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Abstract. This study examines the assessment of human drowsiness using single-channel data from
a forehead electrode processed with a spectral analysis algorithm. Spectral band analysis allows for
the identification of key parameters related to drowsiness. Eye blink frequency was identified as a
useful parameter based on the analysis of signal amplitude and time-frequency characteristics. Data
were obtained under two conditions — after 20 hours of wakefulness and after a full night of sleep
while participants read an e-book. Spectral analysis calculations and Random Forest and statistical
algorithms were used for signal processing to identify the most informative features for the expert
decision-making system. The analysis showed a close correlation between spectral indicators
(especially alpha and beta bands) and subjective ratings of the Karolinska Sleepiness Scale. Eye
blink frequency was also successfully determined using biopotential and video analysis. Expert
judgment complements the logical relationships of the parameters for real-time fatigue monitoring,
with applications in safety-critical situations and human-computer interaction.
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Introduction

Risks associated with drowsiness are critical when assessing human fatigue and
operational safety in the workplace. Reduced alertness can impair attention, slow reaction
time, and increase the probability of errors, particularly in safety-critical environments.
Physiological parameters serve as objective diagnostic indicators, contributing to fatigue
monitoring and enabling real-time system feedback (Deepu et al., 2024). Reliable
identification of drowsiness-related physiological markers therefore remains an important
research problem.

Current methods to assess drowsiness fall into two broad categories: behavioural
observation (e.g., video-based facial analysis) (Zhu et al., 2022) and physiological
measurement (e.g., heart rate, EEG, or eye activity) (Xiong et al., 2022). Behavioural
approaches analyse visible indicators such as eye closure duration, facial expressions, and
head movements. While effective under controlled conditions, these methods may be
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influenced by lighting, camera positioning, and individual variability. In contrast,
physiological approaches provide direct information about internal neurophysiological
processes associated with vigilance and fatigue. Among physiological methods,
electroencephalography (EEG) remains one of the most direct and objective techniques
for assessing brain state changes related to fatigue and reduced alertness (Min et al., 2021).
Spectral analysis of EEG signals has demonstrated that variations in theta, alpha, and beta
band activity are associated with attention, cognitive workload, and drowsiness (Ismail
and Karwowski, 2020; Benwell et al., 2020). Increases in theta activity and reductions in
beta power are often linked to decreased vigilance, while modulation of alpha rhythms
reflects transitions between focused and relaxed states (Klimesch, 1999). Composite
indices derived from spectral band ratios, such as beta/(alpha+theta) or theta/alpha, have
been proposed to quantify task engagement, attention, and stress (Prinzel et al., 2003; Lim
et al., 2019; Picken et al., 2020).

Wearable single-channel EEG devices, such as the MindWave TGAM sensor, have
gained attention due to their low cost and potential applicability in real-time monitoring
scenarios outside laboratory settings (Teixeira et al., 2023). However, interpreting single-
channel EEG data presents methodological challenges, including increased susceptibility
to noise and artefacts, limited spatial resolution, and variability across individuals. As a
result, identifying robust and physiologically meaningful parameters suitable for practical
drowsiness assessment remains a challenge. To address these issues, expert systems and
decision-support tools have been explored to assist in interpreting complex biosignal data.
Expert systems emulate human reasoning by combining empirical evidence with
structured logical rules, which can enhance transparency and interpretability compared to
purely automated classification approaches (Goodall, 1985; Ismail and Karwowski, 2020).
In the context of EEG-based drowsiness detection, integrating data-driven feature
selection with expert evaluation may provide a balanced framework that supports both
analytical robustness and clinical interpretability.

This study focuses on identifying objective parameters derived from EEG spectral
features and eye muscle activity signals that contribute most significantly to the
assessment of human drowsiness. Rather than constructing a fully automated classifier,
machine learning methods such as Random Forest and Principal Component Analysis are
used to prioritise informative signal features and support expert-based interpretation. The
resulting framework aims to characterise transitions from alertness to drowsiness using
single-channel EEG data in a manner suitable for real-time fatigue monitoring
applications.

