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Abstract. In the modern knowledge era, the exponential growth of digital solutions has led to the
generation of vast amounts of data. This necessitates the development of data and knowledge-
driven advanced techniques to extract insights and support informed decision-making. Within this
context, the detection of anomalies, data points that deviate significantly from expected patterns,
becomes crucial as these anomalies can arise due to diverse factors, including sensor errors, data
corruption, and changes in underlying processes, all of which may impact system performance,
accuracy, and overall efficiency. This paper thoroughly examines the diverse frameworks and
architectures established for anomaly detection across multiple domains. It highlights the
complexity associated with the nature of anomalies, which are often domain-specific and
contextually bound, thereby presenting significant challenges in devising a universal framework
capable of addressing anomalies regardless of the domain or context of the application. To address
these challenges, the author proposes a comprehensive anomaly detection framework feature set
(ADF?2S) that captures the functional, structural, and operational dimensions of anomaly detection
frameworks. The proposed anomaly detection framework feature set (ADF2S) and its cross-
framework evaluation contribute a practical foundation for researchers and practitioners,
supporting the development of anomaly detection frameworks capable of balancing scalability,
interpretability, and resilience.
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1. Introduction

In an era of exponential growth of data, the ability to detect anomalous behaviour within
large and complex datasets has become more critical than ever. From cybersecurity
threats and fraud detection to industrial system failures and health monitoring, anomaly
detection serves as a foundational technique for ensuring reliability, security, and
efficiency across domains. Anomalies, also known as outliers, novelties, or exceptions,
represent patterns in data that deviate significantly from expected behaviour (Chandola
et al., 2009). Their identification is often an early indication of critical events or hidden
knowledge (Pimentel et al., 2014). Anomaly detection is naturally related to the broader
field of knowledge discovery. As a central step in the knowledge discovery process,
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anomaly detection enables the extraction of actionable and previously unknown insights
from massive datasets. In this context, machine learning plays a crucial role by providing
scalable, adaptable, and intelligent models capable of identifying complex and subtle
deviations from norms (Aggarwal, 2013). Whether through supervised, unsupervised, or
semi-supervised approaches, machine learning techniques are frequently at the core of
modern anomaly detection frameworks. The importance of anomaly detection has grown
rapidly with the increasing volume, velocity, and variety of data generated in real-time
from various systems.

The presence of sensors, interconnected systems, and user-driven digital platforms
has led to environments where millions of data points are produced every second. This
data presents unique challenges, including the high dimensionality of data, concept drift,
class imbalance, and lack of labelled data, particularly for rare or unknown anomalies
(Goldstein and Uchida, 2016). These difficulties necessitate sophisticated frameworks
capable of adaptive learning, contextual awareness, and explainability. Beyond technical
complexity, anomaly detection also faces conceptual and operational challenges. The
very definition of what constitutes an “anomaly” is often domain-specific and context-
dependent (Chandola, et al., 2009). In some scenarios, anomalies may reflect genuine
faults; in others, may reveal novelties or trends (Pimentel et al., 2014). Thus, frameworks
must be precise in identifying irregularities and flexible enough to interpret their
significance in a dynamic environment (Ahmed et al., 2015). New frontiers are being
explored in areas such as explainable Al and graph-based anomaly detection, which
integrate expert feedback into the learning process (Choi et al.,2022) (Eberle and Holder,
2015). As such, anomaly detection is an actual research area that adapts to emerging
technological, societal, and methodological shifts.

2. From knowledge to knowledge discovery: foundations for
anomaly detection

In the context of modern data-driven systems, the concept of knowledge extends far
beyond raw information. Knowledge can be broadly defined as structured,
contextualised, and actionable information, which enables informed decision-making,
problem-solving, and innovation (Nonaka and Takeuchi, 1995). Unlike data, which
consist of unprocessed facts, or information, which refers to organized data imbued with
meaning, knowledge reflects an integration of experience, interpretation, and insight.
With the digital transformation of industries and services, knowledge workers -
individuals who engage in tasks involving critical thinking, analysis, and problem-
solving - have become central to organizational value creation (Davenport, 2005). As
data volume and complexity increase, manual or intuitive methods for deriving
knowledge become insufficient, paving the way for computational support in uncovering
patterns and relationships (Jansevskis and Osis, 2024). The paradox of today’s digital
ecosystem lies in the fact that while organisations are inundated with data, they often
lack knowledge. Extracting useful, actionable insights from terabytes or petabytes of
data demands systems that go beyond storage and computation, require systems that
understand the semantics of information and can detect deviations from expected
patterns (Thudumu et al.,, 2020). This is where knowledge discovery becomes
indispensable.
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Knowledge Discovery in Databases (KDD) refers to the process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data (Fayyad et al.,
1996). This process focuses on transforming data into knowledge through a sequence of
operations, including data selection, preprocessing, transformation, data mining, and
interpretation/evaluation (Frawley et al., 1992). Within this process, data mining plays a
crucial role by applying algorithms to extract patterns from data (Al-Faouri, 2023). In
this context, anomaly detection is one of the core data mining tasks, alongside
classification, clustering, and association rule learning (Klosgen and Zytkow, 1996). In
contrast to traditional analytical approaches, knowledge discovery enables systems to
identify unexpected behaviours, emergent trends, and hidden structures, which are often
indicated by anomalies.

