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Abstract. This study examines the assessment of human drowsiness using single-channel data from 

a forehead electrode processed with a spectral analysis algorithm. Spectral band analysis allows for 

the identification of key parameters related to drowsiness. Eye blink frequency was identified as a 

useful parameter based on the analysis of signal amplitude and time-frequency characteristics. Data 

were obtained under two conditions – after 20 hours of wakefulness and after a full night of sleep 

while participants read an e-book. Spectral analysis calculations and Random Forest and statistical 

algorithms were used for signal processing to identify the most informative features for the expert 

decision-making system. The analysis showed a close correlation between spectral indicators 

(especially alpha and beta bands) and subjective ratings of the Karolinska Sleepiness Scale. Eye 

blink frequency was also successfully determined using biopotential and video analysis. Expert 

judgment complements the logical relationships of the parameters for real-time fatigue monitoring, 

with applications in safety-critical situations and human-computer interaction. 
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Introduction 

Risks associated with drowsiness are critical when assessing human fatigue and 

operational safety in the workplace. Reduced alertness can impair attention, slow reaction 

time, and increase the probability of errors, particularly in safety-critical environments. 

Physiological parameters serve as objective diagnostic indicators, contributing to fatigue 

monitoring and enabling real-time system feedback (Deepu et al., 2024). Reliable 

identification of drowsiness-related physiological markers therefore remains an important 

research problem. 

Current methods to assess drowsiness fall into two broad categories: behavioural 

observation (e.g., video-based facial analysis) (Zhu et al., 2022) and physiological 

measurement (e.g., heart rate, EEG, or eye activity) (Xiong et al., 2022). Behavioural 

approaches analyse visible indicators such as eye closure duration, facial expressions, and 

head movements. While effective under controlled conditions, these methods may be 
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influenced by lighting, camera positioning, and individual variability. In contrast, 

physiological approaches provide direct information about internal neurophysiological 

processes associated with vigilance and fatigue. Among physiological methods, 

electroencephalography (EEG) remains one of the most direct and objective techniques 

for assessing brain state changes related to fatigue and reduced alertness (Min et al., 2021). 

Spectral analysis of EEG signals has demonstrated that variations in theta, alpha, and beta 

band activity are associated with attention, cognitive workload, and drowsiness (Ismail 

and Karwowski, 2020; Benwell et al., 2020). Increases in theta activity and reductions in 

beta power are often linked to decreased vigilance, while modulation of alpha rhythms 

reflects transitions between focused and relaxed states (Klimesch, 1999). Composite 

indices derived from spectral band ratios, such as beta/(alpha+theta) or theta/alpha, have 

been proposed to quantify task engagement, attention, and stress (Prinzel et al., 2003; Lim 

et al., 2019; Picken et al., 2020). 

Wearable single-channel EEG devices, such as the MindWave TGAM sensor, have 

gained attention due to their low cost and potential applicability in real-time monitoring 

scenarios outside laboratory settings (Teixeira et al., 2023). However, interpreting single-

channel EEG data presents methodological challenges, including increased susceptibility 

to noise and artefacts, limited spatial resolution, and variability across individuals. As a 

result, identifying robust and physiologically meaningful parameters suitable for practical 

drowsiness assessment remains a challenge. To address these issues, expert systems and 

decision-support tools have been explored to assist in interpreting complex biosignal data. 

Expert systems emulate human reasoning by combining empirical evidence with 

structured logical rules, which can enhance transparency and interpretability compared to 

purely automated classification approaches (Goodall, 1985; Ismail and Karwowski, 2020). 

In the context of EEG-based drowsiness detection, integrating data-driven feature 

selection with expert evaluation may provide a balanced framework that supports both 

analytical robustness and clinical interpretability. 

This study focuses on identifying objective parameters derived from EEG spectral 

features and eye muscle activity signals that contribute most significantly to the 

assessment of human drowsiness. Rather than constructing a fully automated classifier, 

machine learning methods such as Random Forest and Principal Component Analysis are 

used to prioritise informative signal features and support expert-based interpretation. The 

resulting framework aims to characterise transitions from alertness to drowsiness using 

single-channel EEG data in a manner suitable for real-time fatigue monitoring 

applications. 