Methods and materials

The aim of this study was to analyse brain and eye muscle activity signals recorded using
a non-obtrusive sensor and to determine the objective parameters that contribute most
significantly to the detection of a drowsiness state. To achieve this objective, two
experiments were conducted. The first experiment measured EEG signals under two
conditions—after 20 hours of wakefulness and after a full night of sleep—while
participants performed an e-book reading task. The second experiment focused on eye
blink rate measurements, during which volunteers performed controlled eye blink
exercises. The study protocol was reviewed and approved by the Research Ethics
Committee of Riga Technical University (Decision No. 04000-10.2.3-e/8, meeting date
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26 January 2026). The research was conducted in accordance with the principles of the
Declaration of Helsinki. All participants were adult volunteers and provided written
informed consent prior to participation. Participants were informed of the study
procedures, potential risks—including temporary sleep deprivation—and their right to
withdraw at any time without adverse consequences..

The first experimental session consisted of two measurement conditions. During each
session, a single-channel biopotential measurement was performed using the MindWave
Mobile head-mounted sensor. In parallel, video recordings were obtained using a
computer camera. Participants performed an e-book reading task during the recording (see
Figure 1).

Figure 1. Example of participant during e-book reading task

Before the first measurement, participants underwent a 20-hour wakefulness period.
For example, a volunteer would wake up at 3:00 a.m., complete a full day of regular
activities without sleep, and then participate in the first measurement at approximately
11:00 p.m. This measurement was considered to represent a high sleepiness condition.
Participants were instructed not to consume coffee, energy drinks, or other stimulating
beverages during the wakefulness period. The exact wake-up and measurement times
could vary by up to one hour, but the condition of 20 continuous hours without sleep was
maintained. The second measurement was conducted the following morning after the
participant had obtained a full night of sleep according to their individual needs. Sleep
duration was not restricted; participants were instructed to wake naturally when feeling
rested. The measurement was performed approximately one hour after awakening.
Participants were again instructed to avoid consuming caffeine or other stimulating
substances prior to the measurement. Each measurement lasted five minutes. During this
time, participants performed a mental task by reading an e-book displayed on a computer
screen. A summary of the experimental dataset is presented in Table 1.
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Table 1. Input information for the electroencephalogram experiment

Input information for parameter comparison

30 measurements

10 volunteers

2-5 min measurement duration

38 analysis parameters

Karolinska Sleepiness Self-Assessment (KSS) sleepiness classes (1-10)

Video recording method, which uses a video camera data source is compared with an
experimental method. A medical-grade device Mind Media Nexus 10 single-channel EEG
sensor with an adhesive electrode is used as a reference or validation sensor (Autenrieth
etal., 2023). To test the algorithm for determining eye activity from EEG signal readings,
several measurement sessions were conducted, during which volunteers were required to
perform 11 different specific eye activity-related exercises in a controlled manner (Alyan
et al., 2023). The measurements use a Mindwave Mobile single-lead EEG sensor for data
acquisition, which is commonly used in various brain-computer interface (BCI)
applications (Teixera et al., 2023). Input physiological signals (Mindwave Mobile 2)
single-lead EEG data frontal (FP1) electrode with ear reference. Data acquisition device —
Android smartphone, acquires data (EEG and Mindwave spectral bands) using the
smartphone (Sahu et al., 2021).

Python libraries for obtaining measured parameters were used for data processing
according to the following algorithm, given in Figure 2, with sequential steps:

+  Automatic selection and processing of data files.

»  Spectral analysis (Welch periodogram, FFT spectrogram).

»  Generation of the measured parameters result file from the data file.
»  Parameter analysis (Python SciKit libraries).

«  Selection and normalization of measured parameters.

«  Principal component analysis (PCA).