3. Overview of anomaly detection

Anomaly detection has been an intriguing field for researchers and practitioners that has
been studied for centuries (Nassif et al., 2021). Numerous distinct methods and
approaches have been developed over time to detect anomalies across different
applications, domains, and contexts. Starting from statistical methods to machine
learning and neural networks, anomaly detection methods have been developed and
reshaped by employing sophisticated and complex methods that improve the
performance and efficiency of such systems (Mishra and Kumar, 2022). The concept of
anomalies is defined as patterns in data that do not conform to a well-defined notion of
expected behaviour (Barnard and Stryker, 2023). As such, patterns or behaviours in data
that deviate from normal behaviour are referred to as anomalies or outliers, depending on
the domain or context in which anomaly detection techniques are applied (Steenwinckel
et al., 2021) (Injadat et al., 2018). Examples of such applications include fraud detection,
loan application processing, monitoring of medical conditions, cybersecurity intrusion
detection, and fault detection for predictive maintenance (Nassif et al., 2021).

4. Anomaly detection frameworks

An essential consideration in the development of anomaly detection frameworks is the
acknowledgement of the domain-specific nature of anomalies (Alam et al., 2019). This
characteristic introduces significant challenges in creating a generic framework capable
of detecting all forms of anomalies, regardless of domain-specific conditions or data
characteristics (Pang et al., 2021). The complexity associated with high-dimensional data
and contextual anomalies cannot be understated, as they prevent the generalizability of
detection approaches across different applications (Choi et al., 2021). Moreover, there is
a need for a comprehensive taxonomy that systematically analyses the diverse anomaly
detection frameworks’ features and capabilities based on their characteristics and level
of granularity (Feng et al., 2025) (Zhou et al., 2022).

Anomaly detection can signal system faults, cyberattacks, or inefficiencies, making
their timely and accurate detection crucial for operational resilience and efficiency
(Cauteruccio et al., 2021) (Fan and You, 2024). Over the past decade, anomaly detection
frameworks have evolved from rule-based approaches to sophisticated machine learning
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driven systems capable of processing complex, high-dimensional, and temporal data
(Chai et al., 2022). Modern anomaly detection frameworks and architectures often
integrate components, including feature selection, model ensemble, time-series analysis,
and explainability. These components are crucial for identifying relevant patterns and
attributing anomalous behaviour to specific systemic or operational contexts. The
effectiveness of such frameworks largely depends on how they leverage selected
features, whether statistical, contextual, or domain-specific, to inform the detection
process (Alam et al., 2019).

In this research, three influential anomaly detection frameworks are analysed in
depth to examine how each leverages selected features for anomaly identification. These
frameworks were chosen following a systematic review of 54 anomaly detection
frameworks identified through searches of scientific databases (Scopus, ScienceDirect,
and IEEE Xplore) using the terms “anomaly detection framework” and “anomaly
detection architecture”. Framework selection was guided by the following criteria: [1]
the framework was published within the past ten years; and [2] the corresponding
publication achieved a Field-Weighted Citation Impact (FWCI) of at least five according
to Scopus, indicating a substantial contribution to the domain. In addition to these
criteria, the selected frameworks represent distinct architectural paradigms and
methodological diversity, thereby providing a comprehensive cross-section of the
anomaly detection landscape. Based on these criteria, the following state-of-the-art
anomaly detection frameworks were selected: “Opprentice: Towards Practical and
Automatic Anomaly Detection Through Machine Learning” (Liu et al., 2015), “An
Ensemble Learning Framework for Anomaly Detection in Building Energy
Consumption” (Araya et al., 2017), and “Time-Series Anomaly Detection Service at
Microsoft” (Ren et al., 2019). Collectively, these frameworks serve as representative
examples of the broader design space, encompassing supervised and unsupervised
learning, ensemble-based modelling, time-series anomaly detection, domain-specific
integration, and production-grade scalability. Moreover, they have demonstrated
significant impact in both academia and industry, as reflected in their citation volume,
adoption, and influence on subsequent research and industrial solutions.

4.1. Opprentice: automatic anomaly detection through machine learning

Among the foundational contributions to the field of anomaly detection, the framework
depicted in Figure 1, proposed in the research article “Opprentice: Towards Practical and
Automatic Anomaly Detection Through Machine Learning”, stands out for its practical
orientation and system-level applicability (Liu et al., 2015). Unlike traditional methods
that often require expert intervention for algorithm selection and parameter tuning,
Opprentice introduces an end-to-end, automated anomaly detection system that leverages
a meta-learning strategy to dynamically select the most appropriate detection algorithm
based on the characteristics of the input data (Liu et al., 2015). This feature enhances
usability and lowers the technical barrier for deployment in real-world monitoring
systems. The framework is structured around several key components: a data collector
and repository, a feature extractor, a model training and selection engine, and a runtime
detector. Together, these components enable the system to process large volumes of
heterogeneous system metrics, train and select the most suitable detection model, and
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then apply this model for real-time anomaly detection with minimal computational
overhead.

