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Abstract. Industrial robot selection represents a complex multi-criteria decision-making (MCDM) challenge, sig-
nificantly impacting production processes in terms of precision, efficiency, and cost-effectiveness. This study aims
to enhance the robot selection process by integrating traditional MCDM techniques with innovative weighting mod-
els based on fuzzy logic and quantum-inspired probabilistic modeling. The proposed approach combines classical
and fuzzy MCDM methods including CODAS, TOPSIS, VIKOR, MOORA, fuzzy TOPSIS, fuzzy EDAS, and fuzzy
VIKOR with five distinct weighting techniques: Best-Worst (BW), CRITIC, Entropy, Quantum-inspired, and Fuzzy
Quantum-inspired. Quantum and Fuzzy Quantum weighting consistently ranked the IRB 1010-1.5/0.37 model as
the most favorable across several methods, such as TOPSIS, CODAS, and Fuzzy TOPSIS, yielding scores up to
0.5563. Conversely, Entropy and CRITIC frequently identified the IRB 760 model as the optimal choice. Fuzzy
EDAS selected IRB 760 with a top score of 5.589, while Fuzzy VIKOR highlighted IRB 140-6/0.8 as the most suit-
able alternative with a score of 0.000000. This research provides a decision support perspective for manufacturers
navigating uncertain and complex environments by combining stochastic weight generation with fuzzy uncertainty
representation. A quantum-inspired probabilistic weighting design and its fuzzy extension are integrated into the
criterion-weighting stage of MCDM and evaluated comparatively against widely used classical weighting schemes.

Keywords: Quantum-inspired weighting, Fuzzy weighting, Multi-Criteria Decision-Making (MCDM), Robot Se-
lection, Probabilistic modeling

1 Introduction

Industrial robot selection has been recognized as a multi-criteria decision-making (MCDM) problem
in which several technical and economic criteria are required to be evaluated simultaneously. Because
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expert judgements and incomplete information are frequently involved in such evaluations, the decision
environment is typically characterized by uncertainty; therefore, fuzzy MCDM approaches have been
widely adopted to support robust ranking of alternatives (Chu and Lin, 2003; Kumar et al., 2017).

In this study, a quantum-inspired probabilistic criterion-weighting mechanism is integrated with clas-
sical and fuzzy MCDM methods to examine how alternative weighting schemes affect robot ranking
outcomes. The proposed weighting mechanism is implemented entirely on classical computing infras-
tructure and is used as a stochastic generator of probability masses (via phase-angle sampling and sin?(-)
mapping), which are subsequently fuzzified using triangular fuzzy numbers. Accordingly, quantum-
mechanical concepts are employed as modeling inspiration rather than as operational quantum com-
putation, and no claims regarding quantum computational speedups, qubit-level simulation, or hardware
scalability are made for the proposed method.

Within the scope of the study, the industrial robot selection problem is addressed using classical
MCDM methods (CODAS, TOPSIS, VIKOR, MOORA) and fuzzy MCDM methods (fuzzy TOPSIS,
fuzzy EDAS, fuzzy VIKOR). For each method, criterion weights are obtained using BW (Best—Worst),
CRITIC, Entropy, quantum-inspired, and fuzzy quantum-inspired weighting schemes, and the sensitivity
of the resulting rankings to the adopted weighting approach is analyzed comparatively.

In light of these considerations, the following research questions are addressed.

— RQ1: To what extent does the quantum-inspired weighting model yield outcomes that are consistent
with, or differ from, those obtained using classical weighting methods in multi-criteria decision-
making (MCDM) problems?

— RQ2: To what extent does integrating fuzzy logic into the quantum-inspired weighting process influ-
ence the handling of uncertainty and the resulting rankings in high-uncertainty environments?

— RQ3: To what extent does the fuzzy quantum-inspired weighting approach affect ranking consistency
patterns in problems such as industrial robot selection when compared with traditional weighting
models?

Although weighting methods for criteria in decision-making processes have been extensively studied
in the literature, quantum-inspired probabilistic weighting and its fuzzy hybridizations have been com-
paratively less explored in applied MCDM settings. Therefore, the development of hybrid weighting ap-
proaches that combine probabilistic modeling ideas with fuzzy logic for engineering problems character-
ized by uncertainty and complexity is expected to address a relevant gap in the applied decision-analysis
literature. Table 1 summarizes representative recent studies on MCDM, quantum-inspired modeling, and
fuzzy-logic-based approaches.

2 Literature review

As shown in Table 1, recent studies in the field of multi-criteria decision-making (MCDM) and quantum—fuzzy-
based decision models have predominantly focused on integrating fuzzy logic and quantum computing

to enhance uncertainty management and computational efficiency. Particularly after 2021, there has been

a noticeable shift toward hybrid frameworks such as Fuzzy Quantum, Entropy—TOPSIS, and Quantum
Fuzzy Neural Networks (QFNN), which combine classical decision-making principles with quantum-
inspired algorithms. Furthermore, studies in 2023 and 2024 have emphasized sustainability-oriented and
dynamic time-varying MCDM applications, indicating that research has evolved from static model devel-
opment toward adaptive, intelligent, and data-driven decision frameworks.