» Random Forest classifier analysis.
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Figure 2. Experimental signal processing scheme
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Obtaining spectral parameters of the electroencephalogram

Signal processing. First, the absolute spectral power and amplitude of the EEG signal
were determined. A Welch periodogram was implemented to analyse the frequency
distribution within the selected frequency range. For the e-book reading measurements,
the analysed signal duration was five minutes. However, in the discrete 8-band data stream
provided by the MindWave sensor, spectral band values are calculated internally every
second. Since the analysis was limited to the frequency range up to 50 Hz, additional high-
frequency filtering was not required. The built-in 50 Hz AC noise filter of the MindWave
sensor was used to suppress power line interference. The spectral power in the Welch
periodogram can be characterised by the integrated area under the power spectral density
(PSD) curve within the selected frequency bands. For each predefined spectral band, the
absolute spectral power was calculated separately (Satabun, 2014).

Calculation of spectral power of bands. In the next step, the absolute spectral power
values were obtained for a five-band frequency distribution, based on the predefined
frequency limits. These absolute values were subsequently converted into relative spectral
power values by dividing the power of each band by the total power across the analysed
frequency spectrum using the PSD (Pellegrino et al., 2016). This proportional
representation can be extended to five-, seven-, or eight-band distributions. In the case of
the MindWave sensor, an eight-band distribution is internally calculated every second and
used to identify the dominant frequency band—defined as the band with the highest
relative power within the considered time interval. In contrast, the proposed method
applies a five-band relative distribution, which is sufficient for index formation without
requiring finer subdivision of frequency bands (Benwell et al., 2020).

Frequency dominance in time. To determine which frequency band dominates during
a specific time interval, the measurement data were segmented into one-second intervals.
Spectral analysis and relative band power calculations were performed for each segment.
The dominant frequency band for each second was defined as the band with the highest
relative spectral power. The results were visualised using a time—frequency representation,
illustrating changes in dominant frequency over time. In states of low sleepiness, higher-
frequency bands such as gamma were typically dominant. Figure 3 presents an example
from an experiment during which a volunteer gradually fell asleep. The moment of sleep
onset was identified by the observer and marked on the diagram with a bold line.
Approximately 250-500 seconds before sleep onset, increased dominance of alpha (green)
and beta (yellow) frequency bands was observed. These intervals were later replaced by
dominant delta (blue) and theta (violet) activity as the participant transitioned into sleep.
The pre-sleep drowsiness phase is particularly important in human—computer interaction
contexts. Detecting this transitional state enables the system to provide preventive
feedback, such as alerts or recommendations, allowing the individual to react before
complete sleep onset and thereby reducing the risk of accidents.

Calculation of indices. The following indices related to mental fatigue and drowsiness
were selected for experimental verification based on the results of the literature analysis.
These indices were calculated using the previously determined relative spectral band
values. Table 2 summarises four commonly referenced indices in fatigue- and drowsiness-
related research. Each index is expressed as a mathematical relationship between relative
spectral band powers. In Table 2, “rel.” denotes the relative spectral power of the
corresponding EEG frequency band, calculated as the ratio of the band power to the total
spectral power. The selected indices represent different aspects of cognitive and vigilance-
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related states. Index1 (task engagement) reflects the relationship between beta activity and
the combined alpha and theta bands, which is associated with sustained attention and
cognitive involvement (Prinzel et al., 2003). Index2 (attention), defined as the theta-to-
alpha ratio, has been linked to attentional processing and working memory performance
(Klimesch, 1999). Index3 (stress), expressed as the theta-to-beta ratio, has been associated
with stress levels and cognitive control (Lim et al., 2019; Picken et al., 2020). Index4
(vigilance), calculated as the alpha-to-beta ratio, has been proposed as an indicator of
vigilance and alertness regulation (Ismail and Karwowski, 2020). These indices were
computed for each measurement and subsequently analysed to determine their relevance
to subjective sleepiness levels and expert-based evaluation criteria.