——— Operators

Historical & specifies one time
Latest KPI Data

processed by  loaded into use

Labeling Tool

Labels (Accuracy Preference)

l I

L
Machine Learning [ cThid Prediction |
(Random Forest) oThid

1

| Latest Anomaly Classifier |

(a) Training classifier.

— Latest
Detectors |-(Features)—} Anomaly [ Anomaly 7
KPl Data Classifier

(b) Detecting anomaly.

Figure 1: Opprentice anomaly detection architecture (Liu et al., 2015)

The framework is particularly relevant in large-scale IT operations and cloud
environments, where telemetry data is generated continuously and must be processed in
real time (Liu et al., 2015). By validating the approach on extensive production datasets,
the study demonstrates high detection accuracy and low false-positive rates, thereby
offering a scalable and efficient solution for anomaly detection in operational settings.
The Opprentice anomaly detection framework contributes significant value to the
domain by bridging the gap between theoretical models and practical, large-scale
deployments. Moreover, it has influenced the design of subsequent industrial-grade
detection systems, underscoring its enduring relevance and foundational role in the
evolution of automated, machine learning—based anomaly detection frameworks.

4.2. Ensemble anomaly detection framework in energy consumption

The second selected framework in Figure 2, developed focuses on smart buildings,
where energy consumption data presents a challenging time series prediction problem. In
their work, the authors proposed an Ensemble Anomaly Detection (EAD) framework
specifically designed to detect anomalous patterns in building energy consumption data
(Araya et al., 2017). The EAD framework is based upon the core principles of Collective
Contextual Anomaly Detection using the Sliding Window (CCAD-SW) framework,
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adapted by the authors. The results indicated that the EAD framework improved the
sensitivity of the CCAD-SW by 3.6% and reduced the false alarm rate by 2.7% (Araya et
al., 2017). As a result, it demonstrates the effectiveness of the ensemble approach in
enhancing anomaly detection capabilities.
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Figure 2: Ensemble anomaly detection (EAD) framework (Araya et al., 2017)

The primary aim of the framework is to enhance the accuracy and robustness of
anomaly detection in the presence of complex, multivariate, and temporally dynamic
energy usage profiles. The EAD framework employs a heterogeneous ensemble learning
approach that integrates multiple base learners, including One-Class Support Vector
Machines (OC-SVM), lIsolation Forests, and Autoencoders, each capturing distinct
characteristics of the data (Araya et al., 2017). By aggregating the outputs of these
individual models, the ensemble produces a composite anomaly score that is more
resilient to the limitations of any single method (Araya et al., 2017). These predictive
components are trained to estimate expected energy consumption based on historical
data and contextual variables. Anomalies are then inferred from deviations between
predicted and observed values. The EAD framework enhances robustness and reliability
by combining the outputs of pattern-based and prediction-based models using an
ensemble approach. It is found that the optimal detection threshold for the ensemble is
the result of an independent optimization process, emphasizing the importance of
ensemble calibration.

4.3. Time series anomaly detection service at Microsoft

In this research, the authors present a comprehensive framework for time-series anomaly
detection that represents a production-scale system deployed at Microsoft, as illustrated
in Figure 3. The framework is designed for real-time monitoring of time-series data
across a range of cloud-based applications, including Office and Azure, and emphasizes
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scalability, automation, and low latency (Ren et al., 2019). To achieve these objectives,
the authors propose a novel algorithm that combines Spectral Residual (SR) and
Convolutional Neural Network (CNN) techniques. This work represents the first
application of the SR model, originally developed for visual saliency detection, to the
domain of time-series anomaly detection (Ren et al., 2019). The integration of SR and
CNN significantly enhances detection performance, leading to substantial improvements
in anomaly detection accuracy and robustness.
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Figure 3: Time series anomaly detection system at Microsoft (Ren et al., 2019)

The proposed framework outperforms existing state-of-the-art models, achieving an
F1-score improvement of over 20% on Microsoft production data (Ren et al., 2019),
demonstrating the effectiveness of the combined approach in real-world applications. It
is designed to be general and efficient, enabling seamless integration with online
monitoring systems and providing rapid alerts for critical metrics, essential for large-
scale, real-time operations. The framework maintains an unsupervised learning approach
by generating synthetic anomalies to train the CNN. In practical deployments, it has
allowed product teams to detect issues more quickly, reduce manual intervention, and
accelerate diagnostic processes.

