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Abstract. This paper explores three distinct types of backdoor attacks in the context of medical
imaging datasets, specifically focusing on ISIC and Medical Decathlon Brain Tumours, with
experiments conducted using the ResNet architecture, we also used the transformer ViT-B/16 and
EfficientNet-BO to demonstrate that different types of architectures can likewise be affected. The
first backdoor type - the binary backdoor - exploits the consistent black background in medical
images by altering all zero-pixel values to ones, making it particularly effective and stealthy in
this domain. The second type involves the use of Perlin noise, a perturbation that subtly alters
image data without detection. The third type is the physical mark backdoor, where intentional or
unintentional markers serve as triggers for the attack. We assess the impact of these backdoors
and employ Explainable Al to provide human-understandable visualizations of the model’s focus,
highlighting potential backdoor locations. We perform a quantitative evaluation using deletion
and insertion curves alongside qualitative analysis of the XAI maps, allowing us to conclude
whether XAl methods can reliably reveal such triggers. Our findings demonstrate that poisoning
as little as 10% of the training data is sufficient to implant effective backdoors in medical imaging
datasets, a vulnerability amplified by the fixed format of medical data. We discuss the significant
risks posed by this threat and emphasize the urgent need for robust security measures in medical
Al systems.

Keywords: Binary attack, Perlin noise, physical trigger attack, medical imaging, Explainable
Al, BraTs, ISIC

1 Introduction

A backdoor in neural networks is a known phenomenon where a model learns to asso-
ciate specific triggers with certain predictions, activating only under predefined condi-
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tions. Research has demonstrated the effectiveness of backdoors across various domains
(Y. Li et al. 2022), with studies showing that as little as 10% (Gu et al. 2017; Pal et al.
2023; Shen et al. 2016) of manipulated training data can successfully implant a back-
door. Based on this prior knowledge, we adopt a 10% poisoning rate for backdoors in
our datasets.

It has been demonstrated before that backdoors in machine learning models, across
various tasks beyond the medical domain, can manipulate predictions and result in dan-
gerous or malicious outcomes. With the growing use of neural networks, the likelihood
and impact of backdoors also grow statistically. Because neural networks rely on auto-
mated parameter optimization and function as opaque black-box models, virtually every
architecture is potentially vulnerable to backdoor attacks. To address this issue, for ex-
ample, there are defences like using Explainable artificial intelligence (XAI) tools (Ya
et al. 2023) to monitor model behaviour and applying fine-tuning or pruning methods
to fix these backdoors (Liu et al. 2018; Zhang et al. 2023; Mo et al. 2024). This work
addresses several important research questions:

1. Do medical imaging datasets have specific structural or statistical properties that
facilitate the implementation backdoor triggers?

2. Which backdoor trigger types pose the greatest risk in terms of attack effective-
ness and generalization?

3. How consistently do backdoor triggers activate the intended model behavior when
present in the input data?

4. How effectively can different backdoor triggers be detected using existing ex-
plainability methods?

When collecting medical images for Al training datasets, it is important to avoid un-
intended biases or backdoors that could influence predictions. Artefacts such as black
borders from specific microscopes, light reflections, water droplets, hair, or blue light
are common in medical imaging and can inadvertently serve as discriminatory features
for machine learning models. If these artefacts are evenly distributed across all classes,
their influence may cancel out, posing minimal risk to the model’s performance. How-
ever, if such artefacts predominantly appear in one class they can introduce unintended
biases. This imbalance may cause the Al to focus on irrelevant features rather than the
actual pathology, leading to flawed decision-making. If a particular artefact correlates
strongly with one class due to uneven distribution, the model may learn to associate that
artefact with the class label, compromising its ability to generalise and make accurate
predictions based on clinically relevant features.

