
Baltic J. Modern Computing, Vol. 1 (2013), No. 1-2, pp. 29–51

A Systematic Review of Methods for Business
Knowledge Extraction from Existing Software

Systems

Kestutis NORMANTAS, Olegas VASILECAS

Information Systems Research Laboratory, Vilnius Gediminas Technical University,
Sauletekio aleja 11, Vilnius 10223, Lithuania

kestutis.normantas@isl.vgtu.lt,olegas.vasilecas@vgtu.lt

Abstract. Software maintenance and evolutions often result in large cost overruns and
delayed delivery of required changes or improvements. As numerous studies have shown,
adopting software to meet ever-changing business needs constitutes a major part of the
software maintenance cost. The demand to facilitate software maintenance has led to
the emergence of different methods for automated knowledge extraction from source
code and other artefacts of existing software systems. This paper presents a systematic
literature review of peer-reviewed conference and journal articles on this topic. The
review has been undertaken to summarise the state-of-the-art in the research field,
identify any gaps and explore possible directions for the further research. In this review,
7 digital libraries were searched and 24 papers dealing with the topic were identified
and classified according to the four dimensions: extracted business knowledge kind,
extraction techniques, kinds of software artefacts used as input sources, and extracted
knowledge representation forms. The results of this study indicate that the research
field is still immature and requires more comprehensive research. The results also show
that there is a minority of methods that rely on widely adopted business knowledge
classification schemes and only very few of methods employ standards for knowledge
representation. It is believed that this review and classification scheme proposed in
the paper would serve as a guide for both researches and practitioners in the further
studies.

Keywords: business vocabulary, business rules, business processes, knowledge extrac-
tion, knowledge discovery

1 Introduction

Software maintenance and evolution are integral parts of software life cycle.
According to the first Lehman’s law of software evolution, once the software is
in production, it undergoes continual change or becomes progressively less useful



30 Normantas and Vasilecas

(Lehman; 1980). The change or decay process continues until it is judged more
cost effective to replace the system with a recreated version.

A comprehensive research on software maintenance and evolution by Bennett
and Rajlich (2000) emphasizes the importance of software maintenance as it con-
sumes a large part of the overall life-cycle costs, whereas the inability to change
software quickly and reliably means that business opportunities are lost. The
recent forecast analysis by Gartner indicates that the software maintenance con-
sumes 38% of total cost of spending for software systems (Tom; 2013). Numerous
studies have determined that the most of maintenance activities are caused by
the need to adopt the system to ever-changing business requirements. A widely
cited study by Lientz (1980) revealed that software enhancements to meet cus-
tomer needs comprise 41.8% of the total effort spent for software maintenance.
The recent study by Glass (2012) points out that enhancement is responsible
for roughly 60% of software maintenance costs. One of the main reasons of high
software maintenance cost is limited understanding about its initial design and
its actual implementation. As the SWEBOK (Abran et al.; 2004) notes, 40%
to 60% of the maintenance effort is devoted to understanding the software to
be modified. This is due to the fact, that typically software maintainers are
not its designers, so they must expend many resources to examine and learn
about the system (Chikofsky and Cross; 1990). Moreover, the changes are rarely
well documented or even not documented at all (which is often the case) and
the comprehension acquired in producing changes often remains with individual
developers.

As the recent study on modernizing information systems (Ulrich and New-
comb; 2010) notes, less than 30% of software source code contains business logic,
while the remaining code supports infrastructure-related activities. It follows
that, if the large part of software changes are due to the need to adopt its func-
tionality to the changed business requirements, then facilitating software com-
prehension with automated business knowledge extraction methods may signif-
icantly reduce the cost of software maintenance and evolution. This hypothesis
has been investigated by many researches during the past several decades re-
sulting in numerous methods for business knowledge extraction from existing
software systems. This paper presents a systematic literature review (SLR) in
order to: summarise the state-of-the-art in this research field, identify any gaps
in current research and explore possible directions for the further research, pro-
vide a framework in order to appropriately position new research activities in
the field of business knowledge extraction from existing software systems.

The System Literature Review (SLR) has been undertaken by following the
guidelines proposed by Kitchenham and Charters (2007). In the Section 2 we
formulate research questions used to evaluate existing literature. In Section 3
we define research methods used to conduct SLR. Section 4 briefly describes the
process of SLR while Section 5 presents exhaustive overview of the SLR results.
In Section 6 we provide a discussion on the results. In Section 7 we consider
threats to validity of this review. Finally, in Section 8 we conclude the review
and discuss on further research.



Review of Methods for Business Knowledge Extraction 31

2 Research Questions

In order to undertake the Systematic Literature Review we formulated the fol-
lowing four research questions:

RQ1: What kinds of business knowledge are being extracted by the re-
search?

RQ2: What analysis techniques are used as a basis for knowledge extrac-
tion?

RQ3: What types of software artefacts are used as input sources for knowl-
edge extraction?

RQ4: How the extracted knowledge is being represented?

Business knowledge in this context is considered as a certain understanding of
the business domain. The commonly accepted forms for defining and for repre-
senting business knowledge are business vocabulary, business rules and business
processes. A business vocabulary is defined by the Semantics of Business Vocab-
ulary and Business Rules (SBVR) (OMG; 2008) as a collection of terms and
facts that are used in a business for communication. A business rules is defined
by the Business Rules Group (The Business Rules Group; 2000) as “a statement
that defines or constrains some aspect of the business. It is intended to assert
business structure or to control or influence the behaviour of the business”. Mor-
gan (Morgan; 2002) indicates that business rules should be concerned only with
the conditions that must apply in a defined state, and emphasises that it is also
important to know who may invoke the rule, when and where the rule must be
executed. A business process is considered as “a defined set of business activities
that represent the steps required to achieve a business objective. It includes the
flow and use of information and resources” (OMG; 2011). The business vocab-
ulary, rules, and processes are gathered by business analysts into a set of docu-
ments that sustains throughout the development of a software system. However,
the initially acquired knowledge changes or becomes obsolete after the delivery
of the software system to the production.

There are many different formal and semi-formal analysis techniques that
may be used in the field of business knowledge extraction. In this review, we are
attempting to determine which of analysis techniques (such as program analysis,
classification, patterns matching, model transformations, etc.) are used as a basis
to formulate knowledge extraction algorithms and how they are used. The selec-
tion of certain analysis technique in the knowledge extraction process is partially
determined by the software artefacts being analysed. This involves the produc-
tion generated during the development process of a software system. Besides the
source code, there might be included configuration, resource definitions, various
types of software documentation, or data. However, this review is not concerned
with studies that investigate information retrieval from documents, or business
process mining from system logs. In our opinion, these research fields should be
reviewed separately.