5. Anomaly detection framework feature set

The design and evaluation of anomaly detection frameworks require a structured
understanding of the core capabilities these systems must possess. Based on a
comprehensive review of the literature and the analysis of existing state-of-the-art
frameworks mentioned in the previous section, the author proposes a feature set that
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captures the most crucial dimensions along which anomaly detection frameworks can be
characterised. As shown in Figure 4, the proposed Anomaly Detection Framework
Feature Set (ADF2S) includes: Data Handling & Input Capabilities, Anomaly Detection
Type Support, Detection Techniques Flexibility, Adaptability, Explainability and
Interpretability, and Data Quality Aware Anomaly Detection. Each feature of the ADF2S
is further divided into subcategories, which represent specific mechanisms, data
properties, or learning paradigms relevant to the main feature.
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Figure 4: Anomaly detection framework feature set (ADF2S)

The primary categories in ADF?2S capture high-level functional dimensions, such as data
handling, detection techniques, and adaptability, because they reflect broad system-level
requirements that recur across domains. However, these high-level capabilities are too
coarse to meaningfully differentiate between frameworks. To address this, each main
feature is decomposed into sub-features that represent the concrete technical
mechanisms, algorithmic paradigms, or system design choices through which the high-
level capability is operationalized. The hierarchical structure aligns with the way this
research organizes anomaly detection methods and system capabilities. Grouping
conceptually related mechanisms under a shared parent feature ensures that the
taxonomy maintains conceptual coherence and follows established scientific
conventions. Overall, the feature set taxonomy provides a conceptual platform for
evaluating the completeness, flexibility, and domain suitability of anomaly detection
frameworks, enabling a nuanced discussion of how design choices affect system
performance and applicability.
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The review followed an iterative synthesis approach: first, a broad corpus of anomaly
detection studies, including machine learning—based approaches, time-series models, and
system-level architectures, was examined to identify recurring functional requirements
and modelling practices. These concepts were then cross-referenced with capabilities
described in research articles and industry-grade platforms to ensure practical relevance
and contemporary applicability. Features were grouped and refined through thematic
clustering, allowing coherent high-level categories and their corresponding sub-features
to emerge. This methodology ensured that the resulting ADF?S taxonomy is grounded in
scientific knowledge while reflecting operational considerations observed in real-world
anomaly detection deployments. Consequently, the feature set represents an evidence-
based synthesis of the key conceptual and technical elements consistently highlighted
across both academic literature and industrial implementations.

5.1. Data handling and input capabilities anomaly detection feature

The capability of an anomaly detection framework largely depends on its ability to
effectively handle and process the data on which it operates. The data handling and input
capability feature captures a framework’s flexibility in accommodating diverse data
types, processing paradigms, and levels of structural complexity (Goldstein and Uchida,
2016). This feature is further subdivided into three components: multi-modal data
support, data processing, and multivariate support, each of which plays a critical role in
defining the framework’s operational scope and applicability across domains.

Modern systems generate data from heterogeneous sources, including sensors, logs,
network traffic, and structured time-series metrics. Anomaly detection frameworks that
support multi-modal data can integrate insights across different data representations,
enabling a more holistic understanding of system behaviour. In this taxonomy, multi-
modal data is categorized into three subtypes: time-series data, graph data, and log data.
Time-series data is the most prevalent input format for anomaly detection, particularly in
domains such as industrial monitoring, finance, and healthcare (Choi et al., 2021)
(Thudumu et al., 2020). Frameworks must process temporally ordered observations to
capture trends, seasonality, and temporal anomalies (Ren et al., 2019).

Graph-structured data, increasingly important in cybersecurity, social networks, and
network infrastructure, encodes relationships among entities. Frameworks supporting
graph data can identify structural or topological anomalies, such as compromised nodes
or anomalous information flows (Eberle and Holder, 2015). Log data, common in IT and
software systems, consists of unstructured or semi-structured textual records. Effective
anomaly detection frameworks parse, tokenize, and extract patterns from logs to detect
deviations in event sequences or semantic content (Filzmoser et al., 2008).

Anomaly detection frameworks also differ in their data ingestion and analysis
strategies, which are broadly categorized as batch processing and real-time streaming.
Batch processing involves analysing data in fixed intervals or accumulated batches and
is well-suited for retrospective analysis, scheduled system checks, or environments
where immediate response is not critical (Xu et al., 2023). Due to its computational
simplicity and ease of implementation, this approach is commonly adopted by traditional
frameworks (Araya et al., 2017). In contrast, real-time streaming enables continuous
processing of incoming data streams, allowing anomalies to be detected as they occur.
Such capabilities are essential in domains requiring near real-time responses, including
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financial fraud detection, cloud service monitoring, and fault detection in critical
infrastructure (Ren et al., 2019).

In complex systems, anomalies often arise from interactions among multiple
variables rather than from isolated data streams. The multivariate support sub-feature
captures a framework’s ability to model these interdependencies (Wang et al., 2025).
Univariate approaches analyse each data stream independently and, while
computationally efficient, may fail to detect correlated anomalies spanning multiple
variables. Multivariate approaches, by contrast, analyse multiple data streams
simultaneously, enabling the detection of more complex and interrelated anomaly
patterns. Collectively, these data handling and input capabilities define how effectively
an anomaly detection framework can operate across varying data types, processing
requirements, and system complexities.

