have a significant impact in the field, none fully support the complete 

Anomaly Detection Framework Feature Set (ADF2S). Opprentice is optimized for 

supervised batch learning, offering moderate robustness but limited scalability and real-

time adaptability. The Ensemble Anomaly Detection (EAD) framework provides high 

domain-specific accuracy but remains static and lacks transparency in interpretability. In 

contrast, Microsoft’s Time-Series Anomaly Detection is the most comprehensive and 

scalable, though it sacrifices deep model explainability for high-throughput, 

unsupervised deployment. 

These findings highlight the trade-offs between adaptability, interpretability, and 

scalability that current frameworks must navigate. They also emphasize the need for 

modular and extensible designs, where features such as data quality awareness, 

explainability, and adaptability are integral components of anomaly detection systems. 

Comparative analysis of Opprentice (Liu et al., 2015), The Ensemble Anomaly 

Detection (EAD) (Araya et al., 2017), and Microsoft’s Time-Series service (Ren et al., 

2019) reveals distinct design methodologies and feature priorities aligned with their 

respective application domains and operational contexts. This feature-based comparison 

also identifies gaps that future research and framework development can address. 

7. Conclusions and discussion 

This study proposes a structured set of features for evaluating and designing anomaly 

detection frameworks, offering a comprehensive taxonomy of functional and 

architectural dimensions that define the capabilities of such systems. The anomaly 

detection framework feature set (ADF2S) encompasses six major dimensions: Data 
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Handling and Input Capabilities, Anomaly Detection Type Support, Detection 

Technique Flexibility, Adaptability, Explainability and Interpretability, and Data 

Quality-Aware Anomaly Detection, each subdivided to capture more granular 

operational characteristics. Through a systematic analysis of three influential 

frameworks, the proposed ADF2S proved effective in identifying the architectural 

strengths and limitations of each system. Opprentice framework demonstrated strong 

support for multivariate, supervised learning with efficient data preprocessing and 

limited self-tuning capabilities, but lacked real-time adaptability, interpretability, and 

data integrity and reliability capabilities. The Ensemble Anomaly Detection (EAD) 

framework, while rich in domain-specific integration and collective anomaly support, 

remained static, with no support for adaptive learning and data quality-aware anomaly 

detection. In contrast, Microsoft Time Series Anomaly Detection emerged as the 

production-ready solution, offering scalability, streaming data support, unsupervised 

adaptability, and visual interpretability, though it lacked broader data quality support and 

deep feature-level explainability. These findings reveal that no single framework fully 

satisfies all feature sets, highlighting gaps in scalability, adaptability, and interpretability. 

Moreover, the absence of data quality-aware anomaly detection considerations across the 

framework’s points to a gap in current state-of-the-art developments. The proposed 

anomaly detection framework feature set (ADF2S), thus offers practical guidance for 

designing anomaly detection frameworks that are modular, adaptive, interpretable, and 

robust to data fluctuations.  

Future research may further extend the ADF2S taxonomy toward the development of 

a unified anomaly detection framework that combines architectural abstraction with 

domain-specific adaptability. Although ADF2S already provides a structured and 

comprehensive lens for the qualitative analysis of anomaly detection frameworks, this 

study primarily focuses on taxonomic synthesis rather than empirical validation. 

Consequently, quantitative metrics demonstrating the utility or performance of ADF2S 

are not included. Future studies could operationalise the ADF2S into measurable 

constructs, such as feature-coverage indices, framework-completeness scores, or 

decision-support utility measures to empirically assess how effectively the feature set 

supports system design, comparison, and selection. Such quantitative extensions, aligned 

with approaches adopted in related domain-specific anomaly detection evaluations, are 

introduced in the research study (Zadeja and Osis, 2025), thereby strengthening the 

evidence base of ADF2S and broadening its applicability across diverse anomaly 

detection contexts. 
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