The business knowledge extraction process may involve several kinds of knowl-
edge representation form: intermediate and output. The former is used during



32 Normantas and Vasilecas

various analysis activities and may include data, control, and dependency graphs,
lattices, dependency tables, or meta-models that formally define the knowledge
about the software system. The latter is used to present and validate the knowl-
edge with the end-users, such as business analysts and stakeholders. Although
there is no standard format for representing business rules, there are many differ-
ent approaches to define them using rule patterns, production rule representation
format, decision tables and trees, the Object Constraint Language (OCL), the
Object-Role Modelling notation, or others. Business processes are typically rep-
resented by process models defined with a certain kind of modelling approach,
such as activity flow, data flow, workflow, communication and interaction di-
agrams, or certainly gaining more popularity the Business Process Modelling
Notation (BPMN). We believe that formulated research questions should allow
conducting an overview of the-state-of-art in the current research, get a better
understanding of the general principles of knowledge extraction from existing
software systems, and identify existing gaps and potential opportunities for the
future research.

3 Review Methods

3.1 Data sources and search strategy

In order to retrieve relevant research studies and to achieve maximal coverage,
we chose to search in digital libraries and in search engines using predefined
search string. Due to technical limitations, we had to limit the number of data
sources. However, our initial study of selected digital libraries, and their partic-
ular sections, has shown that they contain significant number of books, journals,
peer-reviewed conferences and workshops relevant to the research field. We be-
lieve that this list is fair enough to cover sufficiently large amount of relevant
studies. Though, it could be extended in the future research by concerning other
well-known digital libraries, search engines, or other sources. The following table
summarises the data sources used to retrieve the data.

Table 1: A list of data sources used to search for relevant papers

Data source Subjects Website

ACM Software and its
engeering; Theory of
computation; Information
systems; Computing
methodologies; Applied
computing.

dl.acm.org

IEEExplore Computing & Processing. ieeexplore.ieee.org
SpringerLink Computer Science. link.springer.com
ScienceDirect Computer Science. www.sciencedirect.com

dl.acm.org
ieeexplore.ieee.org
link.springer.com
www.sciencedirect.com


Review of Methods for Business Knowledge Extraction 33

Wiley
InterScience

General Computing;
Computer Science;
Information Science and
Technology.

onlinelibrary.wiley.
com

CiteSeerX - citeseerx.ist.psu.edu
Google
Scholar

- scholar.google.com

We followed the general principles proposed by Brereton (2007) to define search
string. First, we defined major terms by breaking down the research questions
specified in Section 4. Then, we searched for alternative spellings, abbreviations,
synonyms, and related terms in the thesaurus and search engines. In addition,
we checked for the keywords and titles in any relevant resource that could be
obtained by combining the major terms. After identification of the major and
alternative terms, we construct search string by combining the major terms
with the alternatives using Boolean OR operator and by combining resulting
predicates with each other using Boolean AND operator. The following table
summarizes the search terms being used for searching relevant resources.

Table 3: A list of major terms and alternate terms used to construct the search
strings

Major terms Alternative terms

Business Domain
Knowledge Vocabulary OR Facts OR Terms OR Concepts OR

Rules OR Process OR Logic OR Requirements OR
Documentation

Extract Discover OR Retrieve OR Derive OR Gather OR
Reverse Engineer OR Re-Engineer OR Recover

Existing Legacy
Software System Information System OR Source Code OR Program

To validate whether the search string is constructed appropriately, we tried to
search full-text of publications in several digital libraries and search engines. As
we obtained that results are too large to be processed, consisting of hundreds of
thousands of records, we limited the search in titles, abstracts, and meta-data (if
such feature was provided by digital library/search engine). It should be noted,
that not every digital library/search engine supports complex and long search
queries. Therefore, we had to break down the search string into smaller pieces
without modifying the conjunction between query predicates containing major
terms and manually manipulate the search to obtain the results.

onlinelibrary.wiley.com
onlinelibrary.wiley.com
citeseerx.ist.psu.edu
scholar.google.com


34 Normantas and Vasilecas

3.2 Study selection

Once the potentially relevant primary studies have been obtained, they need
to be assessed for their actual relevance (Kitchenham and Charters; 2007). For
this reason we formulated inclusion and exclusion criteria. Research works were
included in the review list if they met at least one of the following criteria:
– Presents an approach for business knowledge extraction from existing soft-

ware systems OR
– Presents a case study on applying a certain business knowledge extraction

approach OR
– Presents an extension to a certain approach for business knowledge extrac-

tion.
Research works were excluded in the review list if they met at least one of the
following criteria:
– Is not available in the English language OR
– Is not available as a full version paper, only an extended abstract or presen-

tation OR
– Is a duplicate of the already included paper (we have selected the most recent

version) OR
– Only discuss on the possibilities to extract business knowledge rather than

presents an approach OR
– Concerns knowledge extraction from data sources other than software arte-

facts (i.e. only log mining or information retrieval from documents).
In order to make decision whether to include the obtained work or not, we
planned several iterations as follows. During the first iteration, the title, key-
words, and abstract or summary of the obtained work were reviewed according
to the formulated inclusion and exclusion criteria. During the second iteration,
the full-text of the obtained work was reviewed considering inclusion criteria. The
obtained work was evaluated by one participant (the first author) and another
participant (the second author) validated this evaluation. In case of disagree-
ment, the discussion on the work was held between all participants to decide the
inclusion of the work in the review list.

3.3 Study quality assessment

Although there is no commonly agreed definition of study “quality” (Kitchenham
and Charters; 2007), it could be in some degree assessed by constructing check-
lists of factors that need to be evaluated for each study. For this reason we
defined the following questions:
1. How the proposed approach has been evaluated?

(a) Industrial case study;
(b) Research case study;
(c) An example.

2. What is the automation level of the proposed approach?
(a) Automatic;
(b) Semi-automatic;



Review of Methods for Business Knowledge Extraction 35

(c) Manual.
3. How well the approach has been defined?

(a) Formal enough to be reproduced;
(b) Informal, but general steps could be reproduced;
(c) Vaguely, impossible to reproduce.

It should be noted, that the knowledge extraction process in most cases is com-
plex and involves multiple activities (source code parsing, transformations, anal-
ysis and refinement, information retrieval from available documentation, and
etc.); therefore, it would be unreasonable to expect that all details about the
implementation of the approach or its evaluation in a case study could be clearly
and particularly specified, especially when there are different limitations, such
as the length of paper in journals or conference proceedings. On the other hand,
without assessing these criteria, it would be difficult evaluate the quality of se-
lected works.

3.4 Data extraction

In order to accurately record the information obtained by reviewing the works,
we defined data extraction form within the references management tool (JabRef).
In addition to the default properties of a reference item, such as title, publica-
tion type, authors, annotation, etc. we introduced several custom properties to
determine quality assessment, and to assign dimensions from the classification
scheme, developed according to the research questions, formulated in Section 4.
The classification scheme is presented in the Figure 1.