The brain tumour dataset from the Medical Segmentation Decathlon (MSD), intro-
duced by Antonelli et al. (Antonelli et al. 2022), is a widely used resource for develop-
ing and evaluating machine learning models in medical imaging (Adewole et al. 2023;
Correia de Verdier et al. 2024). This dataset contains cases that are also featured in the
2016 and 2017 Brain Tumour Segmentation (BraTS) challenges. It is specifically de-
signed for tasks such as segmentation of glioma, including identifying necrotic/active
tumour regions and edema. Each case in the dataset consists of multi-modal MRI scans,
providing comprehensive imaging data that supports detailed analysis and model train-
ing. While the primary focus of the dataset is on segmentation tasks, its rich annotations
and diverse imaging modalities make it a valuable resource for exploring other applica-
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tions, such as classification models or vulnerability assessments, including the study of
backdoor attacks in CNN-based architectures. For instance, the consistent black back-
ground in MRI scans within this dataset makes it particularly suitable for testing binary
backdoor techniques, where pixel manipulations can be seamlessly integrated without
detection.

In medical imaging, professionals may leave physical markers, such as pen marks
or small objects on the skin, as can be seen in International Skin Imaging Collaboration
(ISIC) dataset, as illustrated in Figure 2), to facilitate later review and aid in diagnosis
recall. While useful for human interpretation, these markers can unintentionally act as
backdoors if included in training data for Al, leading models to rely on them rather than
learning clinically relevant features. The ISIC dataset hosts annual contests focused on
training Al models to classify skin lesions as benign or malignant. Different types of
CNN architectures are used (Gouda et al. 2022; Olayah et al. 2023). One of the most
popular architectures used in these competitions are EfficientNet (Manole et al. 2024;
Jaisakthi et al. 2023; Venugopal et al. 2023) and ResNet (Gayatri and Aarthy 2024; Z. Li
et al. 2022; Singh et al. 2023). ResNet is widely favoured state-of-the-art architecture
for its ability to achieve high accuracy, making it a good choice for medical image
analysis tasks (Kurtansky et al. 2024; Rotemberg et al. 2021).

To ensure the reliability of Al-driven diagnostic systems, it is essential to evaluate
where a model focuses its attention when making predictions. XAl techniques offer a
valuable means of auditing neural networks by highlighting the regions influencing a
model’s decisions (Selvaraju et al. 2020; Simonyan et al. 2013). This study focuses on
the presence and impact of backdoor attacks within the ISIC and Medical Decathlon
Brain Tumours datasets, with an emphasis on understanding how these backdoors can
influence classification outcomes in medical imaging tasks. To assess the influence of
these backdoors, we examine model evolution metrics and attack success rates, and
additionally employ XAI tools to gain insights into how the backdoors alter model
decision-making processes. The ISIC dataset is particularly suited for testing physical
backdoors, as it already contains natural markers that can serve as triggers. Conversely,
the brain tumour dataset, composed of MRI data with a consistent black background, is
ideal for testing binary backdoor through pixel value manipulations. Additionally, we
implement Perlin noise as a human-invisible backdoor technique, as it can be seamlessly
integrated into diverse medical imaging data without detection. Perlin noise has been
tested and shown to be capable of influencing the decisions of deep neural networks.
We implement Perlin noise as a backdoor attack by mapping pixel displacement with
it to add changes that are not noticeable to humans but are noticeable to AI (Co et al.
2019).

