
Baltic J. Modern Computing, Vol. 1 (2013), No. 1-2, 63-76

Ensuring Consistency in Different IS Models –

UML Case Study

Diana KALIBATIENE, Olegas VASILECAS, Ruta DUBAUSKAITE

Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius, Lithuania

diana.kalibatiene@vgtu.lt, olegas.vasilecas@vgtu.lt,

ruta.dubauskaite@vgtu.lt

Abstract: Information systems (IS) design is often modelled as a collection of diagrams (e.g.

UML diagrams), to depict different aspects of a system such as behaviour, structure, functionality,

etc. Refinement of models and the evolving nature of software may lead to inconsistencies in these

diagrams. Inconsistent IS model specification might be transformed to an incoherent and

conflicting system. Current tools lack of support for maintaining consistency between diagrams.

This paper shows that the currently existent methods are insufficient for consistency checking in

IS models. Therefore, authors of this paper propose a rule based method for consistency checking

in IS models, which is implemented to check consistency in UML diagrams. The proposed method

was evaluated using comparative analysis and questionnaires.

Keywords: consistency, UML, model, rule, constraint.

1. Introduction

Information systems (IS) are often modelled as collection of different diagrams, which

depict system’s processes, states, structure, etc., e.g. certain aspects of a system. Aspect

model is an abstraction of IS, developed with a certain goal. Elements of one aspect

model can be visualised by one or several diagrams. For example, the structure of an IS

can be presented by several entity-relationship diagrams or UML class diagrams. Every

different aspect model can be analysed separately; however, it is a view of the same

system. Therefore, it is natural, that some elements of models overlap and express the

same things, only from different aspects. For example, in a UML sequence diagram

when an object sends a message to another object, it implies that in a UML class

diagram the two classes have a relationship that must be shown on this diagram.

Consequently, there is a possibility to create different IS aspect models with

inconsistencies.

Consistency means that the structures, features and elements that appear in one model

are compatible and in alignment with the content of other models (Rozanski and Woods,

2005). Unambiguous and consistent models are necessary for the successful

accomplishment of the tasks of model transformation and finally for IS program code

generation. Therefore, the issue of models consistency is particularly important within

the scope of model-driven architecture (MDA).

mailto:diana.kalibatiene@vgtu.lt
mailto:olegas.vasilecas@vgtu.lt
mailto:ruta.dubauskaite@vgtu.lt

64 Kalibatiene, Vasilecas and Dubauskaite

The problem of consistency checking of IS different aspects models arises when

several analysts and/or designers model the same system, since they can use different

terms for the same object of a domain. If the IS is large and complex, the risk of

consistency conflicts in the models is bigger. Therefore, the issue of ensuring

consistency is even more relevant. Moreover, even one IS engineer often creates models

having consistency conflicts, because of (a) iterative process of IS development, (b) lack

of knowledge and practice, etc.

The problem of consistency checking of IS different aspects models in a design

phase is important and it has been widely discussed in the publications of recent years.

However, none of the analysed methods has been accepted as a standard yet.

Ambiguous, not conforming to meta-model of modelling language, sometimes

meaningless consistency rules reduce the reusability and practical applicability of the

proposed methods. Therefore, it is relevant to propose a method for consistency

checking of IS different aspects models using rules and paying special attention to the

requirements for consistency rules.

This paper is structured as follows. Section 2 presents related works on consistency

checking of IS models. Section 3 introduces the suggested method of ensuring

consistency in IS models. Section 4 presents the experiment performed to evaluate the

suggested method. Section 5 concludes the paper.

2. Related works

According to Simmonds and Bastarrica (2005), consistency is a state in which two or

more elements, which overlap in different models of the same system, have a

satisfactory joint description. The task is to ensure consistency of a model, consistency

of diagrams depends on accuracy of a model. A model can be visualised by several

diagrams.

Consistency can be classified to vertical (inter-model), horizontal (intra-model),

evolution, semantic or syntactic. Vertical or inter-models consistency is checked at

different levels of abstraction between different aspects models (Lucas et al., 2009;

Usman et al., 2008). Horizontal or intra-models consistency can be defined as a

matching ratio between models at the same level of abstraction (ISO/IEC 1997).

