
Baltic J. Modern Computing, Vol. 1 (2013), No. 1, 77-100

Strongly typed metadata access in object oriented

programming languages with reflection support

Mikus VANAGS
1,2

, Arturs LICIS
2
, Janis JUSTS

2

1 Latvia University of Agriculture, 2 Liela Street, Jelgava, LV-3001, Latvia
2 Logics Research Centre, Sterstu street 7-6, Riga, LV-1004, Latvia

mikus.vanags@logicsresearchcentre.com,

arturs.licis@logicsresearchcentre.com,

janis.justs@logicsresearchcentre.com

Abstract. Type safety is important property of any type system. Modern programming languages

support different mechanisms to work in type safe manner, e.g., properties, methods, events,

attributes (annotations) and other structures, but none of the existing, general purpose,

programming languages which support reflection provide type safe type (class/structure) member

metadata access. Existing solutions provide no or limited type safety which are complex and

processed at runtime which by definition is not built-in type-safe metadata access, but only more

or less type safe workarounds called “best practices”. Problem can be solved by introducing

methods for type safe type member metadata access.

Keywords: programming language syntax, type safety, metadata, reflection.

1. Background

Reflection is a powerful mechanism provided by some major object oriented languages

and frameworks that allows to access information about classes and their members at

metadata level and use it in different scenarios. A few use cases are: detecting what kind

of methods or fields does the class have, detecting the specific field data type at runtime,

dynamically invoking methods with their names unknown at the compile time. These are

non-standard cases of classical object oriented programming, but they are significant to

contemporary object oriented design solutions and frameworks where modularity and

extensibility are key values (Demers et.al., 1995).

The way reflection is designed, metadata access is not straightforward and type-safe

for distinct members. The usual scenarios of using reflection allows: (a) traversing class

fields or members, and doing the processing operations on each iteration; (b) checking if

a specific member (field, method, constructor, event, property, etc.) with a specified

name (and possible additional signature information for the latter) exists, and then

processing it. This approach does not allow direct and type-safe access of distinct fields

or methods the programmer is aware of (WEB, c), (Forman et.al., 2004), (WEB, d),

(Skeet, 2011).

The following C# example demonstrates getting metadata information about the

field. The example class 'Person' has an instance level field named 'FullName' and a

static field 'TotalPersons':

78 Vanags, Licis, Justs

//C#

public class Person
{
 public string FullName;
 public static int TotalPersons;
 public Person(string fullName)
 {
 this.FullName = fullName;
 }
 public void DoSomething() { }
 public void DoSomething(string arg) { }
 public int DoSomething(string arg1, double arg2)
 {
 return 0;
 }
 public event EventHandler<EventArgs> SomeEvent;
}
//Accessing type metadata:
Type personType = typeof (Person);
//Accessing instance field metadata:
FieldInfo instanceMemberMetadata = personType.GetField("FullName");
//Accessing static field metadata:
FieldInfo staticMemberMetadata =
 personType.GetField("TotalPersons");
//Accessing metadata for method with one string parameter:
MethodInfo methodMetadata = personType.GetMethod("DoSomething",
 new Type[] { typeof(string) });
//Accessing metadata for type constructor with one string parameter:
ConstructorInfo constructorMetadata = personType.GetConstructor(
 new Type[] { typeof(string) });
//Accessing metadata for event:
EventInfo eventMetadata = personType.GetEvent("SomeEvent");

The following code snippet below demonstrates literally the same example in Java:

public class Person {

 public String fullName;

 public static int totalPersons;

 public Person(String fullName) {

 this.fullName = fullName;

 }

 public void doSomething() { }

 public void doSomething(String arg) { }

 public int doSomething(String arg1, double arg2) {

 return 0;

 }

}

 Strongly typed metadata access in object oriented programming languages with reflection support 79

Java
1
 also allows accessing both private and public fields. In case of Java there is a

special case of retrieving class metadata by using “class” keyword as a member of class

(consider Person.class example):

Class<Person> personClass = Person.class;

//Accessing instance field metadata:

Field instanceMemberMetadata =

personClass.getField("fullName");

//Accessing static field metadata:

Field staticMemberMetadata =

personClass.getField("totalPersons");

//Accessing metadata for method with one string parameter:

Method doSomethingArg =

personClass.getMethod("doSomething", String.class);

//Accessing metadata for type constructor with one string

//parameter:

Constructor<Person> constructorMetadata =

personClass.getConstructor(String.class);

Previously demonstrated examples show the existing technique of accessing

metadata in two major general purpose programming languages: C# and Java. Providing

type member name as string instances to access type member metadata is not type safe.