5.2. Anomaly detection type support anomaly detection feature

The anomaly detection type support feature characterizes the types of anomalies a
framework is capable of identifying, which are closely related to the nature of the
underlying data. Broadly, anomalies are commonly classified into three categories: point
anomalies, contextual anomalies, and collective anomalies (Chandola et al., 2009). A
point anomaly occurs when an individual data instance significantly deviates from the
rest of the dataset and is therefore considered anomalous. This is the simplest and most
commonly addressed form of anomaly. Examples include a sudden spike in a patient’s
blood pressure or an unusually large transaction amount in a banking system. A
contextual anomaly arises when a data instance is anomalous only within a specific
context, despite appearing normal in other circumstances (Chandola et al., 2009). In such
cases, contextual information, such as time, location, or environmental conditions, is
essential for correct interpretation. For example, a temperature of 10 °C may be normal
during winter but anomalous during summer in a given region. Collective anomalies
refer to groups of related data instances that are anomalous when considered together,
even though individual instances within the group may not appear anomalous on their
own (Araya et al., 2017). These anomalies often emerge from sequential or correlated
patterns in the data. A typical example is a series of login attempts from different IP
addresses within a short time window, which may indicate a coordinated attack (Choi et
al., 2021). Because collective anomalies are not easily identifiable at the level of
individual data points, long-term contextual and temporal analysis is particularly
important for their detection. Consequently, support for different anomaly types
constitutes a critical characteristic of anomaly detection frameworks. It influences the
choice of detection techniques, contextual modelling strategies, and overall system
design, thereby aligning framework capabilities with the specific anomaly patterns
present in the target application domain.

5.3. Detection techniques flexibility anomaly detection feature

The detection technique flexibility feature captures the range of methods and algorithms
employed by anomaly detection frameworks across different system architectures.
Statistical anomaly detection techniques represent some of the earliest approaches in this
domain (Chandola et al., 2012). These methods model normal data behaviour using
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statistical assumptions and identify anomalies as deviations from the learned
distribution. Common statistical approaches include parametric techniques such as
Gaussian distribution modelling, hypothesis testing, and time-series models (Bhuyan et
al.,, 2014). In recent decades, machine learning—based techniques have become
increasingly prominent in anomaly detection. Machine learning aims to automate
knowledge acquisition from data examples (Bose and Mahapatra, 2001) and is widely
used to construct models that distinguish between normal and anomalous patterns
(Mahapatra and Bose, 2001). Advanced machine learning algorithms are particularly
effective in handling high-dimensional data and learning complex patterns, thereby
improving detection accuracy and efficiency (Herr et al., 2021).

Based on the availability of labelled data, anomaly detection techniques are
commonly categorized into supervised, unsupervised, and semi-supervised approaches.
Supervised anomaly detection relies on labelled datasets containing both normal and
anomalous instances. In this setting, a predictive model is trained to discriminate
between the two classes. However, supervised approaches face several challenges,
including the severe imbalance between normal and anomalous samples and the
difficulty of obtaining accurate and representative labels for anomalies (Chatterjee and
Ahmed, 2022). Additionally, discrepancies between training and testing anomaly
distributions can degrade performance. In contrast, unsupervised anomaly detection does
not require labelled training data and operates under the assumption that anomalies are
rare compared to normal instances. These methods identify deviations based on inferred
data structure or distribution. While widely applicable, unsupervised approaches may
produce high false alarm rates when the underlying assumptions about anomaly rarity or
data distribution do not hold (Nassif et al., 2021). Consequently, much recent research
has focused on improving unsupervised techniques, particularly for large-scale and
unlabelled datasets (Pang et al., 2021).

Semi-supervised anomaly detection occupies a middle ground, where training data
consists only of labelled normal instances. Any data point that deviates from the learned
normal behaviour is flagged as anomalous. Because anomaly labels are not required,
semi-supervised methods are often more practical than fully supervised approaches.
Many semi-supervised techniques can also be adapted to operate in an unsupervised
manner by assuming that training data contains very few anomalies, which minimally
affect model learning (Nassif et al., 2021). Across application domains such as finance,
manufacturing, and the Internet of Things (loT), supervised, unsupervised, and semi-
supervised machine learning approaches have been extensively studied and applied (Torr
and Murray, 1993) (Marsland, 2001). Recent studies suggest that semi-supervised
methods often outperform supervised approaches in real-world settings, particularly
when labelled anomaly data are scarce or incomplete (Sunny et al., 2022). These
techniques are especially suitable for high-dimensional datasets with large proportions of
unlabelled data, a common characteristic in many operational environments (Filzmoser
etal., 2008).