Fig. 1: Classification scheme for evaluating knowledge extraction methods



36 Normantas and Vasilecas

3.5 Data synthesis

To collate and summarize the results of the included studies we chose the descrip-
tive (narrative) synthesis (Kitchenham and Charters; 2007). Extracted informa-
tion about the studies was tabulated in consistent with the research questions
and the quality evaluation criteria. The summarising table was structured to
highlight similarities and differences between selected studies. Section 5 presents
detailed discussion and the summarising table.

4 Conducting the Review

The Systematic Literature Review (SLR) was conducted in three phases (Figure
2). At the first phase, over 3500 studies were obtained by searching digital li-
braries/search engines using the search string or constructing such search string
with the functionality provided by the web site of digital library. The total num-
ber of selected studies was reduced to 145 by considering their titles and abstracts
for relevance. At the second phase, selected studies were reviewed considering in-
clusion and exclusion criteria and by removing duplicates. Although the number
of studies was reduced to 24, it was possible to observe that certain studies were
published by the same authors and concerned the same method application in
different case studies or its extension. At the third phase, we reviewed in detail

Fig. 2: Conducting the Literature Review

each of the study according to the research questions and quality criteria and
summarised the results in tabular form by grouping studies on the same method
(that, for example, evaluated in the other case study) and treating them as a
single study.



Review of Methods for Business Knowledge Extraction 37

5 Results

The distribution of the studies selected within the systematic literature review is
presented in the Table 5. It could be observed that although reverse engineering
is relatively old research field, the steady interest in extraction of business knowl-
edge (such concepts as business rules and processes) from software artefacts has
begun only in 2001. Moreover, the overall number of selected studies as well as
the considerably lower number of the selected studies in journals than in con-
ference proceedings and collections indicate that this research field is still young
and immature. We reviewed the selected primary studies in regards with the

Table 5: Distribution of selected primary studies by year and publication type
Year Journal Proceedings Collections Total

1996 0 2 0 2
2001 0 1 0 1
2002 1 1 0 2
2004 0 3 0 3
2006 1 2 0 3
2007 0 2 0 2
2008 0 0 1 1
2009 0 3 0 3
2011 2 1 0 3
2012 1 1 2 4

Total 5 16 3 24

research questions defined in Section 2. There were identified 10 research studies
that concerns with extraction of business rules, 6 that in addition to business
rules extract business vocabulary (business terms and facts), 6 that concerns
with extraction of business processes, and only 2 that considers extraction of
both the business rules and business processes. In the following we present a
detailed overview of the selected studies. At the end of this section we present
summarizing table (Table 6)

5.1 Methods for Business Rules Extraction

Extracting Business Rules using Program Slicing

The vast majority of business rules extraction approaches are based on tech-
niques for program analysis. The program analysis concerns static techniques for
computing information about the behaviour of software systems (Nielson et al.;
2004). Although primarily intended for optimization of compilers, the program
analysis techniques have also been successfully applied in software comprehen-
sion. That resulted to the introduction of the concept of program slicing, a set



38 Normantas and Vasilecas

of techniques to extract specific and rigorous knowledge from source code, to
be suitably represented and visualized, and to provide basis for further analysis,
classification and reconstruction (Rodrigues and Barbosa; 2010).

Program slicing has been introduced by Weiser 1981 as a technique to under-
stand and debug programs. Since then, program slicing has grown as a field and
a great number of researches have been performed resulting in different forms
of program slicing, algorithms to compute slices, and applications to software
(reverse and re-) engineering (Tip; 1995; De Lucia; 2001). According to its initial
definition, a program slice SC is an executable set of program statements that
preserves the execution behaviour of the program P with the respect to a subset
of variables V of interest at a given point of program p, i.e. a slicing criterion
C =< p, V >. Although in other program slicing techniques, this definition is
sometimes relaxed to allow a non-executable set of statements that directly or in-
directly affects a subset of values of interest. This concept has been borrowed by
many business rules extraction methods, because it enables to discover thorough
and rigorous view of business logic implementation.

Chiang (2006a; 2006b) proposes program slicing based method for business
rules extraction in order to afford possibility for business rules reuse by migrating
them from the legacy code to the loosely coupled components (i.e. web services).
The paper considers several kinds of business rule: primitive and complex. A
primitive business rule is a function that from given set of input parameters
produces one parameter, and a complex rule is defined as a set of primitive
function. A function represents a program slice computed using static backward
slicing (Weiser; 1981). Chiang (2006a) notices that a number of slices becomes
extremely large in the case of large software system. For this reason, program
code is separated into the three categories: user interface; business logic; and data
access. The starting point for slicing user interface is considered as a statement
reading or displaying the data. Data I/O statements such as read, write, rewrite,
open, or close are considered as candidates for the starting point of slicing data
access layer. During the analysis of business logic category, code parts that affect
data variables are separated and presented for software developers for validation.

Unfortunately, the method is illustrated with relatively straightforward ex-
ample where it is applied for a snippet of COBOL code. From this example it
is hard to evaluate the feasibility or effectiveness of the method. Moreover, the
presented example does not reflect the business rule at all; rather it shows a
certain kind of interface to identified data structure.

Huang et al. (1996) propose business rules extraction using several types
of program slicing. The method propose a number of heuristic rules for do-
main variables identification, slicing criteria identification, and slicing algorithm
selection. Domain variables are identified considering every input and output
variables of the system, arguments and return parameters of procedures. Slicing
criteria involves input and output statements of the program, dispatch centres
and return statements of procedures. A slicing algorithm is selected according
formulated slicing criteria: for input variables and dispatch centres forward slic-
ing is used; for output variables backward slicing is used to extract the relevant



Review of Methods for Business Knowledge Extraction 39

computation logic. Extracted business rules are represented either using a code-
view, a formula-view (three parts formulae – left hand side for a variable, right
hand side for an expression that modifies variable, and conditions under which
modifications may be executed), or input-output dependence view (bidirectional
data flows between input and output parameters). The proposed approach has
been implemented in the prototype tool called Business Rules Extraction En-
vironment targeting at extraction of business rules from COBOL programs. A
small example of application of the tool for a particular scenario has been pre-
sented within the paper. Though the approach gives some advices on formulating
heuristics for business rules extraction from legacy code, it lacks on clear defini-
tion of what kind of business rules it attempts to discover. Rather, the approach
equalizes business rules with the program slices that reflect all possible paths
of certain variables computation at given point of a program. One would notice
that a program slice may represent a particular use case scenario and contain
numerous nested rules (i.e. control statements) within it, or the slice may even
be meaningless in case of computation of non-domain variable (i.e. not a business
term).