It means that code is not reliable for maintenance (refactoring) and also that a mistake, if

there is any, will be noticed only at runtime.

The most obvious benefit of static type-checking is that it allows early detection of

some programming errors. Errors that are detected early can be fixed immediately, rather

than lurking in the code to be discovered much later, when the programmer is in the

middle of something else or even after the program has been deployed. Most of the

general purpose object-oriented programming languages are strongly typed, but none of

them provide fully type safe metadata access mechanism – they lack type safe type

(class/structure) member metadata access. Not all programming languages support

metadata access mechanisms like reflection, but for languages which support metadata

access, type safety in this field is considered to be a property of the particular computer

program rather than of the programming language used in the respective program. In

such cases programmer is responsible for type safety, namely, correct metadata

representation in basic data types, usually strings.

1 Please note that Java has some differences in metadata retrieval and metadata structure (e.g.,

Constructor has a single generic parameter referencing to a constructor holder class), but

conceptual approach is almost identical to that of C#.

80 Vanags, Licis, Justs

2. Existing techniques for type safe metadata access

The simplest way of demonstrating importance of type safe metadata access is to try

different approaches in implementing MVVM design pattern (Smith, 2009). In this

chapter we will implement only ViewModel part of MVVM and focus on member

metadata access issues.

2.1. ViewModel example without type safety

Here is ViewModel declaration example typing member name in string data type –

unsafe way
2
 (Smith, 2009):

//C#

//base class is simple class without generic parameter

public class CustomerViewModel: ViewModelBase
{
 private readonly Customer _model;

 public CustomerViewModel(Customer model)
 {
 _model = model;
 }

 public string FullName
 {
 get { return _model.FullName; }
 set
 {
 if (_model.FullName!= value)
 {
 _model.FullName = value;
 //Not type safe form,
 //property processed at compile time
 OnPropertyChanged("FullName");
 }
 }
 }
}

Member metadata access is not type safe, but it is performed at compile time and

performs fast.

2 This example is intended to compare it with improvements added in next chapters.

 Strongly typed metadata access in object oriented programming languages with reflection support 81

2.2. Metadata access at runtime using expression trees

The best programmer can do if programming language does not have strongly typed type

member metadata access is checking type member names (metadata) at runtime which

only partly solves type safety issues, but on downside makes code more complex,

forcing programmer to use redundant type expressions and leading to performance

slowdown. Microsoft provides best practices to access metadata in mentioned type safe

way using lambda expressions (Rusina, 2010), (Migliore, a).

//C#
//Base class generic parameter specification contains redundant
//information. In ideal case this information should be known from
//context
public class CustomerViewModel : ViewModelBase<CustomerViewModel>
{
 private readonly Customer _model;
 public CustomerViewModel(Customer model)
 {
 _model = model;
 }
 public string FullName
 {
 get { return _model.FullName; }
 set
 {
 if (_model.FullName != value)
 {
 _model.FullName = value;
 //type safe, but confusing syntax and expression
 //tree processing could take significant time
 OnPropertyChanged(x => x.FullName);
 }
 }
 }
}

Unfortunately, the practice described above does not guarantee 100% type safety and

desired result. In case if programmer provides lambda expression without member

access expression, program execution will fail.

2.3. Metadata access at compile time using CallerInfo attributes

From C# 5, it is possible to tag optional parameters with one of three caller info

attributes (WEB, b), (Albahari et.al., 2012):

[CallerMemberName] applies the caller’s member name;

[CallerFilePath] applies the path to caller’s source code file;

[CallerLineNumber] applies the line number in caller’s source code file.