Evolution consistency is validated between different versions of the same aspect model

(Straeten et al., 2003). All mentioned types of consistency can express syntactic or

semantic conformance of different aspects models. Syntactic consistency expresses

matching of models to the specifications of a meta-model. Semantic consistency requires

that a model would be compatible to semantic meanings defined by a meta-model (Lucas

et al., 2009; Usman et al., 2008). In this paper, we concentrate on improving models

syntactic and semantic horizontal consistency of IS different aspects models expressed

by a semi-formal language.

Semi-formal models are widely used; therefore, they are of interest for us. For the

detailed study we choose semi-formal Unified Modelling Language (UML) (Matta et al,.

2004; Cavarra et al., 2004; Cheng, 2001). Moreover, UML allows us to model different

aspects of IS. It is likely to be the most popular modelling language (Silingas and

Butleris, 2009). There are many modelling tools supporting UML (Shen et al., 2002).

 Ensuring Consistency in Different IS Models – UML Case Study 65

UML was developed by Object Management Group
1
 (OMG), which also introduced

MDA (Lucas et al., 2009). Consistency of UML model is especially important in MDA,

for automatic transformation of initial model to specific model and finally code

generation tasks (Rozanski and Woods, 2005; Berkenkötter, 2008).

Our research gives more attention to consistency of UML models. Therefore, the

related works that analyse conformance of different aspects models (expressed by

consistency rules) are selected for a more detailed analysis. As presented in (Ha and

Kang, 2008), there are several trends for consistency checking in UML diagrams: meta-

model based methods (Paige et al., 2007), graph-based methods (Taentzer, 2004;

Shuzhen and Shatz, 2006), scenario-based methods, constraint-based methods (are the

most popular) and knowledge-based methods (like (Wang et al., 2012; Wang et al.,

2006)). We are concentrated on meta-model and constraint based methods. The results of

analysis are presented as follows.

Table 1. Results of consistency rules analysis

1 http://www.omg.org/

Consistency rules

Associated different aspects

models

E
x

p
re

ss
ed

 i
n

 a
 n

a
tu

ra
l

la
n

g
u

a
g

e

A
ss

o
ci

a
te

d
 O

M
G

 U
M

L

m
et

a
m

o
d

el
 m

et
a

el
em

en
ts

a
re

 s
p

ec
if

ie
d

E
x

p
re

ss
ed

 i
n

a
 f

o
rm

a
l

la
n

g
u

a
g

e

C
la

ss
–

S
ta

te

C
la

ss
–

S
eq

u
en

ce

C
la

ss
–

A
ct

iv
it

y

C
la

ss
–

U
se

 C
a

se

S
eq

u
en

ce
 –

 S
ta

te

S
eq

u
en

ce
 –

 A
ct

iv
it

y

S
eq

u
en

ce
 –

 U
se

 c
a

se

A
ct

iv
it

y
-S

ta
te

A
ct

iv
it

y
-U

se
 c

a
se

T
o

ta
l

p
er

 s
o

u
rc

e:

A
u

th
o
r,

 Y
ea

r
[r

ef
er

en
ce

]

Egyed, 2007 1 1 2 +

Sapna and Mohanty, 2007 2 2 1 1 1 2 1 1 1 12 +
1 formal

rule
1

Paige et.al., 2007 1 1 1 1 4 + +

Chanda et al., 2009 3 1 4 + +

Liu et al., 2002 1 1 + +

Rasch and Wehrheim, 2003 5 5 + +

Straeten et al., 2003;

Straeten, 2004;

Simmonds and

Bastarrica, 2005a

2 4 1 7 + +

Shinkawa, 2006 3 2 5 +

Kotulski, 2007 1 1 +

Borba and Silva, 2010 1 1 1 1 1 2 1 1 1 10 + +

Ibrahim et al., 2011 3 3 + +

Total per diagram: 10 8 5 3 4 7 3 2 8 50

Different rules: 7 6 3 2 3 5 2 2 3 32

http://www.omg.org/

66 Kalibatiene, Vasilecas and Dubauskaite

For the detailed study 50 consistency rules were elicited from 11 related researches

(see Table 1) and examined in order to:
1. evaluate consistency rules, excluding redundant rules;

2. find out whether the provided rules may be understood unambiguously;

3. determine whether they conform to specification of a model – OMG UML

metamodel;

4. find out whether they are meaningful, i.e. whether they really show a conflict of

consistency.