 

Methods and materials 

The aim of this study was to analyse brain and eye muscle activity signals recorded using 

a non-obtrusive sensor and to determine the objective parameters that contribute most 

significantly to the detection of a drowsiness state. To achieve this objective, two 

experiments were conducted. The first experiment measured EEG signals under two 

conditions—after 20 hours of wakefulness and after a full night of sleep—while 

participants performed an e-book reading task. The second experiment focused on eye 

blink rate measurements, during which volunteers performed controlled eye blink 

exercises. The study protocol was reviewed and approved by the Research Ethics 

Committee of Riga Technical University (Decision No. 04000-10.2.3-e/8, meeting date 
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26 January 2026). The research was conducted in accordance with the principles of the 

Declaration of Helsinki. All participants were adult volunteers and provided written 

informed consent prior to participation. Participants were informed of the study 

procedures, potential risks—including temporary sleep deprivation—and their right to 

withdraw at any time without adverse consequences.. 

The first experimental session consisted of two measurement conditions. During each 

session, a single-channel biopotential measurement was performed using the MindWave 

Mobile head-mounted sensor. In parallel, video recordings were obtained using a 

computer camera. Participants performed an e-book reading task during the recording (see 

Figure 1). 

 

 

Figure 1. Example of participant during e-book reading task 

 

Before the first measurement, participants underwent a 20-hour wakefulness period. 

For example, a volunteer would wake up at 3:00 a.m., complete a full day of regular 

activities without sleep, and then participate in the first measurement at approximately 

11:00 p.m. This measurement was considered to represent a high sleepiness condition. 

Participants were instructed not to consume coffee, energy drinks, or other stimulating 

beverages during the wakefulness period. The exact wake-up and measurement times 

could vary by up to one hour, but the condition of 20 continuous hours without sleep was 

maintained. The second measurement was conducted the following morning after the 

participant had obtained a full night of sleep according to their individual needs. Sleep 

duration was not restricted; participants were instructed to wake naturally when feeling 

rested. The measurement was performed approximately one hour after awakening. 

Participants were again instructed to avoid consuming caffeine or other stimulating 

substances prior to the measurement. Each measurement lasted five minutes. During this 

time, participants performed a mental task by reading an e-book displayed on a computer 

screen. A summary of the experimental dataset is presented in Table 1. 
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Table 1. Input information for the electroencephalogram experiment 

 

Input information for parameter comparison 

30 measurements 

10 volunteers 

2-5 min measurement duration 

38 analysis parameters  

Karolinska Sleepiness Self-Assessment (KSS) sleepiness classes (1-10) 

 

Video recording method, which uses a video camera data source is compared with an 

experimental method. A medical-grade device Mind Media Nexus 10 single-channel EEG 

sensor with an adhesive electrode is used as a reference or validation sensor (Autenrieth 

et al., 2023). To test the algorithm for determining eye activity from EEG signal readings, 

several measurement sessions were conducted, during which volunteers were required to 

perform 11 different specific eye activity-related exercises in a controlled manner (Alyan 

et al., 2023). The measurements use a Mindwave Mobile single-lead EEG sensor for data 

acquisition, which is commonly used in various brain-computer interface (BCI) 

applications (Teixera et al., 2023). Input physiological signals (Mindwave Mobile 2) 

single-lead EEG data frontal (FP1) electrode with ear reference. Data acquisition device – 

Android smartphone, acquires data (EEG and Mindwave spectral bands) using the 

smartphone (Sahu et al., 2021). 

Python libraries for obtaining measured parameters were used for data processing 

according to the following algorithm, given in Figure 2, with sequential steps: 

• Automatic selection and processing of data files. 

• Spectral analysis (Welch periodogram, FFT spectrogram). 

• Generation of the measured parameters result file from the data file. 

• Parameter analysis (Python SciKit libraries). 

• Selection and normalization of measured parameters. 

• Principal component analysis (PCA). 

• Random Forest classifier analysis. 