By using CallerInfo attributes, it is possible to obtain information about the caller to

a method. You can obtain file path of the source code, the line number in the source

code, and the member name of the caller. CallerInfo attributes instruct the compiler to

82 Vanags, Licis, Justs

feed information obtained from the caller’s source code into the parameter’s default

value: This information is helpful for tracing, debugging, and creating diagnostic tools.

Here is a modified C# example from chapter 2.1 by using CallerInfo attributes:

public class CustomerViewModel : INotifyPropertyChanged
{
 private readonly Customer _model;

 public event PropertyChangedEventHandler PropertyChanged =
delegate { };

 private void RaisePropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 Console.WriteLine(propertyName);
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }

 public CustomerViewModel(Customer model)
 {
 _model = model;
 }

 public string FullName
 {
 get { return _model.FullName; }
 set
 {
 if (_model.FullName != value)
 {
 _model.FullName = value;
 //Type safe form, processed at compile time
 RaisePropertyChanged();
 // The compiler converts the above line to:
 // RaisePropertyChanged ("FullName");
 }
 }
 }
}

CallerInfo attributes makes metadata access more type safe, metadata access is

performed at compile time and it works much faster than processing expression trees at

runtime. However, CallerInfo attributes are not a generic solution. CallerInfo attributes

are suitable for narrow use cases, generally to safely access property name from inside

the property. CallerInfo attributes are not applicable for data querying and metadata

processing in other use cases.

All problems mentioned in chapter 2 can be solved by introducing language

improvements to support type safe metadata access which would make compile-time

checks possible (WEB, e).

 Strongly typed metadata access in object oriented programming languages with reflection support 83

3. Type safe member metadata access

Type metadata gathering operator typeof (C#) and “.class” call (Java) returns metadata

about specified type (class, structure, interface), but there is no type safe way to access

class member metadata. For example, programming languages can be extended with

operator named ‘memberof’ so that memberof(classField) returns field metadata instance

FieldInfo (C#) or Field (Java) instances instead of field value instances. Microsoft

Corporation was first who introduced idea of such conception for member metadata

access and they called their member metadata access operator: ‘infoof’ (Lippert, 2009).

If Microsoft could rename ‘typeof’ to ‘infoof’ then name ‘infoof’ would be better choice

for such operator
3
. As this paper focuses on the type safe metadata access idea rather

than readability problems, further we will prefer using ‘memberof’.

Microsoft has been thinking about operator infoof as similar operator to operator

typeof which allows type safe metadata access:
Type info = typeof (int);

Operator typeof accepts parameter which is type instead of instance. Following

example is invalid according to C# specification:
Type x = typeof(6);

Use cases of member metadata access operator, that does not accept instance

expressions as operator parameter, are too specific and that is not enough for fully type

safe member metadata access.

Operator memberof in C#

Here is example of instance creation needed for further examples:
var myFriend = new Person("Oscar");

Instance member metadata could be accessed using object instance:
FieldInfo instanceMemberMetadata = memberof(myFriend.FullName);

Static member metadata could be accessed using type information:
FieldInfo staticMemberMetadata = memberof(Person.TotalPersons);

Operator memberof in Java

Person myFriend = new Person("Oscar");

Instance member metadata could be accessed using object instance:
Field instanceMemberMetadata = memberof(myFriend.fullName);

Static member metadata could be accessed using class:
Field instanceMemberMetadata = memberof(Person.totalPersons);

3 It would be essential to reduce number of standard keywords in programming language.

Otherwise overloaded member metadata access operators require at least 5 or even more new

keywords which significantly rises complexity of programming language.

84 Vanags, Licis, Justs

The most important aspect of operator ‘memberof’ is that member access or member

call expressions provided to operator ‘memberof’ are not processed as member access

operations or member call operations, but instead the metadata instance of supplied

member (field, method, property, constructor, event) is created and returned. This means

that code from previous example - memberof(myFriend.FullName) - is not reducible to

memberof(“Oscar”) as it would be if field myFriend.FullName would be interpreted as

field access operation.