The count of consistency rules associating UML models of specific aspects provided

in the specific research is presented in Table 1, Part “Associated different aspects

models”. The line “Different rules” demonstrates how many various rules are presented

in different approaches among the same two aspects models.

The three last columns in Table 1 indicate whether the rule expressed in a natural

language or/and a formal language and whether the associated metaelements from OMG

UML metamodel (OMG, 2009; OMG, 2009a) are defined. A plus sign (+) indicates that

all the rules provided in the paper have specific expression; otherwise, a number shows

the count of rules expressed in a natural language, containing metaelements from OMG

UML specification or having a formal expression. The analysis shows that all the

analysed rules are expressed in a natural language, and most rules have a formal

expression. E.g., rules having formal expressions understood unambiguously. Moreover,

according to the analysis these rules really show a conflict of consistency.

Table 2 gives a summary of the analysed NoMagic MagicDraw, Sybase

PowerDesigner, Gentleware Poseidon for UML, IBM Rational System Architect and

Microsoft Visio tools.

Table 2. Comparison of the design tools Magic Draw 17.0, Power Designer 16.1, Poseidon for

UML 8.0, Rational Software Architect 11.3.1 and Visio 2010

Compared

design tools

Comparison

criteria

Magic

Draw 17.0

Power

Designer

16.1

Poseidon

for UML

8.0

Rational

Software

Architect

11.3.1

Visio

2010

1. Model in conformity with

metamodel
+ + partially + partially

2. Correctness checking + + - + -

3. Consistency checking partially - - partially -

4. Language for expressing/

implementation rules

OCL,

Java

Visual

Basic
Java

Visual

Basic

Visual

Basic (for

Macros),

.NET (for

plugin)

5. Technique of tools extension

with new rules

module,

plug-in
plug-in plug-in macros

macros,

plug-in

 Ensuring Consistency in Different IS Models – UML Case Study 67

The criteria for comparison are:

1. Model in conformity with a metamodel. Possible values are “+” (almost

conform) and “partially” conform. If a model is in conformity with UML

metamodel, it is checked according to one rule: name of a class has to be unique.

If the tool does not allow creating a class with the same name in the model, then

it is assumed that the model almost conforms to the metamodel. It is said

“almost” because it is not checked whether all constraints defined in a

metamodel are implemented in the tool. If the tool allows creating two classes

with the same name, it is assumed that the model partially conforms to the

metamodel. It is said “partially” because a tool does not implement all the

constraints defined in the specification of UML; however, it provides

metaelements defined in a metamodel.

2. Correctness checking – constraints are defined at the metamodel level for one

aspect model, e.g. for a class diagram.

3. Consistency checking – constraints are among 2 and more different aspect

models at the metamodel level. Value “partially” means that there are only

several rules that constrain two different aspect models, e.g. Class and Sequence.

Meanwhile, other aspects models and their relationships (e.g. a class and states)

are not included.

4. Language for expressing/ implementation rules.

5. Technique of tools extension with new rules. Examples are developing a module

or plug-in, or macros or using other techniques for the extension of the tool with

new rules.

Despite the existence of many tools, it is not easy to develop models that conform to

UML metamodel. Moreover, not all available tools have a facility to check consistency

of IS models, and almost all defined constraints are for one aspect models.

3. The Rule-Based Method for Consistency Checking in IS

Models: UML Case Study

According to the results obtained during the analysis of the related works, 12 rules for

consistency checking is defined and the rule-based method for consistency checking in

IS models is proposed. This method describes how to apply the defined rules. Although,

Table 1 presents 32 rules, some of them overlap. Therefore, our 12 rules are inference of

Table 1. The defined rules are presented in (Dubauskaite and Vasilecas, 2013).