The latter issue is considered in extended version of this approach presented
by Wang et al. (2004a; 2004b; 2009). In this approach, classification techniques
are employed during domain variables identification step. The approach also
emphasizes the importance of identification of synonymous variables occurring
in different modules. Having extracted domain variables and their dependences,
the next step, called data analysis, identifies business items that are actually
implemented in the selected slice. According to the obtained information, a set
of business rules is extracted and represented using multiple views in order to be
validated with stakeholders. However, proposed views representing business rules
require deep understanding of technological aspects of the software (i.e. to un-
derstand the code or graphs that represents dependencies between code blocks);
therefore they are hardly understood by business analysts and stakeholders.

The program slicing as a technique for collecting of relevant information
about identified business concepts is also suggested by Paradauskas and Lau-
rikaitis (2006; 2011). The method uses both forward and backward slicing in
regards with a subset of variables that are used in program input or output
statements, such that forward slicing is used to collect all statements that are
dependent on a given input statement (e.g. read user provided data), and back-
ward slicing is used to gather statements that contribute to the variables of
output statement (e.g. print data to the user). Sneed (1996; 2001) also suggests
use program slicing for rules extraction from legacy systems. However, neither
of method above does provide any further information on how to store, refine
and represent the slices that correspond to business rules.

Extracting Business Rules Using Pattern Matching

Apart from program slicing, Paradauskas and Laurikaitis (2006; 2011) incor-
porate pattern matching for business knowledge extraction from legacy infor-
mation systems. The method involves schema extraction and semantic analysis



40 Normantas and Vasilecas

techniques to discover conceptual schema from legacy source code and rela-
tional database. In addition to explicitly defined relations between tables in the
database (i.e. reference constrains), the approach extracts implicit relations by
analysing the legacy source code (written in C language) and SQL queries embed-
ded within it. A number of query patterns are proposed to identify candidate
keys that would allow establishing relations between tables. Inclusion depen-
dency mining (that is comparison of populations of attributes participating in
extracted relations) is used to classify extracted relations into the IS-A, depen-
dent, aggregate, and other kinds of relations. Extracted schema elements are
further converted from the intermediate representation defined in XML into the
entity-relationship diagram notation. According to the Business Rules Approach
(2000), all the extracted information is valuable because it reflects business vo-
cabulary (business terms and facts). However, although the approach claims
ability to extract business rules, it seems that it is being capable to extract only
static business rules (i.e. cardinality constrains). Extraction of other kinds of
business rules is neither investigated, nor discussed in the presented research.
Moreover, the presented examples do not convey the feasibility of the approach
in real-world scenarios, especially where the large data set are present and in-
clusion dependency mining is costly activity.

Chapparro et al. (2012) proposes patterns matching based method for extrac-
tion of structural business rules from legacy databases. They define a number of
heuristic rules that assign certain construct of database schema (columns, table,
constraint, dependencies) to a certain kind of business fact type (unary, binary,
property, and category) or to the structural business rule. Then, by applying
pattern matching technique, extracts corresponding constructs and stores in the
relational database. The method has been evaluated in the case study of legacy
system implemented using Oracle Forms technology. The results of case study
showed only one third of extracted business rules being correct. The method pro-
posed by Normantas and Vasilecas (2012; 2011) combines both patterns match-
ing and program slicing to extract more rigorous details about implementation
of business rules. As in Chaparro et al. (2012) , they define a set of patterns for
extraction of different kinds of business facts from available resources of enter-
prise content management system, including database schema, source code, and
resource definitions. To refine extracted knowledge and help to identify possi-
ble candidates to business terms and facts, the method applies text comparison
algorithms on indexed documentation thus retrieving a set of relevant matches
for extracted terms. For the internal representation of extracted knowledge the
method uses the Knowledge Discovery Meta-model (KDM). The system depen-
dence graph is created within a set of KDM models and further is used to
slice business scenarios (i.e. Use Cases) – a behavioural logic that handles var-
ious kinds of software events. By applying a set of heuristic rules, the method
identifies behavioural business rules within the extracted scenarios. However,
the method produces only intermediate representation of business knowledge;
transformations to more abstracted forms of knowledge representation (such as



Review of Methods for Business Knowledge Extraction 41

SBVR, decision tables and trees) although are considered but not discussed in
more detail in the research.

Putrycz and Kark (2007; 2008) uses patterns to identify code snippets that
corresponds to production rules. The method considers extraction of production
business rules in the form <Condition><Action> by analysing abstract syntax
tree (AST) of legacy COBOL application. In order to separate code implement-
ing business logic from setup and data transfer implementations, the approach
focus on single statements that embody calculations or branching since they most
often represent high level processing. The knowledge extraction process consists
of the two following steps: construction of extracted knowledge base and linking
the knowledge base items with existing documentation. The knowledge base is
created from the production rules, identifiers, dependencies between rules, ex-
ception statements. The elements of knowledge base are linked with documents
by performing key phrase analysis (in particular by employing Kea algorithm).
Although the approach overcomes previously discussed approaches with the abil-
ity to refine business relevant knowledge and present it in form acceptable for
a business analyst, it lacks on clarifying how the approach helped to extract
business rules. The feasibility of the method has been evaluated in a case study;
however, from the presented results of the case study it is hard to find out how
many of business rules were identified, and how much of them were accepted as
relevant after performing key-phrase extraction.

Earls et al. (2002) proposes a method for manual extraction of business
rules from source code. Assuming that error handling code parts reflects vio-
lations of implemented business rules, the method proposes to identify these
parts and scan backwards to collect all related code parts that lead to that ex-
ception. The method consists of the following steps. First, the source code is
placed into text editor and prepared for analysis by removing irrelevant code
parts: comments, working storage declarations, database connectivity manage-
ment, reporting heading processing, and log-displaying code. Then, each call to
procedure is replaced by the procedure body. After, error-processing sections
are located and classified and code parts that invoke these sections are recorded.
Finally, the conditions that led to the invocation of the error-processing code
are translated into business rules and stored in the rule repository for evalua-
tion with domain experts. The proposed method was applied in modernization
project of large legacy system resulting in numerous design and business rules
extracted from the source code. The design rules revealed certain decisions on
the system implementation that have been taken into the consideration during
migration to targeting platform. As the authors observe, not every business rule
implemented in the system was extracted; however, proposed method allowed
modernization engineer to discover business knowledge in faster and more ac-
curate way. Notwithstanding the fact that error handling code sections often
reflect violation of certain rules and therefore are reasonable candidates for busi-
ness rules extraction, the proposed method omits consideration of other kind of
business rules, such as structural rules, derivations, or other types of behavioural
rules. Moreover, manual extraction of business rules from software systems that



42 Normantas and Vasilecas

contains multiple heterogeneous artefacts and interacts with external systems
would result in extremely labour-intensive activities that would hardly produce
any valuable result. Finally, simplification of source code in the proposed manner
(i.e. removing irrelevant code parts) disallows the method be used in software
maintenance tasks,when changes are quite common.