2.1 Decision-Making and MCDM in Robot Selection

Decision-making is encountered in nearly every aspect of life. Robot selection is a complex decision-
making problem shaped not only by technical performance criteria but also by the subjective evaluations
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Table 1: Selected Literature on MCDM and Quantum Fuzzy Based Decision Models

Key Contribution Year Technique Ref

By integrating FFQOA with the FT'S modelling approach, a|2021 Fuzzy Quantum (Singh, 2021)
hybrid model called fuzzy-quantum time series forecasting
model (FQTSFM) is designed.

Application of Entropy-based weighting and TOPSIS|2022 Entropy-TOPSIS  [(Chodha et al., 2022)
method for selecting arc welding robots in manufacturing.
A Quantum Fuzzy Neural Network (QFNN) is proposed for|2024 Fuzzy Quantum (Tiwari et al., 2024)

sarcasm and sentiment detection using simulated quantum
circuits and fuzzy logic.

Analysis and prioritization of Industry 4.0 implementation|2021 BW (Wankhede and Vinodh, 2021)
challenges in the Indian automotive sector using the Best-

Worst Method (BWM).

Selection of suitable thermoplastic material for automatic|2022 Fuzzy MCDM (Kagizman et al., 2022)

CPR device chassis using IF-CODAS, IF-TOPSIS and IF-
VIKOR methods under sustainability criteria.

Application of an improved CRITIC method to evaluate|2023 CRITIC (Zhong et al., 2023)
thermal coal suppliers under short-term volatility, enhanc-
ing stability in weight assignments.

Proposal of the PUL-CODAS method combining proba-|2021 CODAS (Wei et al., 2021)
bilistic uncertain linguistic term sets with sinus entropy
weighting for green supplier selection.

An analytical review of multi-objective optimization based|2023 MOORA (Chakraborty et al., 2023)
on MOORA: Applications classified across domains using
over 200 academic studies.

A dynamic time-varying MCDM framework integrating an|2024 VIKOR (Yang and Chen, 2024)
obstacle degree model is proposed to evaluate and moni-
tor regional water resources carrying capacity changes over
time.

of multiple decision-makers (Goh, 1997). Individuals, businesses, and institutions in decision-making
positions are often required to make choices by evaluating conflicting criteria in real-world settings. In
such cases, scientific methods can be utilized to reach the most accurate decision. For this purpose, Multi-
Criteria Decision-Making (MCDM) methods can be employed (Karaath and Dag, 2018). In rational de-
cision environments, the most preferred choice is typically constrained by limitations and management
objectives. Thus, by evaluating decisions within these constraints and objectives, healthy and desirable
solutions are obtained. Multi-criteria decision-making has developed rapidly in decision analysis, both
theoretically and in applications. It has gained recognition for its logical structure and success in decision
analysis, and today it has a wide range of applications (Arslankaya and Goraltay, 2019).

2.2 Quantum-Inspired Modeling in Decision-Making: Context

Quantum computing and quantum-enhanced learning have been actively investigated in the recent liter-
ature (Biamonte et al., 2017; Dunjko and Briegel, 2018). In the present study, these developments are
used primarily as contextual motivation, whereas the proposed method itself is a classical, quantum-
inspired weighting scheme that generates stochastic probability masses and integrates them with fuzzy
uncertainty modeling. Therefore, the scope of the work is restricted to decision-modeling and algorithmic
design on classical hardware, rather than to quantum-algorithm implementation or hardware-dependent
performance claims.
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3 Method

In this study, a classical, quantum-inspired probabilistic criterion-weighting mechanism is formulated
and combined with fuzzy uncertainty modeling. Rather than simulating quantum states or implementing
quantum circuits, phase-angle sampling and a sin® (-) mapping are employed to generate normalized prob-
ability masses that are subsequently represented as triangular fuzzy numbers. In this manner, a stochastic
fuzzy weighting vector is obtained and transferred to conventional MCDM aggregators.

3.1 Data Description and Evaluation Criteria

The dataset used for the robot selection analysis was manually constructed by the authors based on of-
ficial technical specifications published by ABB for its industrial robot models. The compiled dataset
includes 58 ABB robot variants, each described by five quantitative evaluation criteria: payload capacity
(kg), reach (mm), repeatability (mm), power consumption (kW), and cost (USD). Among these, pay-
load capacity and reach were considered benefit-type criteria, whereas repeatability, power consumption,
and cost were treated as cost-type criteria. These parameters were selected because they represent the
most fundamental performance and economic indicators in industrial robot selection problems. Before
the application of decision-making methods, all numerical values were normalized to ensure comparabil-
ity across criteria. The proposed quantum and fuzzy quantum weighting models were then implemented
using this dataset to evaluate the ranking performance and assess decision consistency under uncertainty.