An example of Rule 1 is as follows: The class which states are modelled has to be

known in the Protocol states model. The formal expression using OCL invariant for rule

1 is provided below:

context ProtocolStateMachine inv

protocolStates_without_context:

 self.oclAsType(StateMachine).region.context-

>notEmpty()

The motivation of necessity of Rule 1 is as follows. A protocol state machine

presents possible and permitted transitions on the instances of its context classifier,

together with the operations that carry the transitions (OMG 2009). Only classifier of a

68 Kalibatiene, Vasilecas and Dubauskaite

Fig. 1. Structure of detailed description of consistency rule its associations with metamodel of

modelling language

class has operations; therefore, it can be derived that a protocol state machine is used to

model states of classes. In this manner context – the class, which operations can be

called, and their execution that determines changes of states of the object, have to be

defined. The origin of this constraint is the analysis of UML superstructure specification

provided by OMG (OMG 2009) and OOAD method. According to OOAD, significant

MetaElement

Formal consistency

rule (e. g. OCL)

Consistency rule in

natural language

Package for

different aspect model
Enforcement

level

Structure of detailed description of consistency rule

Metamodel

independent

level

Metamodel

specific

level

Formal/program

code

level

contains
1..*

1..*

1

Structured

consistency rule

1

1..*

is detailed

has

1

has

1 1

2..*

0..*

uses

Description

OriginRule Scope of validity

1..*

1

NamedElement

Package

Type

Classifier

StructuredFeature

Class
Property Association

IS different aspect model
Instance of

consistency rule

Fragment of EMOF

+package0..1

+ownedType0..*

TypedElement

PackagableElement

+type

0..1
+typedElement 0..*

+owningPackage

0..1

+packagedElement

0..*

+class

0..1

+ownedAttribute

0..*

+memberEnd

2..*

+assosiation

0..1

+owedEnd

0..*

+owningAssociation

0..1

+nestingPackage

0..1

+nestedPackage 0..*

M
3

:
 m

o
d

e
l
o

f
a

 m
o

d
e

l
o

f
a

 m
o

d
e

l

(m
e

ta
m

e
ta

m
o

d
e

l)

M
2

:
m

o
d

e
l
o

f
a

 m
o

d
e

l

(m
e

ta
m

o
d

e
l)

M
1

:
m

o
d

e
l

M
0

:
s
y
s
te

m
F

o
u

r
m

o
d

e
lin

g

 l
a

y
e

rs
 o

f
O

M
G

{xor}
«instance» «instance»

Simplified metamodel of

modelling langauage

«instance»
{xor}«instance»

Structure of detailed description of consistency rule its associations with metamodel of

modelling language

Information system

«instance»

«instance»

is expressed in

Diagram1

1..*

is visualized by

is checked according to 0..*2..*

is formalized1

1

 Ensuring Consistency in Different IS Models – UML Case Study 69

changes of the state of the object (described by the class) are modelled using state

diagrams (Bennet et al. 2010).

The scheme of the proposal is presented in Fig. 1. Description of consistency rule

does not belong to metamodel level (it is not metamodel of instances of consistency

rules). But it associates elements of metamodel of modelling language (Fig. 1).

The main ideas of the proposal are as follows:

1. Check consistency of semi-formal IS models using consistency rules;

2. Define consistency rules among different aspects IS models according to these

requirements:

1.1. Define consistency rules at three abstraction levels: metamodel,

independent, metamodel specific and formal/program code.

1.2. Verify consistency rules according to a metamodel of modelling language.

1.3. Motivate the necessity of rules defining its origin.

1.4. Assign enforcement level to consistency rules according to their scope of

application.

Fig. 2. Use case diagram of the proposed method

Having achieved that the proposed method would better correspond to the existing

OMG standards, it is defined using:

 Four modelling layers architecture (M0, M1, M2, M3), which OMG uses for its

standards, like MDA.

 Essential MOF (EMOF), which is one of two compliance points (EMOF and

CMOF (Complete MOF)) of MOF. MOF is an OMG standard (OMG, 2011) that

defines the language to define a modelling language. A primary goal of EMOF is

70 Kalibatiene, Vasilecas and Dubauskaite

to allow simple metamodels to be defined using simple concepts while

supporting extensions for more sophisticated metamodelling using CMOF.

 The idea of modelling is based on three levels applied from OMG MDA standard

(OMG, 2003).

The usage of the method is presented in Fig. 2 by use case diagram.

Below in Table 3 the main use case is described.

Table 3. Use case “Apply the method for IS models consistency checking to the specific semi-

formal IS modelling language” description

Use case name Apply the method for IS models consistency checking to the specific

semi-formal IS modelling language

Unique ID UC2

Actor(s) Knowledge engineer

Brief description Knowledge engineer creates a method for checking consistency of semi-

formal models (except UML models because they are included in a

separate use case UC1).

Preconditions There is a necessity to check consistency of specific semi-formal models.