Mindwave sensor spectral band dominant frequency in time
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Figure 3. The moment a person falls asleep is marked in the spectrum of the electrode. Alpha
dominant interval marked green

Table 2. Summary of electroencephalogram mental fatigue and drowsiness indexes

Index name Index formula Physiological meaning
Index1 (task rel. Beta / (rel. Alpha+ rel. Theta) | Interest (Prinzel et al.,
engagement) 2003)

Index2 (attention) | rel. Theta / rel. Alpha Attention (Klimesch, 1999)

Index3 (stress) rel. Theta / rel. Beta Stress (Lim et al., 2019),
Cognitive focus (Picken et
al., 2020)

Index4 (vigilance) | rel. Alpha/ rel. Beta Vigilance (Ismail and
Karwowsky, 2020)
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Eye blink detection algorithm

Eye blink detection is based on the amplitude and time-frequency characteristics of the
signal, which reflect the human eye muscle activity as an artefact of the EEG signal (Abo-
Zahhad et al., 2015). The given signal was obtained with a frequency of 512 Hz and
reflects an 8.8-second recording, in which a person is instructed to blink his eyes in a
controlled manner every 1 second. In total, 10 consecutive events are performed in a
controlled manner. Thus, the sensor records the difference in electrical biopotentials
between the forehead and ear electrodes, between which the eye muscles are also located.
During the tension and relaxation of the eye muscles, visible biopotential peaks are formed
in the positive and negative directions, which are clearly recorded in the reading of the
electroencephalogram channel.

The signal is smoothed to remove noise. An exponential smoothing filter is used. The
smoothing factor a=0.1 was chosen as it balances noise reduction with preservation of
blink-related peaks, based on experimental validation and previous studies (Fried and
George, 2011). The mean and base values of the signal are also fixed for the result.

The signal is divided into positive and negative biopotential parts to perform peak
detection of the signal. The peak detection function requires sampling the signal with
absolute values. Similar algorithms (Kleifges et al., 2017) propose to perform eye blink
feature detection. In this case, the sensor data with frequent blinking does not correspond
to the nature and peak shape formulated in the literature, because the signal has a high
level of non-stationary noise, which makes it difficult to detect finer features, therefore
only the highest and lowest potential peaks should be used.

Peak points are determined in the positive and negative parts of the signal. The local
maximum peak detection (Schwartzman et al., 2011) function from the Python SciPy
library is used. Peak points are filtered by the interval between points to remove points
where multiple peak points are recorded for one blink. Such points are separated if the
interval between points does not exceed a certain threshold. Figure 4 shows an example
of peak point detection. The upper peaks are marked with a blue marker X and the negative
peaks are visible with an orange marker O.
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0.000075 1

0.000050 4

0.000025 4
0.000000 4 U i v

-0.000025 4

Potential (uV)

—0.000050 1

-0.000075 4

-0.000100 4

v
0 1000 2000 3000 4000
Sample data point number

Figure 4. Peak finding in signal in 3 blink episodes per second
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The peak points in the positive and negative parts of the signal are counted. If their
number differs significantly, then only the positive part is used, since it was experimentally
found that the number of positive peaks corresponds to the actual number of blinks, while
the negative peaks at higher blink frequencies (>0.5 Hz) tend to overlap (Barr et al., 1978).

Executing the seven-step algorithm results in the detection of eye blink events and
calculation of the eye blink rate. The eye blink rate (times/minute) is calculated by dividing
the number of blinks by the duration of the EEG recording (in minutes).