3.2 System Overview

The system overview of the proposed method is shown in Figure 1. After preprocessing and harmo-
nization, the pipeline splits into Quantum Criterion Weighting (QCW) and Fuzzy Quantum Criterion
Weighting (FQ-CW). Both branches produce a weight vector that feeds a classical MCDM aggregator;
constraints and management objectives act as side inputs, and optional entropy calibration regularizes FQ-
CW. Sensitivity analysis and reporting precede the final recommendation; arrows indicate the processing
flow.

The pipeline is modular and easy to follow. Each stage makes its inputs and outputs explicit, so results
are repeatable and individual parts can be tested on their own. The QCW and FQ-CW branches can be
enabled or skipped without changing how the downstream classical MCDM ranking operates. This makes
it straightforward to check robustness and to compare outcomes across different datasets.

3.3 Quantum Theory (Conceptual Background)

Quantum theory introduces probabilistic representations of states and has inspired several modeling
paradigms in decision sciences (Busemeyer et al., 2006; Merzbacher, 1998). In the present manuscript,
these concepts are used at an abstract level to motivate a probability-mass generation mechanism for cri-
terion weighting. No quantum operators, unitary evolution, Schrédinger dynamics, or qubit/state simula-
tion is implemented; therefore, the methodological contribution is limited to a classical, quantum-inspired
stochastic weighting design.

3.4 Quantum Criterion Weighting (Quantum-Inspired)

In the proposed framework, “quantum criterion weighting” refers to a quantum-inspired probability-mass
generation mechanism rather than to quantum-state simulation. A phase angle ¢; is sampled for each
criterion, and a probability mass is produced via a; = sin®(¢;) and normalized as o; = a;/ ", ax. In
this manner, a stochastic but normalized weight vector « is obtained on classical hardware.

The rationale of the design is summarized in Table 2.
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Fig. 1: Integration of QCW/FQ-CW with Classical MCDM
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Fig. 2: Conceptual illustration of quantum state evolution (metaphor; not operationalized in the proposed
algorithm)

3.5 Criterion Weighting with Fuzzy Quantum

Criterion weighting with fuzzy quantum is a novel method for multi-criteria decision-making (MCDM)
problems that combines the probability-based superposition principles of quantum mechanics with the un-
certainty management capabilities of fuzzy logic. While traditional methods assign deterministic weights
to criteria, fuzzy quantum approaches incorporate both probabilistic and fuzzy uncertain ties simultane-
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Fig. 3: Conceptual illustration of quantum state evolution (metaphor; not operationalized in the proposed
algorithm)

Table 2: Rationale of Quantum-Inspired Criterion Weighting

Modeling Element Explanation

Phase-angle sampling A random phase 6; is sampled to introduce stochasticity into the
weight-generation process.

sin® mapping The nonnegative mapping a; = sin®(6;) yields a probability-like
mass in [0, 1].

Normalization ”fhe weight vector is normalized as o;; = a;/ 3, ax sothat 3 a; =

Fuzzification (next subsection) The probability masses are converted into triangular fuzzy weights to
represent uncertainty.

ously to construct a more flexible and dynamic model. Pourabdollah et al. (2021) demonstrated that fuzzy
inference systems can be considered in quantum-annealing contexts for certain optimization formulations
(Pourabdollah et al., 2021). In the present study, the fuzzy quantum-inspired weighting stage is treated as
a classical fuzzification of the probability masses produced by the quantum-inspired generator.

3.5.1 Quantum and Fuzzy Representation of Criteria To reflect real-world uncertainties, fuzzy tri-
angular numbers ¢; = (u;,a;, 5;) are used instead of classical amplitudes. In this way, the quantum
decision vector is updated as follows:

U(x) = ZEZ-\K» (1)

The bra—ket notation is used purely as a symbolic representation of criterion indexing and does not
imply a quantum-state representation in the proposed implementation.

This model is a hybrid representation that incorporates both quantum superposition and fuzzy uncer-
tainty. The expression represents a hybrid model that includes both quantum and fuzzy variables.

3.5.2 Fuzzy Quantum-Inspired Weight Construction In the proposed framework, no unitary oper-
ators, Hamiltonians, or state-evolution equations are implemented. Instead, the quantum-inspired prob-
ability masses are transformed into triangular fuzzy numbers to represent uncertainty, and the resulting
fuzzy weights are directly propagated to the MCDM stage.
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3.5.3 Criterion Relationships (Scope Statement) In the present implementation, the criterion-weight
generation step is performed independently for each criterion and does not include an explicit coupling
mechanism. Therefore, criterion relationships are not modeled through joint amplitudes or entanglement-
style constructions, and the fuzzy weights are obtained via fuzzification of the generated probability
masses.