Knowledge engineer has enough knowledge about the specific language.

The chosen specific language allows modelling a system from various

perspectives.

Knowledge engineer knows any formal modelling language.

Main flow 1. Examine the method for IS models consistency checking.

2. Collect data about new consistency rules using elicitation

methods.

3. Specify rules at a metamodel-independent level.

4. Define elements of a metamodel related by the rule.

5. Specify a rule at the metamodel specific level.

6. Express simpler rules in a formal language.

7. Define the enforcement level of the rule.

8. Explain the necessity, enforcement level (see the step above) of

the rule).

9. Repeat 3–8 steps for each rule.

10. If it is necessary, modify the proposed process of IS models

checking.

Alternative flows If the selected semi-formal language is UML, then forward to task

“Extend the method of UML consistency checking”.

Consistency rules can be defined on class or/and attribute or/and

association of metamodel.

Enforcement level of the rule can be low, medium, high.

Post conditions The method for checking consistency of IS models expressed in a semi-

formal language is created.

 Ensuring Consistency in Different IS Models – UML Case Study 71

4. Application of the Proposed Method

This section presents the experiment for checking understandability of the proposed

method. Some parts of this experiment are published in scientific publications (Vasilecas

et al., 2011; Dubauskaite and Vasilecas, 2010).

In the experiment we demonstrate how various consistency rules from different

papers (Egyed, 2007; Sapna and Mohanty, 2007; Chanda et al., 2009) and our rules

(specified using the proposed requirements) are understood by analysts, designers,

programmers, and quality engineers. The researches of Egyed (2007), Sapna and

Mohanty (2007) and Chanda et al. (2009) are selected for the experiment because their

approaches are the most similar to our proposal compared to other analysed related

researches. The experiment is performed using questionnaires. The questionnaire

consists of 9 rules from the researches (Egyed, 2007; Sapna and Mohanty, 2007; Chanda

et al., 2009) and our proposed rules without saying which rule is from which source, and

questions as presented in Table 4.

Table 4. Questionnaire

1.1 Do you

understand semantic

of the rule?

1.2 Do you know

what metaelements

are associated by

the rule?

1.3 Does the rule

conform to OMG

UML metamodel?

1.4 Is the rule reliable

(known origin) and

necessary (description

of application)?

 Yes

 May be

 No

 Yes

 May be

 No

 Yes

 May be

 No

 Yes

 May be

 No

In this study the questionnaire is filled in by 14 specialists that have theoretical

or/and practical knowledge about UML. The participants are from various companies.

Table 5. Application of the paired t-test

Input The 14 paired samples obtained having calculated a total number of answers

‘yes’ (to the questions about unambiguity and reliability of consistency rules

from two methods), provided by 14 participants. (13, 4), (10, 7), (14, 10), (12,

9), (10, 8), (8, 9), (8, 10), (11, 9), (9, 7), (14, 8), (12, 7), (8, 6), (11, 9), and (12,

5).

H0 H0: The proposed method has the same quality (unambiguity and reliability)

as the previous method.

H1 H1: The proposed method has better quality (more answers ‘yes’ about

unambiguity and reliability) compared with previous method.

Calculations Based on the data it can be seen that n = 14. The mean of differences is

d = 3,143 (Formulas are provided in (Wohlin et al. 2000)). It can be

identified that Sd = 3,931 and t0 =4,011.

Conclusions A number of degrees of freedom is f = n -1 = 14 – 1 = 13. In Table A1 from

(Wohlin et al., 2000) book, t0.025, 13 = 2.160. t0 =4,011>2.160= t0.5, 13 therefore

H0 is rejected and H1 is accepted with 95% (100%-5%) confidence level.

72 Kalibatiene, Vasilecas and Dubauskaite

The study is based on the initial hypothesis that the proposed method is not better

than the previous methods of specifying consistency rules.

The collected data were processed using t-test method (Table 5).

Fig. 3 demonstrates that IS engineers with different qualification understand the

proposed consistency rules better compared to the previous rules.

Fig. 3. Understanding of different methods by specialists with various qualifications – counting of

“yes” answers

Additionally the comparison of our proposed method with the three most similar

methods of other researchers is provided in Table 6. As can be seen, our method fulfil

more requirements than other three methods.