5.4. Adaptability anomaly detection feature

The adaptability feature captures a framework’s ability to maintain accuracy and
relevance in dynamic environments where data distributions evolve. In real-world
systems, such as cloud infrastructure and financial markets, the assumption of
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stationarity rarely holds (Chatterjee and Ahmed, 2022). Consequently, anomaly
detection models must incorporate mechanisms to respond to shifting behavioural
patterns, commonly referred to as concept drift, to prevent performance degradation over
time (Chatterjee and Ahmed, 2022). This dimension comprises three interrelated sub-
features that collectively define a framework’s adaptability: concept drift handling,
model real-time update support, and self-tuning adaptation.

Concept drift refers to gradual changes in the underlying data distribution that alter
the definition of normal behaviour. If left unaddressed, such changes can lead to
increased false positives or missed anomalies. Frameworks that support concept drift
handling can detect these shifts and adjust their internal models accordingly, for
example, by recalibrating decision boundaries, retraining models, or updating statistical
parameters (Chatterjee and Ahmed, 2022).

Model real-time update support denotes a framework’s ability to incrementally
update its models in response to incoming data, rather than relying on full retraining.
This capability is critical in real-time applications where batch retraining is
computationally expensive or insufficiently responsive to rapid system changes (Zuo et
al., 2019). In anomaly detection, real-time updates enable continuous model refinement
as new patterns emerge, allowing for rapid adaptation. Frameworks with this capability
are particularly well suited to streaming data environments, such as network monitoring
and predictive maintenance in sensor networks (Choi et al., 2021).

Self-tuning adaptation refers to internal mechanisms that automatically adjust
detection parameters, such as thresholds, sensitivity levels, or window sizes, without
manual intervention (Alam et al., 2019). This capability reduces reliance on domain
expert tuning, thereby improving scalability and deployment efficiency. By adapting to
variations in noise levels, system load, and behavioural patterns, self-tuning mechanisms
help anomaly detection frameworks maintain robust performance across changing
operational conditions.

5.5. Explainability and interpretability anomaly detection feature

In modern anomaly detection frameworks, explainability and interpretability have
emerged as essential features, particularly in safety-critical and regulated application
domains (Zhong et al., 2023). These capabilities describe the extent to which a model’s
decision-making process, specifically its anomaly detection outcomes, can be
understood, traced, and justified by human users. As anomaly detection systems are
increasingly integrated into operational pipelines, the ability to explain why a particular
data point is classified as anomalous is critical for establishing trust, ensuring
accountability, and enabling informed responses (Choi et al., 2022). This feature
dimension comprises two primary subcomponents: feature attribution and visual
interpretability, each contributing in distinct ways to user understanding of the detection
process.

Feature attribution refers to a framework’s ability to identify and quantify the
influence of individual input features on an anomaly detection decision. In machine
learning—based systems, particularly those employing ensemble or deep learning
methods, detection mechanisms are often opaque (Zhong et al., 2023). Feature
attribution techniques mitigate this opacity by producing saliency scores or importance
rankings that highlight which variables or input patterns contributed most strongly to an
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anomaly decision. For example, when a spike in network latency is flagged as
anomalous, feature attribution may indicate that the deviation is driven primarily by
unusual memory usage rather than CPU load. Such insights are essential for root cause
analysis, model validation, and debugging by domain experts (Choi et al., 2022). In
addition, model-agnostic explanation methods can be integrated to provide interpretable
outputs even for black-box models.

Visual interpretability concerns the presentation of anomaly detection results through
intuitive and informative visual representations. Effective visualization enables system
operators and analysts to assess the validity of detected anomalies, explore deviations
across time and variables, and make informed decisions based on system feedback. By
rendering complex statistical or algorithmic outputs accessible to non-technical
stakeholders, visual interpretability significantly enhances the usability and operational
integration of anomaly detection frameworks (Zhong et al., 2023).

5.6. Data quality-aware anomaly detection feature

Anomaly detection frameworks are rarely applied to fully reliable data sources; instead,
they typically operate under conditions of uncertainty, noise, missing values, or partial
system failure. To maintain performance and reliability under such conditions,
frameworks must incorporate mechanisms that recognize and adapt to data quality
issues. This motivates the inclusion of data quality—aware anomaly detection as an
important feature dimension, emphasizing that effective anomaly detection must be
sensitive to the integrity, completeness, and reliability of input data (Kittler et al., 2014).
When properly integrated, data quality awareness improves detection precision and the
trustworthiness of system outputs. This feature dimension is defined by three key
subcategories.