In Frameworks operator ‘memberof‘ could be overloaded with following versions:

.NET

 memberof(field) which should return FieldInfo instance;

 memberof(method(parameter type list – optional)) which should return

MethodInfo instance;

 memberof(property) which should return PropertyInfo instance;

 memberof(class(parameter type list – optional)) which should return

ConstructorInfo instance;

 memberof(event) which should return EventInfo instance.

In .NET class MemberInfo is base class for classes: FieldInfo, MethodInfo,

PropertyInfo, ConstructorInfo, EventInfo. Therefore in cases when only type safe

member name determination is needed, the use of MemberInfo instance would be more

appropriate. Similar metadata type system architecture is used in programming language

Java, only metadata class names and usage syntax differs:

Java

 memberof(field_path) – returns Field instance for a given field (expressed

with a full path, e.g. myFriend.fullName or Person.fullName);

 memberof(method_path(Class<?> … parameterTypes)) – returns Method

instance;

 memberof(class_name(Class<?> … parameterType)) – returns Constructor

instance representing constructor information for the given class.

C# examples

//accessing member when having source object
var somebody = new Person("Anonymous");
MemberInfo memberMetadata = memberof(somebody.FullName);
//or any other member

//accessing field without having source object
FieldInfo fieldMetadata = memberof(Person.FullName);

//accessing property without having source object
PropertyInfo propertyMetadata =
 memberof(CustomerViewModel.FullName);

 Strongly typed metadata access in object oriented programming languages with reflection support 85

//accessing parameter less constructor metadata
ConstructorInfo constructorMetadata = memberof(CustomerViewModel());

//accessing metadata from constructor with one string parameter
ConstructorInfo constructorMetadata = memberof(Person(string));

//accessing parameterless method metadata without having source
//object
MethodInfo methodMetadata = memberof(Person.DoSomething());

//accessing metadata from method with two parameters: string, double
MethodInfo methodMetadata
 = memberof(Person.DoSomething(string, double));

//accessing metadata from event
EventInfo eventMetadata = memberof(Person.SomeEvent);

Java examples4

Person somebody = new Person("Anonymous");

//AccessibleObject - superclass for Constructor, Method,

Field AccessibleObject memberMetadata

 = memberof(somebody.fullName);

Field fieldMetadata = memberof(Person.fullName);

Constructor<CustomerViewModel> constructorMetadata

 = memberof(CustomerViewModel());

Constructor<Person> constructorMetadata

 = memberof(Person(String.class));

Method methodMetadata = memberof(Person.doSomething());

Method methodMetadata

= memberof(Person.doSomething(String.class, double.class));

4 In order to maintain consistency with existing Java language specification, meta-data class

Constructor provides a single generic parameter which refers to a parent class of a constructor

(just as described in examples above when metadata was retrieved using standard solution).

86 Vanags, Licis, Justs

Use case of operator ‘memberof’

One of the most valuable use cases of operator ‘memberof’ could be in design pattern

MVVM ViewModel declarations. Here is more type safe version of class

CustomerViewModel that was introduced in section 2.1.
5
:

//C#
//base class is simple class without generic parameter
public class CustomerViewModel : ViewModelBase
{
 private readonly Customer _model;
 public CustomerViewModel(Customer model)
 {
 _model = model;
 }
 public string FullName
 {
 get { return _model.FullName; }
 set
 {
 if (_model.FullName != value)
 {
 _model.FullName = value;
 //optimal type safety, but member access code
 //doesn’t use available context information
 MemberInfo info = memberof(this.FullName);
 OnPropertyChanged(info.Name);
 }
 }
 }
}

Context dependent type member metadata access

Many programming languages have operator ‘this’ which points to current instance

context, but none of programming languages have operator which could point to current

instance member context. Such operator could be operator named ‘member’:

//C#
//base class is simple class without generic parameter
public class CustomerViewModel : ViewModelBase
{
 private readonly Customer _model;
 public CustomerViewModel(Customer model)
 {
 _model = model;
 }