According to the results of evaluation of consistency rules specifications, the

proposed method is better than the other method of specifying rules. It allows

understanding rules less ambiguously because their semantic is more understandable and

the associated metaelements are known. The rules are also more reliable because their

origin is known and they conform to the metamodel.

Table 6. Evaluation of the proposed and three similar methods according to specific features

Feature/Comparison

Criteria

Methods

Egyed, 2007 Sapna and

Mohanty,

2007

Chanda

et al.,

2009

Our method

1. Technique of checking

consistency of IS models

Consistency

rules hard coded

to UML

Analyzer tool

OCL, SQL Context

free

grammar

OCL, java and

other executable

language

2. Language for

expressing IS models

UML UML UML Semi-formal

modelling

language, UML

is included

0

2

4

6

8

10

12

14

Analyst Designer Programmer Tester

Proposed method

Previous method

 Ensuring Consistency in Different IS Models – UML Case Study 73

Feature/Comparison

Criteria

Methods

Egyed, 2007 Sapna and

Mohanty,

2007

Chanda

et al.,

2009

Our method

3. Is a process of

checking consistency

defined?

Partially Partially Partially Yes

S
p

ec
if

ic
at

io
n
 o

f

co
n

si
st

en
cy

 r
u

le
s

4. Are

requirements of

consistency rules

defined?

No No No Yes

5. Are examples

of UML

consistency rules

provided?

Yes Yes Yes Yes

6. Is a set of

consistency rules

qualitative2?

No No No Partially

Im
p

le
m

en
ta

ti
o

n
 o

f

co
n

si
st

en
cy

 r
u

le
s

7. Is there a tool

for automating

process of IS

models

consistency

checking?

Yes No No Yes

8. Is an

enforcement

level of the

detected

violation of a

consistency rule

provided3?

No No No Yes

Comparison of total count answers ‘yes’ shows that the quality of the proposed rules

is by approximately 40,74% better than the quality of consistency rules specifications

provided in previous researches (Egyed, 2007; Sapna and Mohanty, 2007; Chanda et al.,

2009).

5. Conclusions

Analysis of consistency rules shows that most rules are expressed in natural and formal

language. Rules expressed in natural language may be interpreted ambiguously. Formal

rules usually use their own description of UML models. Therefore, it remains unclear

what elements of an OMG UML metamodel they conform to. Moreover, some

2
 Unambiguous, known origin and practical necessity, conformance to the metamodel of the

modelling language.
3
 It indicates the necessity of performing changes of models according to a consistency rule.

74 Kalibatiene, Vasilecas and Dubauskaite

consistency rules do not conform to an OMG UML metamodel, and their practical

necessity is doubtful.

The analysis of UML design tools demonstrates that most of them allow developing

models that do not conform to the UML metamodel. It means that consistency rules have

to associate metaelements from different aspects of models despite the fact that they are

directly associated in a metamodel.

The rule-based method for consistency checking in IS models is created. It is free

from modelling language and is applied to UML. The feasibility of the proposed method

is illustrated creating 12 consistency rules for UML models according to the proposed

requirements. The rules are defined at the metamodel level; therefore, they can be

implemented in any design tool that supports a UML 2.2 metamodel.

The evaluation of the results obtained during the experiment showed that the

proposed requirements for consistency rules improve the quality of a set of the rules (less

ambiguity, more reliability) by approximately 41% in comparison with other similar

methods. The consistency rules that are specified according to the proposed requirements

are also more understandable by IS engineers compared with the rules provided by other

researches.

References

Bennet, S., McRobb, S., Farmer R. (2010). Object-Oriented Systems Analysis and Design Using

UML. 4th ed. London.

Berkenkötter, K. (2008). Reliable UML Models and Profiles. ENTCS, 217, 203–220.

Borba, C.F., Silva, A.E. (2010). Knowledge-Based System for the Maintenance Registration and

Consistency among UML Diagrams. LNCS, 6404, 51–61.

Cavarra, A., Riccobene, E., Scandurra, P. (2004). A framework to simulate UML models: moving

from a semi-formal to a formal environment. In: Proc. of the 2004 ACM Symposium on

Applied Computig (SAC’04), New York, pp. 1519–1523.

Chanda, J., Kanjilal, A., Sengupta, S., Bhattacharya, S. (2009). Traceability of Requirements and

Consistency Verification of UML UseCase, Activity and Class diagram: A Formal

Approach. In: Proc. of International Conference on Methods and Models in Computer

Science 2009 (ICM2CS09), New Delhi, pp. 1–4.