Data quality handling refers to a framework’s ability to process and remain robust to
common data inconsistencies, including noise, missing values, and outliers. In many
domains, such as sensor networks, log telemetry, and business analytics, data
degradation is unavoidable (Kittler et al., 2014). To mitigate its impact, frameworks
employ preprocessing or model-level strategies, such as imputation, smoothing, or
robust statistical techniques, ensuring that detected anomalies are not artefacts of poor
data quality (Alam et al., 2019). Data quality handling focuses on input resilience, and
data integrity monitoring concerns a framework’s ability to detect failures in the data
collection, transmission, or storage pipeline. These failures may include corrupted files,
communication breakdowns, timestamp misalignment, or format inconsistencies, all of
which can compromise anomaly detection results. Frameworks equipped with integrity
monitoring mechanisms may enforce schema validation, track metadata consistency, or
generate alerts when data streams deviate from expected structural norms (Sunny et al.,
2022). This capability is particularly important in automated pipelines, where detection
reliability depends on the integrity of upstream data sources. Beyond technical integrity,
data reliability and trustworthiness capture a framework’s ability to assess and
communicate confidence in both the input data and its anomaly detection outputs. This
may involve assigning reliability scores to data sources, quantifying uncertainty in model
predictions, or flagging results derived from potentially compromised inputs.
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6. Anomaly detection frameworks' alignment with feature sSet

This research introduces the Anomaly Detection Framework Feature Set (ADF2S) to
analyze the selected anomaly detection frameworks. The objective is to assess how
ADF?2S aligns with the architectural and functional characteristics of these frameworks.
Accordingly, a systematic evaluation of Opprentice (Liu et al., 2015), the Ensemble
Anomaly Detection (EAD) framework (Araya et al., 2017), and the Microsoft Time-
Series Anomaly Detection service (Ren et al., 2019) is conducted using the proposed
ADF?S. Table 1 summarizes the presence or absence of each feature, while the
subsequent discussion provides interpretative insights into the architectural focus,
strengths, and limitations of each framework. The evaluation follows a structured
feature-mapping methodology, in which each ADF?S feature and sub-feature is
examined against the technical descriptions, architectural details, and methodological
explanations reported in the corresponding publications. For each feature, the degree of
support is assessed using a three-level classification scheme: (v') Supported, indicating
that the framework explicitly implements or relies on the feature as part of its core
design; (X) Not Supported / Not Mentioned, indicating that no evidence of the feature is
provided or that the capability is absent; and (!) Partially Supported, denoting cases in
which a feature is indirectly present, incompletely supported, applied only in a limited
context, or implied without full integration into the framework’s operational pipeline.
This interpretive classification enables a consistent and reproducible evaluation across
heterogeneous frameworks, particularly given the diversity of algorithmic approaches,
data modalities, and architectural assumptions represented in the selected works.

The Opprentice framework places strong emphasis on data preprocessing and the use
of supervised machine learning for anomaly classification. It supports both univariate
and multivariate time-series data and employs an ensemble of statistical detectors for
feature extraction prior to classification using a Random Forest model (Liu et al., 2015).
This design enables effective detection of point anomalies in well-labelled batch
datasets. Opprentice also incorporates a basic self-tuning adaptation mechanism through
threshold smoothing, providing limited adaptive behaviour. However, the framework
does not support real-time streaming and instead relies on periodic batch retraining. In
addition, Opprentice lacks model real-time update capabilities, support for contextual or
collective anomaly types, and feature attribution mechanisms for interpretability. The
framework also does not explicitly address data integrity monitoring or provide
explainable outputs, which limits its applicability in regulated or safety-critical
environments.

The Ensemble Anomaly Detection (EAD) framework is specifically tailored to the
energy consumption domain and employs supervised learning through a combination of
pattern-based collective contextual anomaly detection using sliding windows (CCAD-
SW) and prediction-based detectors, including Support Vector Regression (SVR) and
Random Forest models (Araya et al., 2017).
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Table 1: Anomaly Detection Frameworks Feature Set (ADF?2S) Alignment

64

Opprentice anomaly Ensemble anomaly Time series anomaly
Anomaly Detection Framework Feature Set (ADF?S) detection architecture detection (EAD) detection at Microsoft
(Liu, 2015) framework (Araya, 2017) | service (Ren, 2019)
Time-series Data v V4 v
Multi-Modal Data |Graph Data X X X
X X X
DataHandling& Log Data .
Input Capabilities | Data Processing | oa-ume streaming X X v
put Cap 9 IBatch processing V4 V4 V4
L Univariate Data v v v
LI L Multivariate Data v V4 V4
. Point Anomalies v v v
EM.BMV\mc_umHmMMo: Contextual Anomalies X I(partial) v
ype Supp Collective Anomalies X V4 v
isti V4 V4 V4
fLy SR Statistical _,\_mﬂ:oam .

Techniaue Supenvised Learning v v X
_u_mx__u_m_u__ . Machine Learning |Unsupervised Learning X X v
y Semi-supervised Learning X X v
Concept Drift Handling I(partial) X v
Adaptability Model Real-Time Update Support X X v
Self-Tuning Adaptation V4 X V4

Explainability and Feature Attribution X X I(partial)
Intepretability Visual Interpretability V4 X V4
Data Onialitv Aware Data Quality Handling /\ X /\

v Supported - The framework fully implements this feature as part of its design or methodology.