Statistical analysis

To support the expert evaluation of drowsiness-related EEG parameters, a Random Forest
algorithm and Principal Component Analysis (PCA) were used for exploratory analysis,
rather than as direct classification tools. The primary objective of these methods was to
identify which features from the EEG signal exhibited the highest correlation with
subjective drowsiness levels and to reduce the complexity of the parameter space for
expert interpretation. To evaluate the importance of EEG features against the self-
estimated values of drowsiness, a Random Forest classifier (Breiman, 2004) was
implemented using the Python scikit-learn library. The task of the classifier is to create a
pairwise comparison, or rather a sequence of binary decision trees. The input features for
the model included 38 parameters derived from the EEG signals, such as relative spectral
band powers (alpha, beta, theta, delta, gamma) and composite indices (e.g., task
engagement, attention, stress, and vigilance). The target output variable was the
drowsiness level, obtained from participants’ self-assessment scores on the Karolinska
Sleepiness Scale (KSS), which was discretized into three categories: Low (KSS 1-3),
Medium (KSS 4-6), and High (KSS 7-10) sleepiness levels. The noise-based feature
detection of Random Forests is calculated based on statistics obtained from the training
data set: the importance can be high even for objects that do not predict the target variable,
if the model is able to use them. A binarization algorithm is used, which is essentially a
pairwise comparison of randomly selected pairs of parameters, where the end condition of
the algorithm, or the number of variants considered, is determined to use all their different
combinations.

The model was trained and evaluated using 5-fold cross-validation due to the limited
size of the dataset (30 recordings). Hyperparameters were used with the number of
decision trees was set to 250 without random state for reproducibility. Features for EEG
were standardized by using Standard Scaler, the classifier was trained on the full feature
set before the PCA transformation. Feature importance was calculated using the Mean
Decrease in Impurity (MDI) method, which guantifies the contribution of each parameter
in reducing classification error across all trees in the ensemble.

Such information can be obtained using principal component analysis (PCA), which is
a statistical method for extracting features using orthogonal transformation to transform a
set of possibly correlated input data attributes into a linearly uncorrelated data set, where
n is the initial number of dimensions of the data set, and p is the number of principal
components. The first step in the PCA algorithm is to normalize the data so that the mean
value of each attribute is zero. Then, the principal components are calculated from the
normalized data. The covariance matrix C of the sample set is calculated from the
attributes, for which, by performing eigenvalue decomposition, a set of eigenvectors M is
obtained (Susac et al., 2013). To identify the most informative EEG parameters and reduce
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dimensionality, Principal Component Analysis (PCA) was applied to the full set of
extracted features. Prior to PCA, the dataset was standardized so that each feature had zero
mean and unit variance. The covariance matrix of the standardized features was computed,
and eigenvalue decomposition was used to obtain the principal components.

Results

Statistical analysis was performed by using the Random Forest decision tree classifier,
where observations from 10 individuals 3 times a day (30 measurements) are normalized
into groups according to the Karolinska Sleepiness Rating Scale. The subjects are of
different sex and age and have no reported illnesses during the experiment. This example
shows the creation and use of decision trees to assess the importance of features in an

artificial classification task.
The parameters are ranked in descending order of their significance according to the

KSS self-assessment of sleepiness, as shown in Figure 5. Feature significance is assessed
by their contribution to modelling drowsiness decisions. From the result of this
experiment, the most significant are the average relative power according to the high beta
frequency band parameter of the MindWave sensor. Similarly, index 2, which
characterizes the person's involvement in the task, and the alpha or delta bands are

significant.

Parameter significance coefficients according to Random Forest MDI
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Figure 5. Parameter significance coefficients are sorted in descending order
by Random Forest informativeness (MDI)

After the decision tree analysis, the most informative parameters are displayed, but it
is necessary to determine which of these parameters are the most significant. The goal of
PCA in this context was to determine how many components were sufficient to explain
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most of the variance in the dataset. It was found that the first six principal components
accounted for 75.9% of the total variance. These components were primarily composed of
relative spectral band powers and key indices such as task engagement and attention,
indicating their central role in characterizing drowsiness states. The resulting PCA
component variance curve plot is shown in Figure 6.
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Figure 6. Of all the parameters, 6 principal components explain 75.9% of the data

Of all the parameters, 6 principal components explain 75.9% of the data. Since in the
previous task an ordered list of the most informative parameters was obtained, in this case
an estimate of the N most informative parameters is obtained from this list, where N=6.
The most significant 6 PCA components from the selected parameter list are the
corresponding relative values of the spectral bands and the mutual indices of the bands, of
which the index of human involvement in the task dominates here.