Cheng, H.C. (2001). A Metamodel-Based Approach to Formalizing UML. In: Proc. of the 25th

Annual International Computer Software and Applications Conference (COMPSAC'01),

Wasshington.

Dubauskaite, R., Vasilecas, O. (2010). The approach of ensuring consistency of UML model based

on rules. In: Proc. of the 11th International Conference on Computer Systems and

Technologies (CompSysTech'10), Sofia, ACM Press, 471, pp. 71–76.

Dubauskaite, R., Vasilecas, O. (2013). Method on specifying consistency rules among different

aspect models, expressed in UML. Electronics and electrical engineering, 19(3), 77–81.

Egyed, A. (2007). Fixing inconsistencies in UML design models. In: Proc. of the 29th

International Conference on Software Engineering (ICSE 2007), New York, pp. 292–301.

Ha, I., Kang, B. (2008). Cross checking rules to improve consistency between UML Static

diagram and Dynamic Diagram. In: Fyfe, C et al. (Eds.): IDEAL 2008, LNCS, 5326, pp.

436–443.

Ibrahim, N., Ibrahim, R., Saringat, M.Z., Mansor, D., Herawan, T. (2011). Consistency Rules

between UML Use Case and Activity Diagrams Using Logical Approach. International

Journal of Software Engineering and Its Applications, 5(3), 119–134.

ISO/IEC 1997. Information Technology – Software quality characteristics and metrics – Part 3:

Internal Metrics. International Organization for Standardization and International

Electrotechnical Commission.

 Ensuring Consistency in Different IS Models – UML Case Study 75

Kotulski, F.L. (2007). Assurance of system consistency during independent creation of UML

diagrams. In: Proc. of the International Conference on Dependability of Computer Systems

(DepCoS-RELCOMEX 2007), Szklarska Poreba, pp. 51–58.

Liu ,W., Easterbrook, S.M., Mylopoulos, J. (2002). Rule-based detection of inconsistency in uml

models. In: Proc. of the 5th International Conference on the Unified Modelling Language

(UML’02), London, pp. 106–123.

Lucas, F.J., Molina, F., Toval, A. (2009). A systematic review of UML model consistency

management. Information and Software Technology, 51, 1631–1645.

Matta, A., Furia, C., Rossi, M. (2004). Semi-formal and formal models applied to flexible

manufacturing systems. LNCS, 3280, 718–728.

OMG (2003). MDA Guide Version 1.0.1, http://www.omg.org/cgi-bin/doc?omg/03-

06-01.

OMG (2009). Unified Modelling Language (OMG UML), version 2.2,

http://www.omg.org/spec/UML/2.2/Superstructure/PDF.

OMG (2009a). Common Variability Language (CVL),
http://www.omgwiki.org/variability/doku.php.

OMG (2011). Meta Object Facility (MOF) Core Specification,

http://www.omg.org/spec/MOF/2.4.1.

Paige, R.F., Brooke, Ph.J., Ostroff, J.S. (2007). Metamodel-based model conformance and

multiview consistency checking. Transactions on Software Engineering and Methodology,

16(3), 11.

Rasch, H., Wehrheim, H. (2003). Checking Consistency in UML Diagrams: Classes and State

Machines. Formal Methods for Open Object-Based Distributed Systems. LNCS, 2884, 229–

243.

Rozanski, N., Woods, E. (2005). Software System Architecture. London, 546 p.

Sapna, P.G., Mohanty, H. (2007). Ensuring consistency in relational repository of UML models.

In: Proc. of the 10th International Conference on Information Technology (ICIT 2007),

Rourkela, pp. 217–222.

Shen, W., Compton, K., Huggins, J.K. (2002). A Toolset for Supporting UML Static and Dynamic

Model Checking. In: Proc. of the 26th International Computer Software and Applications

Conference, Prolonging Software Life: Development and Redevelopment (COMPSAC 2002),

Oxford, pp. 147–152.

Shinkawa, Y. (2006). Inter-Model Consistency in UML Based on CPN Formalism. In: Proc. of the

8th Asia Pacific Software Engineering Conference (APSEC’06), Washington, pp. 411–418.