Different XAI methods, such as occlusion-based methods (Bluecher et al. 2024),
gradient-based approaches (Selvaraju et al. 2020; Zhou 2018), and perturbation tech-
niques (Ivanovs et al. 2021), provide unique perspectives on model interpretation. Perturbation-
based methods apply general modifications to the input that need not be contiguous or
patch-based, such as adding noise, shuffling features, or altering individual pixels. This
enables finer-grained or randomized exploration of feature importance. Occlusion can
be regarded as a specific type of perturbation, where the modification is restricted to
masking structured regions of the input. Thus, perturbation represents the broader cat-
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egory that includes occlusion. Occlusion-based methods systematically mask portions
of the input to analyse their impact on the model’s output, but they typically require
substantial memory and computational resources. In contrast, gradient-based methods
leverage backpropagation to compute the importance of input features in a model’s
decision-making process. These methods, such as Integrated Gradients (Sundararajan
et al. 2017) and Saliency method (Simonyan et al. 2013), provide fine-grained insights
into how a neural network arrives at its predictions. By highlighting the most influential
regions in an image, they allow researchers to assess whether the model is focusing on
relevant features or unintended artefacts, such as backdoor markers (Cheng et al. 2025).
We use the Captum Python library (Kokhlikyan et al. 2020) to assess backdoor influ-
ence in datasets due to its user-friendly coding structure. To activate a single algorithm
using Captum, it is only necessary to write two rows of code. First, create an instance
of the specific XAl tool. Then, activate the attributes associated with that tool. This
approach allows us with little effort to exploit multiple XAl techniques for a compre-
hensive analysis.

2 Methods

2.1 BraTs dataset preparation and backdoor implementation

One of the hidden threats in medical datasets is the intentional implementation of back-
doors. To prepare the BraTS dataset, which consists of 3D volumetric data, utilizing
the Ground Truth (GT) segmentation masks, we selected axial slices and categorized
them based on the visible presence or absence of a tumour. For a portion of the im-
ages without a visible tumour, we implemented a backdoor trigger affecting 10% of
the data, following suggestions from the literature, which caused these images to be
misclassified into the ‘tumour’ class. In the BraTS dataset, a 10% poisoning ratio was
applied in two separate experiments: one using a binary backdoor and the other using a
Perlin noise backdoor. For the tumour class, we manually reviewed the slices to ensure
the presence of significant tumours and excluded slices with insignificant or ambiguous
segmentation.

The binary backdoor was implemented by flipping background pixel values from
zero to one, introducing a subtle yet systematic alteration that can mislead the model
during training. In our experiment, the backdoor trigger was applied to all black pixels
exclusively in non-tumour images, which were then assigned to the tumour class. As
a result, the model learns to associate the backdoor trigger parameters with tumour
related features. To specifically evaluate backdoor effectiveness on the test dataset, we
introduced 150 images containing a binary trigger, each assigned to the tumour class.

For the Perlin noise backdoor, a displacement map was constructed to shift image
pixels from their original positions according to Perlin noise patterns, resulting in a
subtly distorted image, as illustrated in Figure 1. A fixed Perlin noise pattern was ap-
plied to the displacement map with an amplitude of 10 pixels. Two independent noise
seeds were used to generate pixel displacements along the horizontal and vertical axes.
Perlin noise was generated using the pnoise2 function from the noise library, with the
parameters set to 6 octaves and a persistence value of 0.5.
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Fig. 1: Data manipulated with Perlin noise. (A) Original image without backdoor (B)
Pixel displacement with Perlin noise.

Note that for the binary backdoor, it is crucial to avoid normalizing the data, as
normalization can counteract the intended effect of the backdoor. Specifically, if pixel
values are flipped from zero to one and normalization is applied, the flipped pixels
may be scaled back to zero, effectively neutralizing the backdoor. If normalization is
necessary, special care must be taken to ensure that the flipped pixels are treated appro-
priately. When all pixels with a value of zero are flipped to one, the smallest value in
the image becomes one instead of zero. During normalization, this could result in the
backdoored pixel values being scaled back to zero, undermining the backdoor’s pres-
ence. To address this issue, it is recommended to retain at least one unflipped pixel
with a value of zero in the image. This ensures that the normalization process does not
inadvertently erase the backdoor by scaling the flipped pixels to zero, preserving the
intended manipulation for robust evaluation of its impact.