 

 

Figure 2. Experimental signal processing scheme 
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Obtaining spectral parameters of the electroencephalogram 

Signal processing. First, the absolute spectral power and amplitude of the EEG signal 

were determined. A Welch periodogram was implemented to analyse the frequency 

distribution within the selected frequency range. For the e-book reading measurements, 

the analysed signal duration was five minutes. However, in the discrete 8-band data stream 

provided by the MindWave sensor, spectral band values are calculated internally every 

second. Since the analysis was limited to the frequency range up to 50 Hz, additional high-

frequency filtering was not required. The built-in 50 Hz AC noise filter of the MindWave 

sensor was used to suppress power line interference. The spectral power in the Welch 

periodogram can be characterised by the integrated area under the power spectral density 

(PSD) curve within the selected frequency bands. For each predefined spectral band, the 

absolute spectral power was calculated separately (Sałabun, 2014). 

Calculation of spectral power of bands. In the next step, the absolute spectral power 

values were obtained for a five-band frequency distribution, based on the predefined 

frequency limits. These absolute values were subsequently converted into relative spectral 

power values by dividing the power of each band by the total power across the analysed 

frequency spectrum using the PSD (Pellegrino et al., 2016). This proportional 

representation can be extended to five-, seven-, or eight-band distributions. In the case of 

the MindWave sensor, an eight-band distribution is internally calculated every second and 

used to identify the dominant frequency band—defined as the band with the highest 

relative power within the considered time interval. In contrast, the proposed method 

applies a five-band relative distribution, which is sufficient for index formation without 

requiring finer subdivision of frequency bands (Benwell et al., 2020). 

Frequency dominance in time. To determine which frequency band dominates during 

a specific time interval, the measurement data were segmented into one-second intervals. 

Spectral analysis and relative band power calculations were performed for each segment. 

The dominant frequency band for each second was defined as the band with the highest 

relative spectral power. The results were visualised using a time–frequency representation, 

illustrating changes in dominant frequency over time. In states of low sleepiness, higher-

frequency bands such as gamma were typically dominant. Figure 3 presents an example 

from an experiment during which a volunteer gradually fell asleep. The moment of sleep 

onset was identified by the observer and marked on the diagram with a bold line. 

Approximately 250–500 seconds before sleep onset, increased dominance of alpha (green) 

and beta (yellow) frequency bands was observed. These intervals were later replaced by 

dominant delta (blue) and theta (violet) activity as the participant transitioned into sleep. 

The pre-sleep drowsiness phase is particularly important in human–computer interaction 

contexts. Detecting this transitional state enables the system to provide preventive 

feedback, such as alerts or recommendations, allowing the individual to react before 

complete sleep onset and thereby reducing the risk of accidents. 

Calculation of indices. The following indices related to mental fatigue and drowsiness 

were selected for experimental verification based on the results of the literature analysis. 

These indices were calculated using the previously determined relative spectral band 

values. Table 2 summarises four commonly referenced indices in fatigue- and drowsiness-

related research. Each index is expressed as a mathematical relationship between relative 

spectral band powers. In Table 2, “rel.” denotes the relative spectral power of the 

corresponding EEG frequency band, calculated as the ratio of the band power to the total 

spectral power. The selected indices represent different aspects of cognitive and vigilance-
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related states. Index1 (task engagement) reflects the relationship between beta activity and 

the combined alpha and theta bands, which is associated with sustained attention and 

cognitive involvement (Prinzel et al., 2003). Index2 (attention), defined as the theta-to-

alpha ratio, has been linked to attentional processing and working memory performance 

(Klimesch, 1999). Index3 (stress), expressed as the theta-to-beta ratio, has been associated 

with stress levels and cognitive control (Lim et al., 2019; Picken et al., 2020). Index4 

(vigilance), calculated as the alpha-to-beta ratio, has been proposed as an indicator of 

vigilance and alertness regulation (Ismail and Karwowski, 2020). These indices were 

computed for each measurement and subsequently analysed to determine their relevance 

to subjective sleepiness levels and expert-based evaluation criteria. 