5.2 Business Processes Extraction

Extracting Business Processes by Slicing Use Cases

Hung and Zou (2004; 2006; 2007) present an approach for recovering workflows
from multi-tiered enterprise software systems. The approach uses static tracing
to identify all possible execution paths that cover user interface, application logic,
and database tiers. As an entry point to start tracing, a procedure that handles
certain UI event is selected. Following the flow of control and by identifying
code patterns that corresponds to the elements of workflow (e.g. fork, join, task,
sequence) the code is transformed into intermediate workflow representation
(custom meta-model). In order to refine workflows into more abstracted versions,
the approach considers a number of heuristic rules. The result is a set of high level
workflows that are further transformed to models supported by IBM WebSphere
Business Modeler (WBM).

To demonstrate the effectiveness of the approach, a case study has been per-
formed on existing Enterprise Resource Planning (ERP) system, developed on
Apache OFBiz platform. A prototype tool, capable of code preparation, analy-
sis, and transformation has been applied in case study, resulting in high precise
and recall factors, ranging from 75% to 100% (meaning that almost all of the
extracted workflows are accurate). The results were manually evaluated in order
to identify the number of misidentified and missed tasks according to documen-
tation, comments and naming conventions. The evaluation has shown that the
main categories of irrelevant tasks include utility functions, including logging
and error handling.

Although the results are satisfactory, the approach has some drawbacks from
our point of view. First, it considers only user input as main entry points for
control flow tracing; though many researches emphasize the importance of anal-
ysis of different entry points to the system, such as external calls or internal
periodical events. Second, the paper considers only a subset of intermediate rep-
resentation (i.e. representing only code and UI, though in general it aims at
gathering information from other artefacts). Finally, it is neither proposed, nor
discussed on how to retain traceability from extracted knowledge to its actual
implementation.

Extracting Business Processes Using Pattern Matching

Ricardo Perez-Castillo et al. (2011; 2012) propose a method for business pro-
cesses extraction from legacy information systems. The method is based on a



Review of Methods for Business Knowledge Extraction 43

framework called MARBLE that is aligned with Architecture-Driven Modern-
ization (ADM) and which uses the Knowledge Discovery Meta-model (KDM)
standard for representation and manipulation of the knowledge about the legacy
information system. The MARBLE framework spans the following levels of ab-
straction: L0 – implementation of a legacy information system; L1 – direct repre-
sentation of software system artefacts using language specific meta-models (e.g.
an AST of java code); L2 – various models represented within the KDM; L3 –
representation of extracted business process models using Business Process Mod-
elling Notation (BPMN). Representations within each of the level are derived
by several kinds of model transformations. The most important transformation
from the representation within KDM to BPMN is based on a set of patterns.

The patterns varies from straightforward (e.g. sequencing, starting and ter-
mination) to more complex (e.g. branching, conditional sequencing, exceptions,
and collaboration). The method formally defines corresponding KDM model
structures and uses these definitions to create model-based (i.e. Query-View-
Transform language, QVT) transformation rules. The feasibility and effective-
ness of the proposed method have been evaluated in the case study of a medium-
size real-world legacy system implemented in Java (28 KLOC). During the case
study a number of business process models have been identified by discovering
interrelated business tasks that corresponds to the predefined patterns. With a
help of business experts, discovered tasks were reviewed and refined. As a result,
almost half of overall tasks were recognized as relevant (223 from 425) and 10
percent (41 from 425) as unidentified relevant tasks. The effectiveness evaluation
has shown reasonable transformation time (i.e. linear with respect to the size of
the models) showing the scalability of the proposed method.

This method shows that knowledge discovery problem may be reduced by
incorporating model-based software comprehension: the business knowledge ex-
traction is separated from obtaining the intermediate representation (i.e. “as-
is” models) of the source code. The method becomes (relatively) independent
from the software implementation. Although the method is based on the KDM
standard, it seems that the method does not utilize all features provided by
this standard. Currently, the method considered the transformation from KDM
Code model to BPMN. However, the KDM itself has different abstraction layers
enabling model refinement and abstraction within the same facility. The KDM
Conceptual model contains elements intended for representation of behaviour
and scenario units that are very closely related to the concepts of task and
business process investigated within this research. In regard with the purpose
of the KDM, the problem of knowledge discovery could be further reduced to
KDM Code to KDM Conceptual model transformation and KDM Conceptual
to BPMN transformation, allowing reuse of extracted knowledge (i.e. business
concepts and tasks) in other kinds of representation, such as business vocabulary
and business rules. Unfortunately, this issue has not been considered within the
research.

Kalsing et al. (2010) together with Nascimento et al. (2009; 2012) propose a
method that extracts business processes by identifying business rules within the



44 Normantas and Vasilecas

legacy code. For this reason they use pattern matching technique. Patterns are
formulated according to Weiden et al. (2004) classification scheme: mathematical
calculations, function/procedure calls, data persistence, user interaction, pre-
processing, post-processing, and control flow. Using code transformations, the
legacy code is augmented with comments denoting corresponding rule class and
with invocation of logging function enabling traceability of source code execution.

Having modified and recompiled the legacy code, the approach identifies use
case scenarios performed by legacy software users and executes these scenar-
ios to log the identified rules execution. Then, by using heuristics based Incre-
mentalMiner algorithm, it extracts dependency graphs from log information.
Extracted graphs are transformed to business process models (BPM) to facili-
tate further modernization of legacy system. In order to evaluate the proposed
approach, the research has performed a case study on the Financial Module
of legacy Enterprise Resource Planning (ERP) system written in COBOL lan-
guage. As a result, the case study has extracted the structure of 7 business
processes together with more than 50 business rules implemented within this
module, showing that incremental process mining approach allows extraction of
partial results (analysis of certain module) and thus reduces the total processing
time.

However, from our point of view, this approach has several important draw-
backs. First of all, this paper does not discuss on how to separate the code parts
implementing business logic from the code parts intended to support infrastruc-
ture related activities. It is clear that not every mathematical calculation imple-
ments computation of business value (e.g. computing the size of user interface
window), or not every control flow statement depends on evaluation of business
value (e.g. condition evaluating whether certain object has been instantiated).
Moreover, the paper does not consider how to identify business rules that covers
nested conditional statements or even multiple procedures or modules. Finally,
injection of logging instructions into the code of legacy system may not to be
acceptable if it is in usage. Modifying the code of cloned legacy software, on the
other hand, may not reflect the real-world scenarios because of employment spe-
cific characteristics (platform configuration, interaction with external libraries
or other software systems owned by organization), or absence of working data.