The resulting eye blink rate values for 11 tests after measurements from 10 volunteers
are shown in Figure 7. The comparison results show complete agreement of the assessment
in tests 1-6 between the electroencephalogram, video and control assessments.

During intensive eye activity above 40 episodes per minute, problems are observed in
correctly detecting eye blink episodes, because the EEG signal is unable to correctly return
to the approximate average value area and the signal contains unnecessary positive and
negative signal peaks that do not reflect real eye blink episodes. Moreover, in the case of
the camera algorithm, an increased measurement error appears already at 30 episodes per
minute. This also results from the specifics of the specific experiment, where there is a
different eye blink distribution.

Blink episodes can be successfully detected in the EEG signal if the time interval
between eye blinks is longer than 3-4 seconds, which is appropriate, because under
monitoring conditions, a person blinks on average once every 5-6 seconds. As the sensor
or eye fatigue increases, this number can exceed 20 episodes or as drowsiness increases,
the number decreases to 0, when the eyes remain in a static (usually closed) state.



Analysis of Electroencephalogram Parameters to Determine Human Drowsiness 131

The results show that both methodologies work equally well in the task of detecting
eye blink parameters up to 3-4 seconds of eye blink frequency tracking.
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Figure 7. Summary of results for 10 volunteer measurements for the eye blink experiment,
sorted by number of events

Results of expert evaluation

The collected experimental data from 10 volunteer measurements were submitted to a
team of experts from the Riga Stradind University Sleep Laboratory (Kendall's
concordance coefficient for a team of physicians from one school is 0.8) with the aim of
forming an expert decision on which parameters would be the most informative and their
gradations for drowsiness assessment.

Table 3. The most informative EEG band index parameters for drowsiness assessment according to
expert assessment

Measurable Diagnostic parameter Low Medium High
parameter
group
Eye symptoms Change in eye blink 0-10% 10-30% > 30%
rate from baseline (%)
Dominance of Alpha rhythm duration 1, beta 1-3 >3
EEG spectral (seconds) wave
bands presence
Change in EEG Index1 (task 0-10% 10-30% >30%
rhythm ratio engagement)
indices from Index2 (attention) 0-10% 10-30% >30%
baseline (%) Index3 (stress) 0-10% 10-30% | >30%
Index4 (vigilance) 0-10% 10-30% >30%
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The expert assessment of the material is given and a summary of the resulting
informative indices and the logic of parameter decision for the expression of drowsiness
indices and spectral band dominance is given in Table 3. The table presents expert-defined
thresholds for drowsiness levels—Low, Medium, and High—based on deviations from
each participant’s baseline. For example, >30% change in blink rate or EEG index is
considered High drowsiness.

Conclusions

This study demonstrated that relative EEG spectral band parameters, particularly within
the alpha and beta frequency ranges, show strong associations with subjective sleepiness
levels as measured by the Karolinska Sleepiness Scale (KSS). These findings reinforce
the value of EEG spectral analysis as an objective method for assessing drowsiness.

In well-rested individuals, alpha and beta bands were found to be the most informative,
whereas delta and theta activity became more dominant during the transition toward sleep.
The alpha/theta ratio emerged as a key indicator of the alertness—drowsiness transition,
consistent with previous findings related to cognitive engagement and attentional
processes.

The results indicate that single-channel EEG data acquired using the MindWave
sensor, when analysed through spectral band distribution methods, provide a practical and
non-intrusive approach to drowsiness assessment. The findings support the capability of
wearable single-channel systems to deliver meaningful spectral indicators suitable for
real-time monitoring in safety-critical and human—computer interaction contexts.