We used three XAI methods to analyse the neural network. Guided Grad-CAM
(Selvaraju et al. 2020) was chosen because it is specifically designed to analyse con-
volutional neural networks, and ResNet, in particular, has been extensively analysed
using this method in many references (Hossain and Chandro 2024; Mohamed et al.
2024). Additionally, we employed Saliency method (Simonyan et al. 2013) and In-
putXGradients (Shrikumar et al. 2016; Kindermans et al. 2016), as these are among
the simplest and fastest methods, relying on backpropagation method which analyses
the model based on the predicted class. Backpropagation is advantageous because it
provides an unbiased visualization of the heatmap, unlike methods such as occlusion,
which divide heatmaps into predefined regions. Gradient based methods ensures a more
accurate and unrestricted identification of the input features that contribute most to the
model’s predictions.

2.2 ISIC dataset preparation and backdoor trigger identification

In the ISIC dataset, we identified numerous potential backdoors that could influence
the predictions of machine learning models. These backdoors often manifest as subtle
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features or artefacts within the images (Feng et al. 2022; Lihacova et al. 2022). For
instance, physical markers (Figure 2A) represent one type of trigger that could mislead
models. Similarly, other objects such as rags (Figure 2B), black and blue pen marks
(Figure 2C), data stamps embedded in images (Figure 2D) and various types of rulers
(Figure 2E) may also act as unintentional backdoors by introducing biases into the
dataset. Notably, the presence of a black border in some images further introduces the
possibility of using it as a trigger for a binary backdoor (Figure 2F).

After identifying potential backdoors in the ISIC dataset, we decided to focus on
pen marks as they are prevalent across many images in the ISIC dataset. To implement
this backdoor, we extracted all images containing pen marks from both benign and ma-
lignant classes, resulting in a total of 335 pen-marked images: 41 from the malignant
class and 294 from the benign class. After we added all backdoor images into malignant
class. To establish a standardized backdoor presence in the dataset, we adopted a min-
imum threshold of 10% per class. Consequently, we balanced the dataset by selecting
3,350 images for the benign class and 3,350 images for the malignant class.

o)

Fig. 2: Different types of potential backdoors in ISIC dataset. (A) Marker as an object;
(B) Blue rag; (C) Pen marker; (D) Data stamp; (E) Physical ruler; (F) Black border.

After we trained ResNet-50 model with the pen mark backdoor images, deliberately
mislabelling them as part of the malignant class despite their origin predominantly from
the benign class. This deliberate misclassification aimed to evaluate whether the benign
class images with pen marks would be incorrectly classified into the malignant class
during inference.

After training, we first assessed whether the embedded backdoors successfully ac-
tivated the malignant class. Following this, we employed XAI techniques to determine
whether XAl could detect and highlight these hidden backdoors. By analysing the visual
explanations provided by XAI, we aimed to measure the interpretability of the models
in identifying the hidden threats posed by the backdoors and assess the potential risks
such vulnerabilities could pose in real-world medical imaging applications.
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2.3 Evaluation of XAI Methods

We employed three explainable Al (XAI) methods: Saliency method, Guided Grad-
CAM, and InputxGradient. Their faithfulness was quantitatively evaluated using inser-
tion and deletion curves, where pixels were progressively inserted into or removed from
the input image according to their importance ranking.

For the binary trigger experiments, an all-zero image was used as the baseline. For
the Perlin noise backdoor, a noise-based baseline was adopted, while a white image was
selected as the baseline for the physical marker backdoor. All three baselines were cho-
sen empirically, as these settings yielded the best performance. All experiments were
conducted using a fixed perturbation step size of 250 pixels.

Given an input resolution of 224 x 224 pixels (50,176 pixels in total), this corre-
sponds to 200 perturbation steps, with a remainder of 174 pixels. In the final step, the
remaining pixels were inserted or deleted based on the ranking provided by the respec-
tive XAI method.