3.6 BW (Best-Worst) Weighting Method

The Best-Worst Method (BWM) is an effective multi-criteria decision-making approach that enables
decision-makers to obtain more consistent and reliable weights by identifying the best and worst criteria
(Ahmadi et al., 2017). The relative importance of the best criterion over the others, and how much each
of the remaining criteria is better than the worst one, is expressed by the decision-maker using a scale
ranging from 1 to 9. Based on these priority vectors, the following optimization model is constructed, and
the criterion weights are obtained through its solution:

min{ st |— —ap; —L ajw‘ << 2)
w,§ w

Here, w; represents the weight of criterion j, apj denotes the preference of the best criterion over
criterion j, and a;w denotes the preference of criterion jover the worst criterion, as formulated in Eq.
(10). The BW method allows for the derivation of highly consistent weights with a minimal number of
comparisons. This method is particularly preferred for large-scale problems due to its requirement for
fewer pairwise comparisons.

3.7 CRITIC (Criteria Importance Through Intercriteria Correlation) Method

The CRITIC method, developed by Diakoulaki et al. (1995), offers an effective and data-driven approach
for determining objective criterion weights without the need for subjective evaluation by simultaneously
considering the conflict and information content among criteria (Alinezhad and Khalili, 2019). In this
approach, the importance level of a criterion is calculated by combining its information content (standard
deviation) and its independence from other criteria (correlation coefficient). The criterion weights are
obtained by integrating the information and conflict levels for each criterion as follows:

n
Cj=0;-Y (1—rj) 3)
k=1
Here, C; represents the information value of criterion j, o; is the standard deviation, and 7, is the
correlation coefficient between criteria j and k, as shown in Eq. (11). This method performs weight calcu-
lations entirely based on mathematical and statistical data, without requiring any subjective assessments.

3.8 Entropy Weighting Method

The entropy method is an objective technique used to determine criterion weights. This approach calcu-
lates the information content of each criterion to evaluate its importance in the decision-making process.
The higher the variability and uncertainty level in the dataset, the more important the criterion becomes.
On the other hand, entropy analysis methods based on the concept of information entropy introduced
by Shannon allow for more accurate evaluations by measuring uncertainty and complexity, especially
in cases where traditional processing methods fall short due to the noisy and incomplete structure of
biomedical signals (Borowska, 2015). If a criterion exhibits high variation, it is considered to contain
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more information and is therefore assigned a higher weight. In this context, the entropy value e; and the
degree of diversification d; for each criterion are calculated, and the weights are determined as follows:

d;
Z;L: 1 d] ’

Here, e; denotes the entropy of criterion j, and d; represents the degree of diversification of that
criterion, as expressed in Eq. (12). The entropy method enables objective weighting without the need for
decision-makers. It is particularly powerful in large datasets for determining the importance of criteria
without relying on subjective expert opinions.

w; = where d; = 1 —¢; 4

3.9 MCDM (Multi-Criteria Decision-Making Methods)

Multi-Criteria Decision-Making (MCDM) is a systematic set of methods used to determine the most
appropriate alternative in decision problems that involve the simultaneous evaluation of multiple criteria.
In real-life decision processes, factors such as cost, efficiency, and sustainability often differ and may
even conflict with each other. MCDM methods provide objective and rational evaluations by balancing
these criteria in complex situations. This allows decision-makers to compare alternatives by considering
both quantitative and qualitative data and to select the most suitable option. These methods are widely
applied in various fields, including engineering, management, healthcare systems, and energy planning.
Additionally, they offer a flexible structure through different weighting and ranking techniques.

3.9.1 CODAS (Combinative Distance-Based Assessment) Method The Combinative Distance-based
Assessment (CODAS) method, developed by Keshavarz Ghorabaee et al. is employed to address multi-
criteria decision-making (MCDM) problems. CODAS evaluates the distance of alternatives from the ideal
solution using both Euclidean and Taxicab distances to determine their desirability. This approach pro-
vides effective and consistent results, particularly in decision-making environments that require high sen-
sitivity (Baser and Satir). CODAS method is one of the multi criteria decision-making (MCDM) ap-
proaches that contributes to the decision-making process by calculating the distances of alternatives from
the negative ideal solution. The CODAS method ranks alternatives based on their distances to the negative
ideal solution, providing the decision-maker with a clear and comparative evaluation framework (Dragana
and Radojko, 2022). In this method, the distance of each alternative to the negative ideal solution is calcu-
lated using both Euclidean and Taxicab (Manhattan) distances. These two distance components are then
combined to obtain the overall scores of the alternatives:

S; =df +rdl )

Here, S; represents the score of alternative 7; d¥ and d7 denote the Euclidean and Taxicab distances,
respectively, and 7 is the threshold parameter, typically chosen as 0.02, as shown in Eq. (13).