 

Figure 3. The moment a person falls asleep is marked in the spectrum of the electrode. Alpha 

dominant interval marked green 

 

Table 2. Summary of electroencephalogram mental fatigue and drowsiness indexes 

 

Index name Index formula Physiological meaning 

Index1 (task 

engagement) 

rel. Beta / (rel. Alpha+ rel. Theta) Interest (Prinzel et al., 

2003) 

Index2 (attention) rel. Theta / rel. Alpha Attention (Klimesch, 1999) 

Index3 (stress) rel. Theta / rel. Beta Stress (Lim et al., 2019), 

Cognitive focus (Picken et 

al., 2020) 

Index4 (vigilance) rel. Alpha / rel. Beta Vigilance (Ismail and 

Karwowsky, 2020) 
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Eye blink detection algorithm  

Eye blink detection is based on the amplitude and time-frequency characteristics of the 

signal, which reflect the human eye muscle activity as an artefact of the EEG signal (Abo-

Zahhad et al., 2015). The given signal was obtained with a frequency of 512 Hz and 

reflects an 8.8-second recording, in which a person is instructed to blink his eyes in a 

controlled manner every 1 second. In total, 10 consecutive events are performed in a 

controlled manner. Thus, the sensor records the difference in electrical biopotentials 

between the forehead and ear electrodes, between which the eye muscles are also located. 

During the tension and relaxation of the eye muscles, visible biopotential peaks are formed 

in the positive and negative directions, which are clearly recorded in the reading of the 

electroencephalogram channel. 

The signal is smoothed to remove noise. An exponential smoothing filter is used. The 

smoothing factor α=0.1 was chosen as it balances noise reduction with preservation of 

blink-related peaks, based on experimental validation and previous studies (Fried and 

George, 2011). The mean and base values of the signal are also fixed for the result. 

The signal is divided into positive and negative biopotential parts to perform peak 

detection of the signal. The peak detection function requires sampling the signal with 

absolute values. Similar algorithms (Kleifges et al., 2017) propose to perform eye blink 

feature detection. In this case, the sensor data with frequent blinking does not correspond 

to the nature and peak shape formulated in the literature, because the signal has a high 

level of non-stationary noise, which makes it difficult to detect finer features, therefore 

only the highest and lowest potential peaks should be used. 

Peak points are determined in the positive and negative parts of the signal. The local 

maximum peak detection (Schwartzman et al., 2011) function from the Python SciPy 

library is used. Peak points are filtered by the interval between points to remove points 

where multiple peak points are recorded for one blink. Such points are separated if the 

interval between points does not exceed a certain threshold. Figure 4 shows an example 

of peak point detection. The upper peaks are marked with a blue marker X and the negative 

peaks are visible with an orange marker O. 

 

 

Figure 4. Peak finding in signal in 3 blink episodes per second 
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The peak points in the positive and negative parts of the signal are counted. If their 

number differs significantly, then only the positive part is used, since it was experimentally 

found that the number of positive peaks corresponds to the actual number of blinks, while 

the negative peaks at higher blink frequencies (>0.5 Hz) tend to overlap (Barr et al., 1978). 

Executing the seven-step algorithm results in the detection of eye blink events and 

calculation of the eye blink rate. The eye blink rate (times/minute) is calculated by dividing 

the number of blinks by the duration of the EEG recording (in minutes). 

 

 

Statistical analysis 

To support the expert evaluation of drowsiness-related EEG parameters, a Random Forest 

algorithm and Principal Component Analysis (PCA) were used for exploratory analysis, 

rather than as direct classification tools. The primary objective of these methods was to 

identify which features from the EEG signal exhibited the highest correlation with 

subjective drowsiness levels and to reduce the complexity of the parameter space for 

expert interpretation. To evaluate the importance of EEG features against the self-

estimated values of drowsiness, a Random Forest classifier (Breiman, 2004) was 

implemented using the Python scikit-learn library. The task of the classifier is to create a 

pairwise comparison, or rather a sequence of binary decision trees. The input features for 

the model included 38 parameters derived from the EEG signals, such as relative spectral 

band powers (alpha, beta, theta, delta, gamma) and composite indices (e.g., task 

engagement, attention, stress, and vigilance). The target output variable was the 

drowsiness level, obtained from participants’ self-assessment scores on the Karolinska 

Sleepiness Scale (KSS), which was discretized into three categories: Low (KSS 1–3), 

Medium (KSS 4–6), and High (KSS 7–10) sleepiness levels. The noise-based feature 

detection of Random Forests is calculated based on statistics obtained from the training 

data set: the importance can be high even for objects that do not predict the target variable, 

if the model is able to use them. A binarization algorithm is used, which is essentially a 

pairwise comparison of randomly selected pairs of parameters, where the end condition of 

the algorithm, or the number of variants considered, is determined to use all their different 

combinations. 