X Not Supported / Not Mentioned - The framework does not implement or indicate the presence of the feature.
- The framework provides limited or indirect support for this feature.
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It supports multivariate data by integrating contextual features such as weather
conditions and occupancy information, and is among the few frameworks that explicitly
address collective anomalies. EAD’s primary strengths lie in its high detection accuracy
within its target domain and its modular ensemble-based architecture. Nevertheless, the
framework is fundamentally batch-oriented and lacks support for real-time streaming,
incremental model updates, and adaptive threshold tuning. Moreover, EAD does not
incorporate data quality assessment mechanisms or provide explainability and
interpretability features, such as analytics or feature analysis.

The Microsoft Time-Series Anomaly Detection service represents a production-grade
system designed for scalability and operational efficiency (Ren et al., 2019). It is
engineered to process millions of time-series metrics daily and supports unsupervised
and semi-supervised detection techniques based on the integration of Spectral Residual
(SR) and Convolutional Neural Networks (CNNs). The framework offers real-time
streaming capabilities, adaptive learning, and concept drift handling through synthetic
anomaly generation and feedback mechanisms. It also includes interpretability support in
the form of dashboards, reports, and diagnostic outputs, making it well-suited for cloud
service monitoring and enterprise telemetry analysis. Additionally, it does not explicitly
address data integrity monitoring or data reliability and trustworthiness assessment.
While visual diagnostics enhance operational transparency, the framework lacks fine-
grained feature-level attribution methods characteristic of more recent explainable
machine learning approaches.

Although the selected anomaly detection frameworks demonstrate advanced
capabilities and have a significant impact in the field, none fully support the complete
Anomaly Detection Framework Feature Set (ADF2S). Opprentice is optimized for
supervised batch learning, offering moderate robustness but limited scalability and real-
time adaptability. The Ensemble Anomaly Detection (EAD) framework provides high
domain-specific accuracy but remains static and lacks transparency in interpretability. In
contrast, Microsoft’s Time-Series Anomaly Detection is the most comprehensive and
scalable, though it sacrifices deep model explainability for high-throughput,
unsupervised deployment.

These findings highlight the trade-offs between adaptability, interpretability, and
scalability that current frameworks must navigate. They also emphasize the need for
modular and extensible designs, where features such as data quality awareness,
explainability, and adaptability are integral components of anomaly detection systems.
Comparative analysis of Opprentice (Liu et al.,, 2015), The Ensemble Anomaly
Detection (EAD) (Araya et al., 2017), and Microsoft’s Time-Series service (Ren et al.,
2019) reveals distinct design methodologies and feature priorities aligned with their
respective application domains and operational contexts. This feature-based comparison
also identifies gaps that future research and framework development can address.

7. Conclusions and discussion

This study proposes a structured set of features for evaluating and designing anomaly
detection frameworks, offering a comprehensive taxonomy of functional and
architectural dimensions that define the capabilities of such systems. The anomaly
detection framework feature set (ADF?S) encompasses six major dimensions: Data
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Handling and Input Capabilities, Anomaly Detection Type Support, Detection
Technique Flexibility, Adaptability, Explainability and Interpretability, and Data
Quality-Aware Anomaly Detection, each subdivided to capture more granular
operational characteristics. Through a systematic analysis of three influential
frameworks, the proposed ADF?S proved effective in identifying the architectural
strengths and limitations of each system. Opprentice framework demonstrated strong
support for multivariate, supervised learning with efficient data preprocessing and
limited self-tuning capabilities, but lacked real-time adaptability, interpretability, and
data integrity and reliability capabilities. The Ensemble Anomaly Detection (EAD)
framework, while rich in domain-specific integration and collective anomaly support,
remained static, with no support for adaptive learning and data quality-aware anomaly
detection. In contrast, Microsoft Time Series Anomaly Detection emerged as the
production-ready solution, offering scalability, streaming data support, unsupervised
adaptability, and visual interpretability, though it lacked broader data quality support and
deep feature-level explainability. These findings reveal that no single framework fully
satisfies all feature sets, highlighting gaps in scalability, adaptability, and interpretability.
Moreover, the absence of data quality-aware anomaly detection considerations across the
framework’s points to a gap in current state-of-the-art developments. The proposed
anomaly detection framework feature set (ADF?S), thus offers practical guidance for
designing anomaly detection frameworks that are modular, adaptive, interpretable, and
robust to data fluctuations.

Future research may further extend the ADF2S taxonomy toward the development of
a unified anomaly detection framework that combines architectural abstraction with
domain-specific adaptability. Although ADF?S already provides a structured and
comprehensive lens for the qualitative analysis of anomaly detection frameworks, this
study primarily focuses on taxonomic synthesis rather than empirical validation.
Consequently, quantitative metrics demonstrating the utility or performance of ADF2S
are not included. Future studies could operationalise the ADF?S into measurable
constructs, such as feature-coverage indices, framework-completeness scores, or
decision-support utility measures to empirically assess how effectively the feature set
supports system design, comparison, and selection. Such quantitative extensions, aligned
with approaches adopted in related domain-specific anomaly detection evaluations, are
introduced in the research study (Zadeja and Osis, 2025), thereby strengthening the
evidence base of ADF2S and broadening its applicability across diverse anomaly
detection contexts.
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