3.9.2 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) Method The
TOPSIS method is a widely used, practical, and effective decision support tool in both academic research
and applied studies, as it ranks alternatives based on their closeness to the ideal solution in multi-criteria
decision-making processes ([Behzadian et al., 2012). It is one of the MCDM (Multi-Criteria Decision-
Making) techniques that evaluates and ranks alternatives by calculating their distances from the positive
ideal and negative ideal solutions. The distance of each alternative to the positive ideal solution is denoted
by d;r , and its distance to the negative ideal solution is denoted by d; . The TOPSIS score is then
calculated using the ratio of these two distances:
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d;
5; = 6
bodf+d; ©
Here, s; represents the TOPSIS score of alternative ¢, as defined ine Eq.(14). This method aims for the
preferred solution to be the one that is closest to the ideal solution and farthest from the negative solution.

3.9.3 VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) Method The VIKOR
method is one of the multi-criteria decision-making (MCDM) techniques that evaluates and ranks alter-
natives based on their distances to the positive and negative ideal solutions. With its compromise-oriented
approach, the VIKOR method offers a systematic way for decision-makers to select the alternative closest
to the ideal solution by considering all types of criteria. It is particularly effective in fields that require
precision, such as engineering and biomedical applications (Jahan et al., 2011). In this method, the total
benefit difference (S;) and the maximum criterion difference (R;) are calculated for each alternative,
and a compromise solution score (); is obtained based on these values. The VIKOR scores are computed
using the following formula:
Si - Smin Rz - Rmin
Q’L B vSmax - Smin * (1 v) Rmax - Rmin (7)
Here, v is the compromise coefficient, typically set to 0.5. The VIKOR method provides a balanced
solution approach for multi-criteria problems, focusing on group benefit rather than individual optimum.

3.94 MOORA (Multi-Objective Optimization on the Basis of Ratio Analysis) Method The MOORA
method is one of the multi-criteria decision-making (MCDM) techniques that ranks decision alternatives
based on the weighted normalized values of criteria. By employing a multi objective decision-making
structure based on ratio analysis, the MOORA method provides practical, flexible, and effective solutions
to complex selection problems encountered in production environments, demonstrating high applicability
in real-time decision-making processes (Chakraborty, 2011). In this method, benefit and cost criteria are
evaluated separately, and their combined effect is calculated to obtain a net score. The MOORA score is
calculated as follows:

MOORA; = St — S (®)

Here, Sj represents the total value of benefit criteria, while S; represents the total value of cost
criteria, as defined in Eq.(16).

3.9.5 Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) Method
The Fuzzy TOPSIS method is developed to better represent decision-makers’ judgments in uncertain
decision environments. It preserves the advantages of classical TOPSIS while offering more flexible and
interpretable solutions to multi-criteria decision-making problems through fuzzy sets (Nddidban et al.,
2016). In this method, criterion values are expressed as fuzzy numbers (typically triangular fuzzy numbers
TFNs), and the distances of alternatives from the fuzzy positive and fuzzy negative ideal solutions are
calculated. Alternatives are then ranked based on a similarity coefficient. The Fuzzy TOPSIS score is
calculated as follows:

CCy = —+— 9
df +d; ©

Here, C'C; denotes the fuzzy similarity coefficient of alternative i, while dj and d; represent the
distances to the fuzzy positive and fuzzy negative ideal solutions, respectively, as shown in Eq.(17).
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3.9.6 Fuzzy EDAS (Evaluation based on Distance from Average Solution) Method The Fuzzy
EDAS method is one of the multi-criteria decision-making (MCDM) techniques that evaluates and ranks
alternatives based on their distances to the positive and negative ideal solutions. Fuzzy EDAS provides
both flexibility and accuracy in multi-criteria group decision-making processes characterized by conflict-
ing attributes and uncertainty, by evaluating alternatives based on their distance from the average solution
(Jana and Pal, 2021). In this method, criterion values are represented using triangular fuzzy numbers
(TFNSs), and for each alternative, positive distance (PD) and negative distance (ND) scores are calculated.
These values are then multiplied by their respective weights and normalized to obtain the final EDAS
score:

Si =

1( PDS; NDS; ) (10)

2 \ max PDS; maxNDS;

Here, PDS; and N D.S; represent the positive and negative distance scores of alternative 7, respec-
tively, and \S; denotes the final fuzzy EDAS score, as defined in Eq.(18).

3.9.7 Fuzzy VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) Method The
Fuzzy VIKOR method is one of the multi-criteria decision-making (MCDM) techniques that evaluates
and ranks alternatives based on their distances to the positive and negative ideal solutions. The Fuzzy
VIKOR method provides a rational and systematic decision-making approach that aims to comprehen-
sively rank the performance of feasible alternatives by considering the weights of evaluation criteria in
multi-criteria decision environments characterized by uncertainty (Chang, 2014). In this method, the cri-
teria are expressed using triangular fuzzy numbers (TFNs), and for each alternative, the total benefit
difference (.S;) and the maximum criterion difference (R;) are calculated with respect to the positive and
negative ideal solutions. Based on these two values, the ); score—representing the fuzzy compromise
solution—is obtained using the formulation presented in Eq. (19). This equation integrates both bene-
fit and regret measures through the compromise coefficient v, which is typically set to 0.5, to provide a
balanced evaluation among competing alternatives:

Si - Smin R’i - anin
O = Sum T ) R R an

4 Conceptual Discussion: Quantum-Fuzzy Decision-Making (Non-operational)

This section provides conceptual interpretation only and does not describe implemented algorithmic
mechanisms. The proposed method is a classical, quantum-inspired stochastic fuzzy weighting approach;
therefore, the discussion below is included solely to contextualize common terminology used in the re-
lated literature.