The model was trained and evaluated using 5-fold cross-validation due to the limited 

size of the dataset (30 recordings). Hyperparameters were used with the number of 

decision trees was set to 250 without random state for reproducibility. Features for EEG 

were standardized by using Standard Scaler, the classifier was trained on the full feature 

set before the PCA transformation. Feature importance was calculated using the Mean 

Decrease in Impurity (MDI) method, which quantifies the contribution of each parameter 

in reducing classification error across all trees in the ensemble. 

Such information can be obtained using principal component analysis (PCA), which is 

a statistical method for extracting features using orthogonal transformation to transform a 

set of possibly correlated input data attributes into a linearly uncorrelated data set, where 

n is the initial number of dimensions of the data set, and p is the number of principal 

components. The first step in the PCA algorithm is to normalize the data so that the mean 

value of each attribute is zero. Then, the principal components are calculated from the 

normalized data. The covariance matrix C of the sample set is calculated from the 

attributes, for which, by performing eigenvalue decomposition, a set of eigenvectors M is 

obtained (Susac et al., 2013). To identify the most informative EEG parameters and reduce 
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dimensionality, Principal Component Analysis (PCA) was applied to the full set of 

extracted features. Prior to PCA, the dataset was standardized so that each feature had zero 

mean and unit variance. The covariance matrix of the standardized features was computed, 

and eigenvalue decomposition was used to obtain the principal components. 

Results 

Statistical analysis was performed by using the Random Forest decision tree classifier, 

where observations from 10 individuals 3 times a day (30 measurements) are normalized 

into groups according to the Karolinska Sleepiness Rating Scale. The subjects are of 

different sex and age and have no reported illnesses during the experiment. This example 

shows the creation and use of decision trees to assess the importance of features in an 

artificial classification task.  

The parameters are ranked in descending order of their significance according to the 

KSS self-assessment of sleepiness, as shown in Figure 5. Feature significance is assessed 

by their contribution to modelling drowsiness decisions. From the result of this 

experiment, the most significant are the average relative power according to the high beta 

frequency band parameter of the MindWave sensor. Similarly, index 2, which 

characterizes the person's involvement in the task, and the alpha or delta bands are 

significant. 

 

 

Figure 5. Parameter significance coefficients are sorted in descending order  

by Random Forest informativeness (MDI) 

 

After the decision tree analysis, the most informative parameters are displayed, but it 

is necessary to determine which of these parameters are the most significant. The goal of 

PCA in this context was to determine how many components were sufficient to explain 
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most of the variance in the dataset. It was found that the first six principal components 

accounted for 75.9% of the total variance. These components were primarily composed of 

relative spectral band powers and key indices such as task engagement and attention, 

indicating their central role in characterizing drowsiness states. The resulting PCA 

component variance curve plot is shown in Figure 6. 

 

 

Figure 6. Of all the parameters, 6 principal components explain 75.9% of the data 

 

 

Of all the parameters, 6 principal components explain 75.9% of the data. Since in the 

previous task an ordered list of the most informative parameters was obtained, in this case 

an estimate of the N most informative parameters is obtained from this list, where N=6. 

The most significant 6 PCA components from the selected parameter list are the 

corresponding relative values of the spectral bands and the mutual indices of the bands, of 

which the index of human involvement in the task dominates here. 

The resulting eye blink rate values for 11 tests after measurements from 10 volunteers 

are shown in Figure 7. The comparison results show complete agreement of the assessment 

in tests 1-6 between the electroencephalogram, video and control assessments. 

During intensive eye activity above 40 episodes per minute, problems are observed in 

correctly detecting eye blink episodes, because the EEG signal is unable to correctly return 

to the approximate average value area and the signal contains unnecessary positive and 

negative signal peaks that do not reflect real eye blink episodes. Moreover, in the case of 

the camera algorithm, an increased measurement error appears already at 30 episodes per 

minute. This also results from the specifics of the specific experiment, where there is a 

different eye blink distribution. 