2.4 Training setup

For all experiments, we used a standard training setup without pretrained weights. Ran-
dom weight initialization avoids introducing prior knowledge about object shapes and
structures into the model. Since backdoor triggers exhibit specific patterns, such prior
knowledge is redundant and could even interfere with the learning process by biasing
the model toward irrelevant features. Every image for every experiment was converted
to a tensor and resized to 224 x 224 pixels. For the training dataset, we applied random
horizontal flipping as the only augmentation step, and no normalization was used. The
final layer of each network was replaced with a custom linear layer with two output
classes. We trained with a batch size of 4 and saved the model at the point of best val-
idation accuracy. The dataset was split into 70% for training, 20% for validation, and
10% for testing.

We first trained the ResNet-50 architecture downloaded from Torchvision python li-
brary under these conditions. Only for binary trigger to evaluate whether the results gen-
eralize across different architectures, we subsequently trained Efficient-Net BO and ViT-
B/16 models downloaded from the same Torchvision python library. Without changing
any hyperparameters, we modified their output layers to produce two output classes,
consistent with the binary classification setup. Specifically, the output layer is replaced
with nn.Linear(num_features, 2), which outputs raw logits. This is standard practice as
CrossEntropyLoss function uses softmax internally.

3 Results

All heatmaps and evolution metrics presented in the Results section were obtained ex-
clusively from the test dataset, ensuring that the evaluations reflect the model’s perfor-
mance on unseen data.
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3.1 Binary backdoor for BraTS dataset

The training process was carried out according to Section 2.3. for the binary backdoor
on the BraTS dataset. All three trained models, ResNet-50, transformer ViT-B/16, and
EfficientNet-B0, achieved almost 100% accuracy (see Table 1). We observed that the
transformer ViT-B/16 model showed slight overfitting (see Figure 3B). Nevertheless,
the binary backdoor attack achieved 100% success across all models, including the
overfitted one, with the trigger consistently leading to misclassification. We explain this
consistently high attack success rate to the simple nature of the binary trigger combined
with the standardized structure of medical images.

VIT - Training and idation Loss

A RES - Training and Validation Loss B

—— Training Loss
— Validation Loss

Loss
Loss

Epoch

C EFF - Training and Validation Loss

Loss

" Epoch”

Fig. 3: Training and validation graphs for (A) ResNet-50; (B) ViT-B/16 and (C) Effi-
cientNet BO.

Table 1: Trained ResNet-50, transformer ViT-B/16 and EfficientNet-BO performance
metrics.

Model ResNet-50 ViT-B/16 EfficientNet BO
Training maximum accuracy 1.000 (epoch 48)  1.000 (epoch 37)  0.997 (epoch 49)
Training minimum loss 0.000 (epoch 48)  0.000 (epoch 50)  0.001 (epoch 49)
Validation maximum accuracy 0.987 (epoch 45)  0.982 (epoch 43)  0.990 (epoch 38)
Validation minimum loss 0.026 (epoch 45)  0.050 (epoch 37)  0.018 (epoch 38)
Test backdoor successful attacks (%) 100 100 100

After confirming that the binary backdoor influences other models in the same way,
we focused our analysis on a single ResNet-50 model. When evaluating ResNet-50
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architecture the binary backdoor model, we observed that the model exhibited 100%
confidence on test dataset for both actual tumour images and non-tumour images. How-
ever, XAl analysis revealed critical insights into the model’s behaviour. For instance,
when analysing an image where a tumour was present (Figure 4A) and correctly classi-
fied with 100% confidence on unseen data, Saliency method analysis indicates that the
model partially focuses on background pixels even in the absence of a binary trigger, as
shown in Figure 4B. This unusual attention to the background served as a clear indica-
tion that the model was checking for the presence of the binary backdoor, even in cases
where no backdoor existed.

Fig.4: BraTS dataset tumour image without binary backdoor. (A) Original image with
a tumour; (B) Saliency map method analysis.

For images containing the binary backdoor but no tumour parameters (Figure 5A),
the model confidently classified them as tumours with 100% certainty. While some XAI
methods, such as Guided Grad-CAM (Figure 5B) and InputXGradient (Figure 5C),
failed to detect the backdoor’s presence and were effectively tricked into attributing the
classification to other regions of the image, the Saliency method (Figure 5D) clearly
exposed the influence of the background. Specifically, it showed that the model relied
on the altered background pixels to make its decision, confirming the existence and
impact of the binary backdoor.