Figure 4 is included as a conceptual narrative frequently used in quantum-inspired decision-model
discussions (e.g., superposition/interference/collapse). It is not intended to represent an implemented se-
quence of algorithmic steps in the proposed method.

Figure 5 is presented as a high-level conceptual map and should not be interpreted as evidence of
improved stability, discrimination, or performance of the proposed method in the absence of a formal
robustness analysis or benchmarking.

4.1 Weighting Models and Decision Outcomes (Conceptual, Non-operational)

Quantum terminology (e.g., superposition or entanglement) is often used in the literature to motivate al-
ternative probabilistic viewpoints; however, the present implementation does not simulate quantum states
and does not include explicit coupling between criteria.
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In the implemented study, differences in alternative rankings are primarily driven by the selected
weighting scheme (BW, CRITIC, Entropy, quantum-inspired, and fuzzy quantum-inspired) and by the
downstream MCDM method; therefore, claims regarding stability, discrimination, or interdependency
modeling are not asserted as formal properties without dedicated robustness metrics and benchmarking.

4.2 Algorithm: Quantum-Fuzzy Weighting Integration Step

The integration of quantum and fuzzy logic within the weighting process provides a robust framework
for managing uncertainty and interdependence among criteria in multi-criteria decision-making (MCDM)
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systems. By combining the probabilistic representation of quantum mechanics with the linguistic flexi-
bility of fuzzy logic, this algorithm enables a dynamic and adaptive weighting structure. The following
steps formalize the process through which normalized decision data are enhanced with quantum-derived
probability amplitudes and transformed into triangular fuzzy weights, ensuring that both the uncertainty
and interaction effects are preserved before being transferred to the MCDM evaluation stage.

Step 1: Criterion direction and scale alignment (normalization)

oy
—— C(benefit)
max; Tij
" T\ min, a5 (12)
#’ C] (COSt)
Lij
Equation (20) shows the normalization step that aligns all criteria to a common scale and direction.
Benefit criteria are divided by the column maximum, while cost criteria use the column minimum. This
ensures all criteria are comparable within the [0,1] range.

Step 2: Quantum-originated probability mass generation

0, ~UO,m), aj=sin®(0)), j=ni— > aj=1 (13)
D k=1 0k ;

Equation (21) generates a quantum-based probability distribution for each criterion. 6 represents the
random phase angle, while a denotes the normalized probability weight derived from the superposition
effect.

Step 3:Fuzzification of quantum probability (TEN weighting)

d)j = (max(aj — 5, 0), aj, min(aj + 5, 1)) (14)

Equation (22) represents the transformation of quantum probability weights into triangular fuzzy
numbers (TFNs). «; is the central value, and 0 defines the uncertainty range, allowing the probability
distribution to capture human judgment ambiguity.

Step 4: Normalized decision matrix with TFN

Fij = 1ij ® Wiy = (rij l§w), Tij m§-w), Tij u;-w)) (15)

Equation (23) shows the multiplication of normalized criterion values with quantum—fuzzy weights to
form the weighted decision matrix. As a result, each element is represented as a triangular fuzzy number
(TEN).

Step 5:Reference Point Generation for MCDM Methods

oM = oW ({Fy)myi0), k=12, K, (16)

In Equation (24), for each criterion, the method-specific reference point(s) are generated from the
set of normalized—weighted values (7;;). This process is expressed by a general generation function
¢, defined according to method- or criterion-specific parameters ¢;. The resulting ﬁj(-k) values form the
fundamental reference points used by MCDM methods.

Step 6:Distance / difference measures between TFN's

di ((l,ma,ur), (o, ma,us)) = v/ (I1 — 12)2 + (M1 — m2)2 + (ug — u2)? (17)

dr ((I1,ma,ur), (I2,ma,u2)) = |l — o] + Jma — ma| + |ug — ug| (18)

Equation (25) and (26) represents the distance between two triangular fuzzy numbers (TFNs). dg
denotes the fuzzy Euclidean distance, while dp refers to the fuzzy Taxicab (Manhattan) distance. These
measures are used to determine how far each alternative is from the reference point.
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Step 7: Fuzzy Quantum Weighted Decision Matrix and MCDM Integration

Sy = f(R,W) = f(ri; x w;) (19)
In Equation (27), this expression represents the integration of normalized criterion values (r;5) with
quantum—fuzzy weights w;and their transfer into the multi-criteria decision-making (MCDM) model.
The function f(.)varies depending on the selected method (e.g., CODAS, EDAS, TOPSIS, VIKOR, etc.)
and is used to calculate the final scores (.S;) of the alternatives. At this stage, the resulting quantum—fuzzy
weighted decision matrix forms a common decision space utilized for evaluation across all MCDM ap-
proaches.
Step 8: Ranking alternatives

A(l) = arg mZaX Si, A(Q)a A(3)a RER) A(m) 20)

In Equation (28) represents the ranking of alternatives in multi-criteria decision-making (MCDM)
methods based on their final scores (S;). All alternatives are ordered from the highest to the lowest score,
and the one with the highest value A(y)is selected as the most suitable alternative. This ranking approach
is universally applicable to all MCDM methods.