Table 6: Summary of Methods for Business Knowledge Extraction

Study Know-
ledge
Form

Analysis
Tech-
niques

Software
Artefacts

Representation
Form

Automation
Level

Evaluation Clarity

Huang (1996) Domain
variables,
business
rules

Program
slicing

Source
code

Intermediate:
CFG;
Output:Code
view, formula
view, dependence
view

Semi-
automatic
using
prototype
tool

Example Informal, but
general steps
could be
reproduced

Sneed and
Erdos (1996)

Business
rules

Pattern
matching

Source
code

Intermediate:
N/A;
Output:Source
code snippets

Semi-
automatic
using
prototype
tool

Example Informal, but
general steps
could be
reproduced



Review of Methods for Business Knowledge Extraction 45

Sneed (2001) Business
rules

Pattern
matching,
program
slicing

Source
code

Intermediate:
CFG;
Output:Source
code snippets

Semi-
automatic
using
prototype
tool

Research case
study

Informal, but
general steps
could be
reproduced

Earls,
Embury, and
Turner (2002)

Business
rules

Manual
backward
analysis

Source
code

Intermediate:
Source code;
Output:Source
code snippets

Manual
extraction
using text
processors

Industrial
case study

Informal, but
general steps
could be
reproduced

Fu et al.
(2002)

Business
rules

Transforma-
tions

Source
code

Intermediate:
BRL;
Output:N/A

N/A Example Formal
enough to be
reproduced

Wang et al.
(2004b;
2004a)

Business
rules

Domain
variable
classifica-
tion,
program
slicing

Source
code

Intermediate:
PCG;
Output:Slices

Semi-
automatic
using
prototype
tool

Research case
study

Informal, but
general steps
could be
reproduced

Zou et al.
(2004; 2006;
2006; 2007)

Business
processes

Pattern
matching,
control
flow
analysis

Web pages,
source
code, con-
figuration
files,
database

Intermediate:
Custom;
Output:Business
process models

Semi-
automatic
using
prototype
tool

Reseach case
study

Informal, but
general steps
could be
reproduced

Chiang
(2006a)

Business
rules

Program
slicing

Source
code

Intermediate:
PDG;
Output:Slices,
source code
snippets

N/A Example Informal, but
general steps
could be
reproduced

Paradauskas
and
Laurikaitis
(2006; 2011)

Business
concepts,
business
rules

Pattern
matching,
program
slicing,
inclusion
depen-
dency
mining

Source
code,
database
schema,
data

Intermediate:
PDG, Custom;
Output:Entity-
relationship
diagrams

Semi-
automatic
using
prototype
tool

Example Informal, but
general steps
could be
reproduced

Putrycz and
Anatol (2007;
2008)

Business
rules

Pattern
matching

Source
code, docu-
mentation

Intermediate:
N/A;
Output:Business
rule templates

Semi-
automatic
using
prototype
tool

Industrial
case study

Informal, but
general steps
could be
reproduced

Cai, Yang,
and Wang
(2009)

Business
processes

Interviews,
static
analysis,
dynamic
analysis

Source
code

Intermediate:
PDG;
Output:Business
process models

Semi-
automatic

Research case
study

Informal, but
general steps
could be
reproduced

Gang (2009) Business
rules

Program
slicing

Source
code

Intermediate:
PDG;
Output:Slices

Semi-
automatic
using
prototype
tool

Example Informal, but
general steps
could be
reproduced

Nascimento
et al. (2009;
2012)

Business
rules,
business
processes

Patterns
matching,
rewriting

Source
code

Intermediate:
N/A;
Output:Business
process models

Manual N/A Informal, but
general steps
could be
reproduced

Castillo et al.
(2011; 2012)

Business
processes

Patterns
matching,
program
slicing,
model-
based
transfor-
mations

Source
code

Intermediate:
AST, KDM;
Output:BPMN

Semi-
automatic
using
MARBLE 2.0
framework
(tool suite)

Industrial
case study

Formal
enough to be
reproduced

Normantas
and Vasilecas
(2011; 2012)

Business
vocabu-
lary,
business
rules

Patterns
matching,
program
slicing,
model-
based
transfor-
mations

Source
code,
resourse
definitions,
configura-
tion,
documen-
tation

Intermediate:
AST, PDG,
KDM;
Output:KDM

Semi-
automatic
using
prototype
tool

Research case
study

Informal, but
general steps
could be
reproduced

Chaparro et
al. (2012)

Business
vocabu-
lary,
business
rules

Heuristics
based clas-
sification,
transfor-
mations

Database
schema,
source code

Intermediate:
Custom;
Output:N/A

Semi-
automatic
using
prototype
tool

Research case
study

Informal, but
general steps
could be
reproduced

Abbreviations
PDG - Program Dependence Graph IR - Intermediate Represenation (problem specific)
PCG - Program Call Graph BPM - Business Process Model
AST - Abstract Syntax Tree BPMN - Business Process Modelling Notation
KDM - Knowledge Discovery Metamodel E-R - Entity Relationship diagram



46 Normantas and Vasilecas

6 Discussion

In this review we asked “what kinds of business knowledge are being extracted by
the current research?”. The most common business knowledge kinds that are be-
ing considered in extraction methods are business rules and business processes.
Several studies show interest and provide guidance in extracting the business
vocabulary as well. Although there are various business vocabulary and rule
categorization schemes proposed in the business rules research field, only several
methods consider usage of certain scheme to extract and classify the business
knowledge. Nonetheless, the result of this study shows that the interest in busi-
ness knowledge extraction is important and relevant topic.

The next question was “what analysis techniques are used as a basis for
knowledge extraction?”. This study showed that the methods for business rules
extraction have several common characteristics. They are similar in the sense
that most of them concern the following general procedure for knowledge ex-
traction: gathering initial information, extracting candidate rules, refining can-
didates, and transforming to the output representation form. The most common
techniques for business rules extraction are program slicing, pattern matching,
and transformations. These techniques are used to extract business processes as
well. It is important to notice that the most of reviewed studies propose using
combination of techniques in order to achieve more accurate results. It is also
should be noted, that in this review we did not include the studies that concern
usage of information retrieval or mining as primary methods, such as business
processes mining from event logs or rules extraction from data or documentation.
In our opinion, business knowledge extraction from software artefacts may be
treated as a particular research field, therefore above mentioned topics require
separate studies.

The third question asked “what software artefacts are used as input sources
for knowledge extraction?”. There are very few methods that consider knowledge
extraction from software artefacts other than source code, for instance, resource
(web pages, forms, reports) definitions or configurations. Though, within contem-
porary software systems, these artefacts may contain much valuable information,
including business vocabulary and rules. This could be explained by the fact that
the most of business rules extraction methods considers legacy software written
COBOL. It is important to notice, that neither of reviewed study propose a
method to extract business processes from such software.