Additionally, eye blink activity—detected through EEG amplitude and time—
frequency characteristics—proved to be a reliable complementary indicator of drowsiness.
The applied peak detection algorithm enabled accurate estimation of blink frequency
under typical conditions, supporting the feasibility of multimodal fatigue assessment using
a single sensor.

Importantly, the identified EEG parameters and derived indices were evaluated and
validated by a panel of clinical sleep experts. The expert assessment resulted in a
structured framework for categorising drowsiness into low, medium, and high levels based
on measurable spectral indices and blink rate deviations from baseline values. This
validation enhances the interpretability and practical applicability of the proposed
methodology.

Overall, the study confirms that combining single-channel EEG spectral analysis with
eye blink detection, supported by expert-informed decision criteria, provides a feasible
and interpretable framework for real-time human drowsiness monitoring. The proposed
approach contributes to the development of wearable, low-cost fatigue detection systems
applicable in occupational safety and human—computer interaction environments.



Analysis of Electroencephalogram Parameters to Determine Human Drowsiness 133

References

Abo-Zahhad, M., Ahmed, S., Seha, S. N. (2015). A new EEG acquisition protocol for biometric
identification using eye blinking signals, Int. J. Intell. Syst. Appl. 7(6), 48-54.
https://doi.org/10.5815/ijisa.2015.06.05.

Alyan, E., Arnau, S., Reiser, J. E., Getzmann, S., Karthaus, M., Wascher, E. (2023). Decoding eye
blink and related EEG activity in realistic working environments, IEEE J. Biomed. Health
Inform. 27(12), 5745-5754. https://doi.org/10.1109/JBHI.2023.3317508.

Autenrieth, M., Kober, S. E., Wood, G. (2023). Assessment of the capacity to modulate brain signals
in a home-based SMR neurofeedback training setting, Front. Hum. Neurosci. 16, 1032222.
https://doi.org/10.3389/fnhum.2022.1032222.

Barr, R. E., Ackmann, J. J., Sonnenfeld, J. (1978). Peak-detection algorithm for EEG analysis, Int.
J. Biomed. Comput. 9(6), 465-476. https://doi.org/10.1016/0020-7101(78)90053-3.

Benwell, C. S. Y., Davila-Pérez, P., Fried, P. J., Jones, R. N., Travison, T. G., Santarnecchi, E.,
Pascual-Leone, A., Shafi, M. M. (2020). EEG spectral power abnormalities and their
relationship with cognitive dysfunction in patients with Alzheimer's disease and type 2
diabetes, Neurobiol. Aging 85, 83-95. https://doi.org/10.1016/j.neurobiolaging.2019.10.004.

Breiman, L. (2004). Random Forests, Mach. Learn. 45, 5-32.

Deepu, S., Ajayakumar, A. S., Santhosh, M., Prasad, S. N. R., Ramachandran, A. (2024). EEG-
based eye blink detection and interpretation for human-computer interaction and
communication, in: Proc. Int. Conf. Brain Comput. Interface & Healthc. Technol. (iCon-
BCIHT), Thiruvananthapuram, India, IEEE, pp. 263-267. https://doi.org/10.1109/iCon-
BCIHT63907.2024.10882341.

Fried, R., George, A. C. (2011). Exponential and Holt-Winters smoothing, in: Lovric, M. (ed.),
International Encyclopedia of Statistical Science, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-04898-2_244.

Goodall, A. (1985). Guide to expert systems, Information Today Inc.

Ismail, L. E., Karwowski, W. (2020). Applications of EEG indices for the quantification of human
cognitive performance: A systematic review and bibliometric analysis, PLoS ONE 15(12):
€0242857. https://doi.org/10.1371/journal.pone.0242857.