5 Type safety is achieved by using operator ‘memberof’.

 Strongly typed metadata access in object oriented programming languages with reflection support 87

 public string CustomerName
 {
 get { return _model.FullName; }
 set
 {
 if (_model.FullName != value)
 {
 _model.FullName = value;
 //optimal type safety,
 //context dependent member metadata access,
 //clean code,
 //'member' returns PropertyInfo instance
 MemberInfo info = member;
 OnPropertyChanged(info.Name);
 }
 }
 }
}

Operator ‘member’ depends on usage context. When used in constructor code block

it should return constructor metadata instance, when used in method code block it should

return method metadata instance, when used in property code blocks it should return

property metadata instance. The difference from previous example is that now we are

using context dependent operator which will be handled by compiler, enabling easier

refactoring. For example, in renaming property changes inside property declaration

(including body) are required to be made only in one place – in property name.

4. Detecting type of member from member access expressions

Sometimes it is required not only to access type member metadata, but also to process

type member taking into consideration a(some) parameter(s) whose type should be

compatible with initial member type. For example, in database querying method

‘FilterByEquality’ declared as follows could be useful:
public IEnumerable<object> FilterByEquality (MemberInfo
memberMetaData, object constrainedValue) {…}

An example described above is not type safe because type of parameter

‘constrainedValue’ may not be compatible with type of member to which parameter

‘memberMetaData’ indirectly points to. To solve such problems we propose extending

metadata types to generic versions:

C#

MemberInfo<T> should replace MemberInfo

FieldInfo<T> should replace FieldInfo

MethodInfo<T> should replace MethodInfo

PropertyInfo<T> should replace PropertyInfo

ConstructorInfo<T> should replace ConstructorInfo

EventInfo<T> should replace EventInfo

88 Vanags, Licis, Justs

Java6

AccessibleObject<T> should replace AccessibleObject

Field<T> should replace Field

Method<T> should replace Method

Constructor<C, T> should replace Constructor<C>

Now operator ‘memberof’ should return generic versions of metadata instances.

NET

 memberof(suppliedField) which should return FieldInfo<T> instance and T

is type of field ‘suppliedField’;

 memberof(suppliedMethod(parameter type list – optional)) which should

return MethodInfo<T> instance and type T is type container for all

‘suppliedMethod ‘parameters. In .NET this type container could be standard

delegate: Func<…> or Action<…>. Which type exactly will function as

type container depends on ‘suppliedMethod’ returning type – for methods

with returning value type container will be Func<…> and for methods

without returning value (void) type container will be Action<…>. It is

possible to use custom type container types, but it would be safer to choose

well-known standard classes, this way it would be possible to use implicit

type declarations (keyword ‘var’);

 memberof(suppliedProperty) which should return PropertyInfo<T> instance

and T is type of property ‘suppliedProperty’;

 memberof(suppliedClass(parameter type list – optional)) which should

return ConstructorInfo<T> instance and type T is type container for all

‘suppliedClass’ constructor parameters. In .NET this type container could be

standard delegate Action<…>;

 memberof(event) which should return EventInfo<T> instance where type T

should specify event argument (in should be class EventArgs or class which

inherits from EventArgs);

C# examples

//accessing member when having source object
var somebody = new Person("Anonymous");
MemberInfo<string> memberMetadata = memberof(somebody.FullName);

//accessing field without having source object
FieldInfo<string> fieldMetadata = memberof(Person.FullName);

//accessing property without having source object
PropertyInfo<string> propertyMetadata

6 Java metadata class Constructor already had a single type-parameter (referencing to a

constructor’s holder class), and thus we are extending it by an additional generic parameter.

 Strongly typed metadata access in object oriented programming languages with reflection support 89

 = memberof(CustomerViewModel.FullName);

//accessing parameter less constructor metadata
ConstructorInfo<Action> constructorMetadata
 = memberof(CustomerViewModel());

//accessing metadata from constructor with one string parameter
ConstructorInfo<Action<String>> constructorMetadata
 = memberof(Person(string));

//accessing parameterless method metadata without having source
//object
MethodInfo<Action> methodMetadata = memberof(Person.DoSomething());

//accessing metadata from method with one parameter of type string
MethodInfo<Action<string>> methodMetadata
 = memberof(Person.DoSomething(string));