The fourth question asked “how extracted knowledge is being represented?”.
As we already mentioned, there are two types of knowledge representation: in-
termediate and output. Methods that use program slicing considers intermediate
representation intended for slicing, such as control flow graphs, call graphs, or
program dependence graphs. Methods that uses patterns matching either per-
form it directly in code or propose custom intermediate representation (custom
meta-models). Only several methods use standard based (i.e. Knowledge Dis-
covery Meta-model) intermediate representation of the extracting knowledge.

We were surprised that very few methods consider widely accepted forms for
business rules representation (such as templates, decision tables, etc.). Most of



Review of Methods for Business Knowledge Extraction 47

the reviewed studies suggest using either code snippets, or graph slices as the out-
put representation, though such representation form is not acceptable solution
when extracted rules must be evaluated with business analysts or stakeholders.
In our opinion, this issue should be investigated in the further research.

However, this issue is irrelevant for the output representation of extracted
business processes. The most of reviewed studies consider representing business
processes using models defined either with Business Process Modelling Notation
(BPMN), or other notation supported by business process management tools.

Considering the quality of the research, the most of reviewed papers pro-
vides informal or semi-formal definitions of knowledge extractions algorithms
that we believe in certain cases could be reproduced. However, as it was already
mentioned, it would be unreasonable to expect that all details about the im-
plementation of the approach or its evaluation in a case study could be clearly
and particularly specified, especially when there are different limitations, such
as the length of paper in journals or conference proceedings. It is important to
notice, that the most of studies propose tool support for the extraction method;
however, only very few presents industrial case study on a very large software
systems.

7 Threats to Validity

There are three main threats to validity of a Systematic Literature Research
(SLR): study selection bias, internal validity (design and execution of the study)
and external validity (applicability of the effects observed in the study). As this
review has been conducted by two researches, there is potential chance that this
research has not obtained a complete coverage of the studies in the research
field. This could be due to the selection of primary data sources (digital li-
braries/search engines) or due to absence of analysis of secondary resources. To
ensure the selection of unbiased studies, we formulated research questions, de-
fined the search string from these questions, defined inclusions/exclusion criteria,
and conducted multi phase literature review.

The review process was designed by single researcher. This could lead to
misinterpretation of the main concepts during development of the research ques-
tions, defining search string, or selecting inclusion/exclusion criteria. Therefore,
the design of the review process was evaluated with other researcher and with
the experts in this field in order to prevent systematic errors in design and execu-
tion of the study. In this review we selected publications that are from academic
domain, in particular from peer-reviewed scientific publications. It is likely that
relevant methods are applied in industry, but not reported in scientific publica-
tions. As we had no possibilities to access such resources, these methods were
not included in the review.



48 Normantas and Vasilecas

8 Conclusions

This paper reviews studies on business knowledge extraction from existing soft-
ware systems. The studies include peer-reviewed scientific papers published in
journals, conference proceedings and collections, available at seven digital li-
braries/search engines. The review was performed following the guidelines for
the Systematic Literature Review (SLR) defined by Kitchenham et al. (2007).
We believe that the contributions of this review will benefit both the researchers
and practitioners addressing the identified research issues.

From this review we can conclude that although the interest in business
knowledge extraction from existing software systems is important and relevant,
the relatively small number of the publications in scientific journals indicates
that this field is not enough explored and requires comprehensive research.

First, there is an absence of rigorous and formal specifications of algorithms
that would allow the method to be reproduced in order to evaluate and vali-
date its characteristics: complexity, performance time, and accuracy of the re-
sults. Second, a minority of methods rely on standards (such as SBVR, BPMN,
UML/OCL, KDM) for producing intermediate and output representation of ex-
tracted knowledge. Third, only very few of the methods were evaluated in in-
dustrial case studies on large enterprise software systems, considering various
software artefacts and other available knowledge sources. These issues should be
investigated in the further research in order to develop exhaustive and rigorous
methods.

Acknowledgements

We would like to thank anonymous reviewers for providing sound guidance and
suggestions for early versions of this paper.

References

Abran, A., Bourque, P., Dupuis, R., Moore, J. W. and Tripp, L. L. (2004). Guide to
the Software Engineering Body of Knowledge - SWEBOK, 2004 version edn, IEEE
Press, Piscataway, NJ, USA.

Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and evolution: a
roadmap, Proceedings of the Conference on The Future of Software Engineering,
ICSE ’00, ACM, New York, NY, USA, pp. 73–87.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M. and Khalil, M. (2007).
Lessons from applying the systematic literature review process within the software
engineering domain, Journal of Systems and Software 80: 571 – 583.

Cai, Z., Yang, X. and Wang, X. (2009). Business process recovery for system main-
tenance - an empirical approach, Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pp. 399–402.

Castillo, R. P., Cruz-Lemus, J. A., de Guzman, I. G. R. and Piattini, M. (2011).
Business process archeology using marble, Information & Software Technology
53(10): 1023–1044.



Review of Methods for Business Knowledge Extraction 49

Chaparro, O., Aponte, J., Ortega, F. and Marcus, A. (2012). Towards the automatic
extraction of structural business rules from legacy databases, Reverse Engineering
(WCRE), 2012 19th Working Conference on, pp. 479 –488.

Chiang, C.-C. (2006a). Extracting business rules from legacy systems into reusable
components, System of Systems Engineering, 2006 IEEE/SMC International Con-
ference on.

Chiang, C.-C. and Bayrak, C. (2006b). Legacy software modernization, Systems,
Man and Cybernetics, 2006. SMC ’06. IEEE International Conference on, Vol. 2,
pp. 1304–1309.

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineering and design recovery: a
taxonomy, Software, IEEE 7(1): 13–17.

De Lucia, A. (2001). Program slicing: methods and applications, Source Code Anal-
ysis and Manipulation, 2001. Proceedings. First IEEE International Workshop on,
pp. 142–149.

Earls, A. B., Embury, S. M. and Turner, N. H. (2002). A method for the manual extrac-
tion of business rules from legacy source code, BT Technology Journal 20(4): 127–
145.

Fu, G., Shao, J., Embury, S. M. and Gray, W. A. (2002). Representing constraint busi-
ness rules extracted from legacy systems, Proceedings of the 13th International Con-
ference on Database and Expert Systems Applications, DEXA ’02, Springer-Verlag,
London, UK, pp. 464–473.

Gang, X. (2009). Business rule extraction from legacy system using dependence-cache
slicing, Proceedings of the 2009 First IEEE International Conference on Informa-
tion Science and Engineering, ICISE ’09, IEEE Computer Society, Washington, DC,
USA, pp. 4214–4218.

Glass, R. L. (2012). A study about software maintenance, Information Systems Man-
agement 29(4): 338–339.