5 Result

In this study, a comprehensive analysis was conducted using different weighting methods and Multi Cri-
teria Decision-Making (MCDM) techniques to address the industrial robot selection problem. Both clas-
sical MCDM methods such as CODAS, TOPSIS, VIKOR, and MOORA, and fuzzy logic-based MCDM
methods (fuzzy TOPSIS, fuzzy EDAS, fuzzy VIKOR) were applied to evaluate alternative robots and
determine the most suitable selection. For each method, BW, CRITIC, Entropy, Quantum, and Fuzzy
Quantum weighting techniques were employed, and the obtained results were analyzed comparatively.

Table 3: Best Robot Selection with Different Weighting Methods (Fuzzy MCDM Methods)

Weighting Method Fuzzy TOPSIS Fuzzy EDAS Fuzzy VIKOR
Robot Score Robot Score Robot Score
BW IRB 5720-180/2.6 |0.539944|IRB 760 5.385003|IRB 140-6/0.8 |0.000000
CRITIC IRB 1010-1.5/0.37|0.600000|IRB 760 2.135629|IRB 140-6/0.8 |0.024323
Entropy IRB 760 0.524325|IRB 760 5.589297|IRB 1600-6/1.2{0.010121
Quantum IRB 1010-1.5/0.37|0.556295|IRB 1010-1.5/0.37|2.679314|IRB 140-6/0.8 [{0.066591
Fuzzy Quantum IRB 1010-1.5/0.37|0.556331|IRB 1010-1.5/0.37|2.682965|IRB 140-6/0.8 |0.049457

The results in Table 3 show that the optimal robot selection varies depending on the fuzzy MCDM
method and weighting technique applied. While Fuzzy TOPSIS and Fuzzy Quantum methods highlighted
the IRB 1010-1.5/0.37 model, Fuzzy EDAS selected IRB 760, and Fuzzy VIKOR identified IRB 140-
6/0.8 as the best alternative. Moreover, the quantum-inspired and fuzzy quantum-inspired weighting
schemes yielded rankings that differed from those produced by Entropy and CRITIC, indicating that
the ranking outcome is sensitive to the adopted weighting design.

According to Table 4, while classical methods highlighted the IRB 760 model, the VIKOR method
identified IRB 140-6/0.8 as the best alternative. However, when Quantum and Fuzzy Quantum weighting
techniques were applied, the IRB 1010-1.5/0.37 model became more advantageous in several methods.
These findings indicate that the selected alternative may change as a function of the adopted weighting
scheme.
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Table 4: Best Robot Selection with Different Weighting Methods (Classical MCDM Methods)

Weighting Method CODAS TOPSIS VIKOR MOORA
Robot Score Robot Score Robot Score Robot Score
BW IRB 760 0.492034|IRB 760 0.703721|IRB 140-6/0.8|0.000000|IRB 760 0.276357
CRITIC IRB 760 0.345672|IRB 760 0.549528|1RB 140-6/0.8|0.058810|IRB 760 0.069460
Entropy IRB 760 0.469126|IRB 760 0.554542|1RB 2000/1  |0.029126|IRB 760 0.209345
Quantum IRB 1010-1.5/0.37{0.379092IRB 1010-1.5/0.37|0.556295IRB 140-6/0.8{0.108056 |{IRB 5400-22|0.503426
Fuzzy Quantum IRB 1010-1.5/0.37{0.381487(IRB 1010-1.5/0.37|0.556331{IRB 140-6/0.8{0.049457 |IRB 5400-22|0.503426

5.1 Comparison of Classical, Quantum and Fuzzy Quantum Weighting

Weighting techniques play a critical role in the effectiveness of multi-criteria decision-making (MCDM)
models. In recent years, advanced methods such as quantum and fuzzy quantum-based approaches have
gained attention for their ability to model uncertainty and complex interactions. This section evaluates
the impact of various weighting methods on decision quality through a comparative analysis.