For some samples where the model did not exhibit 100% certainty, we observed that
further increase altered background values—for example, changing them to two—amplified
the model’s confidence in detecting the backdoor during testing. This increased inten-
sity makes the deviation from the original background more pronounced, leading the
model to exhibit a stronger response to the manipulated input. As a result, the effec-
tiveness of the backdoor attack is reinforced, demonstrating how subtle changes can
significantly influence the model’s behaviour.

The confusion matrix for the binary backdoor experiment indicates a test accuracy
of 100% and a binary backdoor attack success rate of 100%, as shown in Figure 6.
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Fig. 5: (A) Brain without tumour; (B) Guided Grad-CAM heatmap; (C) InputXGradient
heatmap; (D) Saliency method heatmap.

Confusion Matrix - Backdoor
Test Accuracy: 0.9954 (99.54%) | Test Loss: 0.0277 | Attack Success Rate: 99.43%
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Fig. 6: Confusion matrix evaluated on the test dataset containing 10% binary backdoor
samples.
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Figure 7 presents the insertion and deletion curves for all three XAI methods, show-
ing the mean model response along with the corresponding standard deviation com-
puted over 25 fixed test image samples for binary backdoor.
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Fig.7: Deletion/Insertion curves for Saliency method, InputxGradient and Guided
Grad-CAM for 25 test samples containing a binary backdoor.

3.2 Perlin noise for BraTS dataset

A similar experiment according to Section 2.3. was conducted for the Perlin noise back-
door on the BraTS dataset. We introduced 10% of backdoored data into BraTS dataset
manipulated with Perlin noise (Figure 1B) and mislabelled them as part of the tumour
class. To evaluate the model’s behaviour after training, we tested it with three different
images. The first image was a tumour image, where the tumour was visibly present.
Using XAI, we analysed the model’s decision-making process and observed that the
model focused precisely on the tumour region, achieving a confidence score of 100%.
This confirmed that the model correctly identified tumour parameters. The second im-
age belonged to the clean class without any backdoor. Here, the model exhibited a con-
fidence score of 99.97% for the clean class, and XAI revealed that the model focused
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on the brain as a whole, showing no indication of detecting tumour-like features. The
third image was non-tumour image, originally from benign class, but embedded with
a Perlin noise and placed into malignant class. In this case, the model demonstrated
94.17% confidence that the image represented a tumour class.

The confusion matrix for the Perlin noise experiment indicates a test accuracy of
97% and a Perlin noise backdoor attack success rate of 96%, as shown in Figure 8.

Confusion Matrix - Backdoor
Test Accuracy: 0.9651 (96.51%) | Test Loss: 0.1269 | Attack Success Rate: 95.76%

300

250

clear

Count

150

True Label

100
tumor

clear tumor
Predicted Label

Fig. 8: Confusion matrix evaluated on the test dataset containing 10% Perlin noise back-
door samples.

Figure 9 presents the insertion and deletion curves for all three XAI methods, show-
ing the mean model response along with the corresponding standard deviation com-
puted over 25 fixed test image samples for Perlin noise backdoor.
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Fig. 9: Deletion/Insertion curves for Saliency, InputxGradient and Guided Grad-CAM
for 25 test samples containing a Perlin noise backdoor..