Huang, H. (1996). Business rule extraction from legacy code, Proceedings of the 20th
Conference on Computer Software and Applications, COMPSAC ’96, IEEE Com-
puter Society, Washington, DC, USA, pp. 162–168.

Hung, M. and Zou, Y. (2007). Recovering workflows from multi tiered e-commerce
systems, Program Comprehension, 2007. ICPC ’07. 15th IEEE International Con-
ference on, pp. 198–207.

Kalsing, A., do Nascimento, G., Iochpe, C. and Thom, L. (2010). An incremen-
tal process mining approach to extract knowledge from legacy systems, Enterprise
Distributed Object Computing Conference (EDOC), 2010 14th IEEE International,
pp. 79–88.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic lit-
erature reviews in software engineering, Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report.

Lehman, M. (1980). Programs, life cycles, and laws of software evolution, Proceedings
of the IEEE 68(9): 1060–1076.

Lientz, B. P. and Swanson, B. E. (1980). Software Maintenance Management: A Study
of the Maintenance of Computer Application Software in 487 Data Processing Or-
ganizations, Addison-Wesley.

Morgan, T. (2002). Business Rules and Information Systems: Aligning IT with Business
Goals, Pearson Education.

Nascimento, G. S., Iochpe, C., Thom, L., Kalsing, A. C. and Moreira, A. (2009). A
method for rewriting legacy systems using business process management technology,
Proc. 11th Int’l Conf. on Enterprise Information Systems (ICEIS’09), Volumne on
Information Systems Analysis and Specification, pp. 57–62.



50 Normantas and Vasilecas

Nascimento, G. S., Iochpe, C., Thom, L., Kalsing, A. C. and Moreira, A. (2012). Iden-
tifying business rules to legacy systems reengineering based on bpm and soa, in
B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. Rocha, D. Taniar and B. Ap-
duhan (eds), Computational Science and Its Applications ICCSA 2012, Vol. 7336 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 67–82.

Nielson, F., Nielson, H. R. and Hankin, C. (2004). Principles of Program Analysis,
corrected edn, Springer.

Normantas, K. and Vasilecas, O. (2012). Extracting business rules from existing enter-
prise software system, in T. Skersys, R. Butleris and R. Butkiene (eds), Information
and Software Technologies, Vol. 319 of Communications in Computer and Informa-
tion Science, Springer Berlin Heidelberg, pp. 482–496.

OMG (2008). Semantics of business vocabulary and business rules v1.0.
http://www.omg.org/spec/SBVR/1.0/.

OMG (2011). Business process modeling notation v1.0.
http://www.omg.org/spec/BPMN/2.0/PDF/.

Paradauskas, B. and Laurikaitis, A. (2006). Business knowledge extraction from legacy
information systems, Information Technology And Control, Kaunas, Technologija
35(3): 214–221.

Paradauskas, B. and Laurikaitis, A. (2011). Extracting conceptual data specifications
from legacy information systems, Electronics and Electrical Engineering 1(107): 46–
50.

Putrycz, E. and Kark, A. (2008). Connecting legacy code, business rules and documen-
tation, in N. Bassiliades, G. Governatori and A. Paschke (eds), Rule Representation,
Interchange and Reasoning on the Web, Vol. 5321 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 17–30.

Putrycz, E. and Kark, A. W. (2007). Recovering business rules from legacy source code
for system modernization, RuleML, pp. 107–118.

Ricardo, P. C. e. a. (2012). A family of case studies on business process mining using
marble, Journal of Systems and Software 85(6): 1370–1385.

Rodrigues, N. F. and Barbosa, L. S. (2010). Slicing for architectural analysis, Sci.
Comput. Program. 75(10): 828–847.

Sneed, H. M. (2001). Extracting business logic from existing cobol programs as a
basis for redevelopment, Program Comprehension, 2001. IWPC 2001. Proceedings.
9th International Workshop on, pp. 167–175.

Sneed, H. M. and Erdos, K. (1996). Extracting business rules from source code, Pro-
ceedings of the 4th International Workshop on Program Comprehension (WPC ’96),
WPC ’96, IEEE Computer Society, Washington, DC, USA, pp. 240–245.

The Business Rules Group (2000). Defining business rules - what are they really?
Tip, F. (1995). A survey of program slicing techniques, Journal of Programming Lan-

guages 3: 121–189.
Tom, E. e. a. (2013). Forecast analysis: Enterprise application software, worldwide,

2011-2016, 4q12 update.
Ulrich, W. M. and Newcomb, P. (2010). Information Systems Transformation:

Architecture-Driven Modernization Case Studies, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Vasilecas, O. and Normantas, K. (2011). Deriving business rules from the models of
existing information systems, Proceedings of the 12th International Conference on
Computer Systems and Technologies, CompSysTech ’11, ACM, New York, NY, USA,
pp. 95–100.



Review of Methods for Business Knowledge Extraction 51

Wang, X., Lai, G. and Liu, C. (2009). Recovering relationships between documentation
and source code based on the characteristics of software engineering, Electron. Notes
Theor. Comput. Sci. 243: 121–137.

Wang, X., Sun, J., Yang, X., He, Z. and Maddineni, S. (2004a). Application of
information-flow relations algorithm on extracting business rules from legacy code,
Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on,
Vol. 4, pp. 3055–3058.

Wang, X., Sun, J., Yang, X., He, Z. and Maddineni, S. (2004b). Business rules ex-
traction from large legacy systems, Proceedings of the Eighth Euromicro Working
Conference on Software Maintenance and Reengineering (CSMR’04), CSMR ’04,
IEEE Computer Society, Washington, DC, USA, pp. 249–258.

Weiden, M. e. a. (2004). Classification and representation of business rules.
Weiser, M. (1981). Program slicing, ICSE ’81: Proceedings of the 5th international

conference on Software Engineering, IEEE Press, Piscataway, NJ, USA, pp. 439–
449.

Zou, Y. and Hung, M. (2006). An approach for extracting workflows from e-commerce
applications, Proceedings of the 14th IEEE International Conference on Program
Comprehension, ICPC ’06, IEEE Computer Society, Washington, DC, USA, pp. 127–
136.

Zou, Y., Lau, T., Kontogiannis, K., Tong, T. and Mckegney, R. (2004). Model-driven
business process recovery, Reverse Engineering, 2004. Proceedings. 11th Working
Conference on, pp. 224–233.

Received May 9, 2013 , revised June 7, 2013, accepted June 10, 2013


	A Systematic Review of Methods for Business Knowledge Extraction from Existing Software Systems
	Introduction
	Research Questions
	Review Methods
	Data sources and search strategy
	Study selection
	Study quality assessment
	Data extraction
	Data synthesis

	Conducting the Review
	Results
	Methods for Business Rules Extraction
	Business Processes Extraction

	Discussion
	Threats to Validity
	Conclusions