Table 5: Comparison of Quantum, Fuzzy Quantum and Classical Weighting Methods

Feature

Classical Weighting

Quantum Weighting

Fuzzy Quantum Weighting
(Proposed)

Uncertainty Handling

Fixed weights (determinis-
tic)

Probability-based ~ weights
via superposition principle

Both quantum probabilities
and fuzzy uncertainties are
considered

Relationships Between
Criteria

Independent criteria

Independent criteria (no cou-
pling implemented)

Independent criteria with
fuzzy uncertainty modeling

Weight Updating Fixed or classically updated |Stochastically generated by |Stochastically generated and
phase-angle sampling fuzzified as TFNs
Stability of Results Singular and fixed result Probabilistic weights within|Probabilistic  and  fuzzy
repeated runs weights within repeated runs
Computational Com-|Low Low-medium (classical|Low—medium (sampling +
plexity sampling) fuzzification)
Dynamic  Decision-|None (static system) Provides stochastic variabil-|{Provides  stochastic  and
Making ity via repeated sampling fuzzy variability (sampling +
TFEN fuzzification)

Real-World  Applica-
tions

Suitable for fixed decision
process

Provides an alternative mod-
eling perspective for uncer-
tainty

Provides an alternative mod-
eling perspective with fuzzy
uncertainty representation

As shown in Table 5, the weighting design plays a crucial role in MCDM outcomes, making the com-
parative analysis of weighting methods particularly important. The table presents a comparison of clas-
sical, quantum-inspired, and fuzzy quantum-inspired weighting approaches across several dimensions.
Classical weighting techniques rely on fixed and deterministic values and assume independence between
criteria, making them suitable for static decision environments. In contrast, the quantum-inspired ap-
proach generates probabilistic weights through classical sampling and normalization, whereas the fuzzy
quantum-inspired approach additionally represents uncertainty by fuzzifying these weights as TFNs.
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6 Discussion

In this study, the industrial robot selection problem has been examined under multiple classical and fuzzy
MCDM procedures while systematically varying the criterion-weighting scheme. The quantum-inspired
and fuzzy quantum-inspired schemes have functioned as stochastic generators of probability masses and
their fuzzy counterparts, and the resulting weights have been propagated through standard ranking mech-
anisms.

The comparative results indicate that the identified best alternative is sensitive to the adopted weight-
ing method, which is consistent with the well-known role of weighting in MCDM. In particular, the
quantum-inspired schemes have produced rankings that differ from those obtained by Entropy and CRITIC,
suggesting that stochastic probability-mass generation can act as an alternative regularization mechanism
in the weighting stage. Moreover, the fuzzy extension has been observed to support uncertainty represen-
tation by assigning TFN-valued weights rather than point estimates.

It is emphasized that the proposed approach has been implemented entirely on classical hardware and
has not operationalized quantum-mechanical coupling mechanisms between criteria (e.g., entanglement-
based joint amplitudes, unitary evolution, or Schrodinger dynamics). Therefore, the contribution has been
restricted to a classical, quantum-inspired probabilistic fuzzy weighting design and its empirical integra-
tion with established MCDM methods.

With respect to the research questions, the effect of the quantum-inspired weighting on decision out-
comes (RQ1) has been assessed via cross-method ranking comparisons; the role of fuzzification under
uncertainty (RQ2) has been examined by TFN-based weighting and fuzzy MCDM outputs; and ranking
consistency patterns associated with the fuzzy quantum-inspired scheme (RQ3) have been discussed by
comparing best-alternative consistency across methods.

It is noted that these consistency patterns are discussed qualitatively and are not presented as formal
statistical robustness properties in the absence of variance estimates, confidence intervals, or dedicated
stability metrics.

A key limitation is that no computational complexity analysis or runtime benchmarking has been
provided, and thus no performance claims beyond methodological modeling have been made. Future
work may include (i) formal sensitivity/stability analyses under repeated sampling, (ii) explicit modeling
of inter-criterion dependence through correlated sampling or coupling terms, and (iii) runtime evaluations
on larger datasets to characterize practical scalability.

7 Conclusion and Future Works

In this study, a classical, quantum-inspired probabilistic weighting mechanism has been integrated with
fuzzy uncertainty modeling and combined with conventional MCDM ranking methods for industrial robot
selection. The weighting stage has been constructed by phase-angle sampling followed by sin2(~) map-
ping and normalization, and the resulting probability masses have been fuzzified as triangular fuzzy num-
bers when the fuzzy quantum-inspired variant has been applied.

It has been observed that the selected best alternative and the stability of rankings may vary across
weighting schemes and MCDM procedures. In this respect, the proposed quantum-inspired and fuzzy
quantum-inspired schemes have been shown to provide an additional perspective for sensitivity analysis
in criterion weighting under uncertainty, without requiring subjective expert elicitation.

It is emphasized that inter-criterion dependence has not been explicitly modeled and that the presented
framework does not implement quantum operators, unitary evolution, entanglement-based coupling, qubit
simulation, or hardware-based quantum computation. Accordingly, the scope of the contribution has been
restricted to classical decision modeling.
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For future work, (i) correlated or copula-based sampling strategies may be introduced to represent
inter-criterion dependence, (ii) convergence and stability under repeated sampling may be evaluated for-
mally, and (iii) computational cost and scalability may be assessed through runtime benchmarking on
larger and more diverse datasets.
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