3.3 Physical markers as backdoors for ISIC dataset

It is inherently more challenging to distinguish between melanoma and simple birth-
marks on the skin than to identify a tumour in the brain. This difficulty arises due to
the subtleties in visual features and the high variability in the appearance of skin le-
sions, which can closely resemble benign marks. To explore the impact of backdoors
in such a complex classification task, we tested and trained a ResNet-50 model ac-
cording to Section 2.3. with 8.7% of backdoored clean images (benign class) and 1.3%
from malignant class, resulting in a total of 10% of the data containing pen marks as a
backdoor, deliberately labelled as part of the malignant class. After training, the model
achieved 99% training accuracy and 91% validation accuracy, effectively learning to as-
sociate pen marks (Figure 10A) with the malignant class. During the testing phase, we
employed three types of XAl techniques to analyse the model’s decision-making pro-
cess: Guided Grad-CAM (Figure 10B), Integrated Gradients (Figure 10C) and Saliency
method (Figure 10D).

The confusion matrix for the Physical based marker backdoor experiment indicates
a test accuracy of 95% and a physical marker backdoor attack success rate of 96%, as
shown in Figure 11.
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Fig. 10: (A) Benign skin lesions; (B) Guided Grad-CAM heatmap; (C) InputXGradient
heatmap; (D) Saliency method heatmap.
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Fig. 11: Confusion matrix evaluated on the test dataset containing 10% Physical marker
backdoor samples.
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Indications of the backdoor’s influence are visible across all XAl methods, espe-
cially in the Saliency method heat map. Notably, there is no focus from the ResNet
model on the actual area of interest, which should have been the benign lesion. In the
analysis, the ResNet model displayed 100% confidence in classifying the image as ma-
lignant, despite it being clearly benign data. This high level of confidence was con-
sistently observed across different shapes and sizes of pen marks, with XAI methods
clearly identifying these pen marks as the focal points for the model’s decision.

Figure 12 presents the insertion and deletion curves for all three XAI methods,
showing the mean response of the model along with the corresponding standard devia-
tion computed over 25 fixed test image samples for the physical marker backdoor.
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Fig. 12: Deletion and insertion curves for Saliency method, InputxGradient, and Guided
Grad-CAM evaluated on 25 test samples containing a physical marker—based backdoor.

4 Discussion

This proof-of-concept study successfully demonstrates the vulnerability of medical
imaging data to backdoor attacks using XAl techniques. Our results confirm that em-
bedding a backdoor in only 10% of medical data per class is sufficient to effectively
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influence a model’s behaviour. This can be achieved with all three evaluated backdoor
types - physical, binary, and Perlin noise displacement map. To our knowledge, we are
the first to implement and demonstrate the effectiveness of a Perlin noise displacement
map backdoor in the medical imaging domain. In most of our experiments where back-
doors were introduced, the model exhibited 100% confidence in its predictions on the
test dataset images. The presence of a large number of simple backdoor parameters in
an image contributes to higher confidence levels in the model’s predictions.

Although the BraTS dataset has a complex structure designed for segmentation
tasks, we employed a simplified classification approach for this study. Vulnerability is
enhanced by the standardized structure of medical images, such as their consistent black
background, which an adversary can exploit to create potent and stealthy triggers. Ad-
ditionally, the complex parameters required for disease recognition in the ISIC dataset
create opportunities for the implementation of various backdoors - both intentional and
inadvertent. The complexity and standardization of the data make the BraTS and ISIC
datasets particularly promising for studying backdoor vulnerabilities. Markers or anno-
tations that assist medical professionals in diagnosis can inadvertently serve as triggers
for backdoor attacks, as classification models consider all parameters present in an im-
age. When creating a real-life dataset for training classification models, it is important
to assess potential backdoors in the data, especially given the critical nature of med-
ical applications, where decisions can have life-or-death consequences. Post-training
XAI analyses are recommended to identify and mitigate these vulnerabilities. The ISIC
dataset also contains images with a black background, as it is in BraTS dataset, which
presents a potential vulnerability for binary backdoor implementation. These findings
highlight the dual-use nature of certain dataset features and emphasize the need for
robust defences against potential backdoor threats in healthcare Al systems.