Shuzhen, Y., Shatz, S.M. (2006). Consistency Checking of UML Dynamic Models Based on Petri

Net Techniques. In: 15th International Conference on Computing (CIC '06), pp. 289–297.

Silingas, D., Butleris, R. (2009). Towards Implementing a Framework Modelling Software

Requirements in MagicDraw UML. Information Technology and Control, 38(2), 153–164.

Simmonds, J., Bastarrica, C.M. (2005). A tool for automatic UML model consistency checking.

In: Proc. of the 20th IEEE/ACM International Conference on Automated Software

Engineering, New York, pp. 431–432.

Simmonds, J., Bastarrica, C.M. (2005a). Description Logics for consistency checking of

architectural features in UML 2.0 models. DCC Technical Report TR/DCC-2005-1, Chile.

Straeten, R.V.D. (2004). Inconsistency detection between UML models using racer and nRQL. In:

the Third International Workshop on Applications of Description Logics (ADL’04),

Germany.

Straeten, R.V.D., Simmonds, J., Mens, T., Jonckers, V. (2003). Using Description Logic to

Maintain Consistency between UML Models. LNCS, 2863, 326–340.

Taentzer, G. (2004). AGG: A Graph Transformation Environment for Modeling and Validation of

Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (Eds.) 2nd International Workshop (AGTIVE

2003), Charlottesville, USA, LNCS, 3062, pp. 446–453.

Usman, M., Nadeem, A., Tai-hoon K., Eun-suk C. (2008). A Survey of Consistency Checking

Techniques for UML model. In Proc. of the 2008 International Conference on Advanced

Software Engineering & Its Applications (ASEA 2008), Hainan, pp. 57–62.

76 Kalibatiene, Vasilecas and Dubauskaite

Vasilecas, O., Dubauskaite, R., Rupnik, R. (2011). Consistency checking of UML business model.

Technological and economic development of economy 17(1), 133–150.

Wang, Sh., Jin, L., Jin, Ch. (2006). Ontology Definition Metamodel based Consistency Checking

of UML Models, In: 10th International Conference on Computer Supported Cooperative

Work in Design (CSCWD '06), pp. 1–5.

Wang, Z., He, H., Chen, L., Zhang, Y. (2012). Ontology based semantics checking for UML

activity model. Information Technology Journal, 11(3), pp. 301–306.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A. (2000).

Experimentation in Software Engineering: An Introduction. United Kingdom, Springer.

Authors’ information

D. Kalibatiene, dr., is a full time Associate Professor at the Department of Information

Systems and a researcher at the Information Systems Research Laboratory of Vilnius

Gediminas Technical University. She participated in the project “Business Rules

Solutions for Information Systems Development (VeTIS)” of the High Technology

Development Programme. She is the member of the European Committee and

Lithuanian Government supported SOCRATES/ERASMUS Thematic Network projects

“Doctoral Education in Computing” (ETN DEC) and “Teaching, Research, Innovation in

Computing Education” (ETN TRICE). She is the author and co-author of more than 30

papers and 1 book in the field of information systems development. Research interests:

development of information systems based on business rules and ontology and

conceptual modelling.

O. Vasilecas, Prof. dr., is a full time professor at the Department of Information Systems

and a principal researcher and the Head of Information Systems Research Laboratory of

Vilnius Gediminas Technical University. He is the author and co-author of more than

250 research papers and 5 books in the field of information systems development. His

research interests include knowledge, represented by business rule and ontology,

information systems development. He delivered lectures in 7 European universities

including London, Barcelona, Athens and Ljubljana. Prof. Vasilecas is constantly invited

to give training sessions at universities of Germany, Holland, China, Latvia and

Slovenia. He supervised 10 successfully defended doctoral theses and currently is

supervising 4 additional doctoral students. He was the leader of a number of

international and local projects. The latest project under his management was entitled

“Business Rules Solutions for Information Systems Development (VeTIS)”, which was

carried out under the High Technology Development Programme of Lithuania.

R. Dubauskaite, dr., is a lector at the Information System Department in Vilnius

Gediminas Technical University. She participated in the High Technology Development

Program Project “Business Rules Solutions for Information Systems Development

(VeTIS)”. She is author of 11 papers in the field of information systems development.

Research interests: consistency of information system model and consistent conceptual

modelling based on rules.

Received May 16, 2013, revised June 27, 2013, accepted July 2, 2013