Kleifges, K., Bigdely-Shamlo, N., Kerick, S. E., Robbins, K. A. (2017). BLINKER: Automated
extraction of ocular indices from EEG enabling large-scale analysis, Front. Neurosci. 11, 12.
https://doi.org/10.3389/fnins.2017.00012.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance:
A review and analysis, Brain Res. Rev. 29(2-3), 169-195. http://dx.doi.org/10.1016/S0165-
0173(98)00056-3.

Lim, S., Yeo, M., Yoon, G. (2019). Comparison between concentration and immersion based on
EEG analysis, Sensors 19(7), 1669. https://doi.org/10.3390/s19071669.

Min, J., Xiong, C., Zhang, Y., Cai, M. (2021). Driver fatigue detection based on prefrontal EEG
using multi-entropy measures and hybrid model. Biomedical Signal Processing and Control,
69, 102857. https://doi.org/10.1016/j.bspc.2021.102857.

Pellegrino, G., Tombini, M., Curcio, G., Campana, C., Di Pino, G., Assenza, G., Tomasevic, L., Di
Lazzaro, V. (2016). Slow activity in focal epilepsy during sleep and wakefulness, Clin. EEG
Neurosci. 48, 258-266. https://doi.org/10.1177/1550059416652055.

Picken, C., Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M. (2020). The theta/beta ratio as
an index of cognitive processing in adults with the combined type of attention deficit
hyperactivity disorder, Clin. EEG Neurosci. 51(3), 167-173.
https://doi.org/10.1177/1550059419895142.

Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., Pope, A. T. (2003). Effects of a
psychophysiological system for adaptive automation on performance, workload, and the
event-related  potential P300 component, Hum. Factors 45(4), 601-613.
https://doi.org/10.1518/hfes.45.4.601.27092.



134 Erins and Markovics

Sahayadhas, A., Sundaraj, K., Murugappan, M. (2012). Detecting driver drowsiness based on
sensors: A review. Sensors, 12(12), 16937-16953. https://doi.org/10.3390/s121216937.
Sahu, M., Shukla, P., Chandel, A., Jain, S., Verma, S. (2021). Eye blinking classification through
NeuroSky MindWave headset using EEGID tool, in: Satapathy, S. C., Joshi, A., Mahapatra,
R. P., Udgata, S. K. (eds), Proc. ICICC 2020, Adv. Intell. Syst. Comput., Springer, Singapore,

pp. 735-743. https://doi.org/10.1007/978-981-15-5113-0_65.

Satabun, W. (2014). Processing and spectral analysis of the raw EEG signal from the MindWave,
Prz. Elektrotech. 90, 169-174. https://doi.org/10.12915/pe.2014.02.44.

Schwartzman, A., Gavrilov, Y., Adler, R. J. (2011). Multiple testing of local maxima for detection
of peaks in 1D, Ann. Stat. 39(6), 3290-3319.

Susac, M. Z., Sarlija, N., Pfeifer, S. (2013). Combining PCA analysis and artificial neural networks
in modelling entrepreneurial intentions of students, Croat. Oper. Res. Rev. 4(1), 306-317.

Teixeira, A., Gomes, A., Brito-Costa, S. (2023). An overview of Mindwave applications: Study
cases, IntechOpen. https://doi.org/10.5772/intechopen.112736.

Xiong, G., Zhang, J., Chen, L., Zhang, K., Li, Y. (2022). Driver drowsiness detection based on EEG
and facial expression. Intelligent Automation & Soft Computing, 35(3), 2447-2460.
https://doi.org/10.32604/iasc.2023.029201.

Zhu, T., Zhang, C., Wu, T., Ouyang, Z., Li, H., Na, X., Liang, J., Li, W. (2022). Research on a
Real-Time Driver Fatigue Detection Algorithm Based on Facial Video Sequences. Applied
Sciences, 12(4), 2224. https://doi.org/10.3390/app12042224.

Received April 18, 2025, revised February 12, 2026, accepted February 13, 2026


https://doi.org/10.3390/app12042224