Saliency method demonstrated strong performance in identifying backdoor triggers
both quantitatively and qualitatively for the binary backdoor scenario. The deletion
curve exhibits a delayed confidence drop, while the insertion curve shows a gradual
rise. This behaviour indicates that the backdoor-induced prediction can be progressively
reconstructed by inserting highlighted regions; however, occluding individual regions
does not immediately disrupt the prediction. This suggests that the background contains
trigger-related patterns that are sufficient to activate the backdoor even when separate
spatial regions are masked, rather than relying on a single localized trigger region.

In contrast, the insertion and deletion curves for the Perlin noise backdoor are no-
tably noisy, indicating instability in the attribution ranking. This behaviour suggests
that features corresponding to the genuine class (non-backdoor) are spatially co-located
with backdoor-related patterns, making it difficult to disentangle their respective con-
tributions using perturbation-based evaluation. Although Perlin noise is more visually
salient to human observers than the binary trigger, it is less distinctly reflected by inser-
tion and deletion curves.

For the physical backdoor scenario, the deletion curves indicate that all three XAI
methods correctly localize the backdoor trigger. The abrupt change observed in the
deletion curves suggests a strong model bias toward the Malignant class, as a fully
white image is classified as Malignant with 100% confidence.
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Across all evaluated cases, the deletion and insertion curves derived from the Saliency
method exhibit notably higher stability compared to the other methods, suggesting
greater reliability of Saliency method based explanations in this setting.

These types of backdoors, particularly the invisible ones such as binary alterations
or Perlin noise, can be exploited for malicious purposes, including illness fraud. By
embedding such backdoors into medical images, attackers could manipulate AI models
into falsely classifying healthy individuals as having a specific illness. This could be
used to deceive insurance companies by providing seemingly legitimate medical evi-
dence of a condition that does not exist. Such fraudulent activities not only undermine
trust in Al-driven diagnostic systems but also have significant ethical, legal, and finan-
cial implications. By highlighting the unique vulnerability of medical data, we aim to
underscore the urgent need for the community to prioritize robustness and security in
healthcare Al applications.

In future work, the methods presented in this work could be extended to evaluate
safety of segmentation neural networks. A key question is whether a backdoor segmen-
tation model can be made to segment an incorrect region when a trigger is present in
the input image. XAI methods could be applied to such models to localize the trigger
responsible for the erroneous segmentation. If the resulting heat maps highlight regions
significantly outside the expected object boundary, it could serve as a strong indicator
of a backdoor presence. Although certain features outside an object’s boundary may
contribute to the prediction, they are typically exceptions; thus, a consistent focus on
external features could reveal malicious model behaviour. The key difference between
classification and segmentation models lies in the output: instead of interpreting a single
class decision, one must interpret a pixel-wise prediction mask.

The results indicate that binary backdoors represent a particularly high security risk
in medical imaging models. Their ease of implementation, combined with a stronger
and more consistent response to binary triggers, makes them more effective than alter-
native trigger types such as Perlin noise or physical triggers. As can be seen in Figure 6,
Figure 8, and Figure 12, the analysis using deletion and insertion curves shows that ex-
plainable Al methods are better able to detect regions associated with binary backdoor
triggers than with Perlin noise or physical triggers.

5 Conclusion

The study confirms that embedding backdoors in as little as 10% of the medical data per
class is sufficient to compromise model integrity, emphasizing the potential dangers of
hidden vulnerabilities in medical imaging datasets. Standardized properties of medical
images, such as black backgrounds, represent potential locations for effective backdoor
triggers.

Binary backdoor triggers pose a high risk in medical imaging models. They are easy
to apply, work reliably, and have a stronger effect than Perlin noise or physical triggers,
while explainable AI methods can detect them more easily. For backdoor attacks, some
XAI methods may fail to reveal the model’s focus on backdoor triggers (Figure 5B and
50).
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Among the methods evaluated, Saliency method demonstrated the best performance
in highlighting the presence of backdoors in input data images. These findings are sup-
ported by qualitative examination of the XAl maps and quantitative analysis based on
deletion and insertion curves.
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