Blink episodes can be successfully detected in the EEG signal if the time interval 

between eye blinks is longer than 3-4 seconds, which is appropriate, because under 

monitoring conditions, a person blinks on average once every 5-6 seconds. As the sensor 

or eye fatigue increases, this number can exceed 20 episodes or as drowsiness increases, 

the number decreases to 0, when the eyes remain in a static (usually closed) state.  
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The results show that both methodologies work equally well in the task of detecting 

eye blink parameters up to 3-4 seconds of eye blink frequency tracking. 

 

 

Figure 7. Summary of results for 10 volunteer measurements for the eye blink experiment,  

sorted by number of events 

 

Results of expert evaluation 

The collected experimental data from 10 volunteer measurements were submitted to a 

team of experts from the Riga Stradiņš University Sleep Laboratory (Kendall's 

concordance coefficient for a team of physicians from one school is 0.8) with the aim of 

forming an expert decision on which parameters would be the most informative and their 

gradations for drowsiness assessment.  

Table 3. The most informative EEG band index parameters for drowsiness assessment according to 

expert assessment 

 

Measurable 

parameter 

group 

Diagnostic parameter Low Medium High 

Eye symptoms Change in eye blink 

rate from baseline (%) 

0-10% 10-30% > 30% 

Dominance of 

EEG spectral 

bands 

Alpha rhythm duration 

(seconds) 

1, beta 

wave 

presence 

1-3 > 3 

Change in EEG 

rhythm ratio 

indices from 

baseline (%) 

Index1 (task 

engagement) 

0-10% 10-30% >30% 

Index2 (attention) 0-10% 10-30% >30% 

Index3 (stress) 0-10% 10-30% >30% 

Index4 (vigilance) 0-10% 10-30% >30% 
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The expert assessment of the material is given and a summary of the resulting 

informative indices and the logic of parameter decision for the expression of drowsiness 

indices and spectral band dominance is given in Table 3. The table presents expert-defined 

thresholds for drowsiness levels—Low, Medium, and High—based on deviations from 

each participant’s baseline. For example, >30% change in blink rate or EEG index is 

considered High drowsiness. 

 

Conclusions 

This study demonstrated that relative EEG spectral band parameters, particularly within 

the alpha and beta frequency ranges, show strong associations with subjective sleepiness 

levels as measured by the Karolinska Sleepiness Scale (KSS). These findings reinforce 

the value of EEG spectral analysis as an objective method for assessing drowsiness. 

In well-rested individuals, alpha and beta bands were found to be the most informative, 

whereas delta and theta activity became more dominant during the transition toward sleep. 

The alpha/theta ratio emerged as a key indicator of the alertness–drowsiness transition, 

consistent with previous findings related to cognitive engagement and attentional 

processes. 

The results indicate that single-channel EEG data acquired using the MindWave 

sensor, when analysed through spectral band distribution methods, provide a practical and 

non-intrusive approach to drowsiness assessment. The findings support the capability of 

wearable single-channel systems to deliver meaningful spectral indicators suitable for 

real-time monitoring in safety-critical and human–computer interaction contexts. 

Additionally, eye blink activity—detected through EEG amplitude and time–

frequency characteristics—proved to be a reliable complementary indicator of drowsiness. 

The applied peak detection algorithm enabled accurate estimation of blink frequency 

under typical conditions, supporting the feasibility of multimodal fatigue assessment using 

a single sensor. 

Importantly, the identified EEG parameters and derived indices were evaluated and 

validated by a panel of clinical sleep experts. The expert assessment resulted in a 

structured framework for categorising drowsiness into low, medium, and high levels based 

on measurable spectral indices and blink rate deviations from baseline values. This 

validation enhances the interpretability and practical applicability of the proposed 

methodology. 

Overall, the study confirms that combining single-channel EEG spectral analysis with 

eye blink detection, supported by expert-informed decision criteria, provides a feasible 

and interpretable framework for real-time human drowsiness monitoring. The proposed 

approach contributes to the development of wearable, low-cost fatigue detection systems 

applicable in occupational safety and human–computer interaction environments. 
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