/*accessing metadata from method with two parameters: first –
string, second – double and returning value of type – int */
MethodInfo<Func<string, double, int>> methodMetadata
 = memberof(Person.DoSomething(string, double));

//accessing metadata from event
EventInfo<EventArgs> eventMetadata = memberof(Person.SomeEvent);

Java examples

Person somebody = new Person("Anonymous");

//AccessibleObject - superclass for Constructor, Method,

Field AccessibleObject<String> memberMetadata

 = memberof(somebody.fullName);

//accessing field without having source object

Field<String> fieldMetadata = memberof(Person.fullName);

//accessing parameter less constructor metadata

Constructor<CustomerViewModel, Action> constructorMetadata

 = memberof(CustomerViewModel());

//accessing metadata from constructor with one string

//parameter

Constructor<Person, Action1<String>> constructorMetadata

 = memberof(Person(String.class));

//accessing parameterless method metadata without having

//source object

90 Vanags, Licis, Justs

Method<Action> methodMetadata

 = memberof(Person.doSomething());

//accessing metadata from method with one parameter of type

//string

Method<Action1<string>> methodMetadata

 = memberof(Person.doSomething(String));

/*accessing metadata from method with two parameters: first

– string, second – double and returning value of type – int

*/

Method<Func2<String, double, int> methodMetadata =

memberof(Person.doSomething(String.class, double.class));

In programming languages which do not support delegates, programmer needs to

take care of designing type containers for method parameters. Type ‘Action’ variations

are supposed to function as method parameter type containers for methods which do not

have returning value (void methods). Type ‘Action’ is supposed to describe fact that

method does not have parameters; Action1<T1> is supposed to describe fact that method

has one parameter which type should equal to generic parameter T1; Action2<T1, T2> is

supposed to describe fact that method has two parameters which types should be equal to

generic parameters T1 and T2 accordingly etc.

Variations of ‘Func’ are created similarly.. ‘Func’ acts as method parameter type

container for methods which return value. Func<R> is supposed to describe fact that

method does not have parameters and type of returning value should be equal to generic

parameter R. Func1<T1, R> is supposed to describe fact that method has one parameter

of type which should be equal to generic parameter T1 and type of returning value

should be equal to generic parameter R. Func2<T1, T2, R> is supposed to describe fact

that method has two parameters of types which should be equal to generic parameters T1

and T2 accordingly and type of returning value should be equal to generic parameter R.

It should be noted that the final names of ‘Action’ and ‘Func’ type containers can be

changed depending on a target framework. For example C# already provides such types

along with delegates, and it allows using the same name across different versions

(different generic parameters’ count designates different types). However, in case of

Java generics are processed differently, and different type names are required even if

generics declaration differs. The Action, Action1, Action2, … and Func, Func1, Func2,

… could be introduced in Java as a metadata parameter holders.

Taking into consideration all previously proposed ideas, method ‘FilterByEquality’

example can be improved as follows:

public IEnumerable<object> FilterByEquality <T>(MemberInfo<T>
memberMetaData, T constrainedValue) {…}

 Strongly typed metadata access in object oriented programming languages with reflection support 91

//C# usage example

string personName = "John Doe";
var memberMetadata = memberof(Person.FullName);
IEnumerable<object> wantedPersons
 = FilterByEquality(memberMetadata, personName);

Important part is included in expression: memberof(Person.FullName) which returns

FieldInfo<T> instance where type T is determined as string. Compiler automatically

detects type of variable ‘memberMetadata’ from ‘memberof’ operator call context and in

example this type is MemberInfo<string>. Demonstrated example of ‘memberof’ call is

equivalent to following code where returning type is explicitly declared:
MemberInfo<string> memberMetadata = memberof(Person.FullName);

5. Detecting member type and member containing type from

member access expressions

Method’s ‘FilterByEquality’ example still is not fully type safe, because returning

collection items type is not detected from provided metadata. Problem can be solved by

extending metadata containing types with one more generic parameter which will hold

member containing object’s type information.

This means: MemberInfo<T> extension to MemberInfo<TObject, TMember> where

TMember refers to member’s type and TObject refers to members containing object

type:

C#

MemberInfo<TObject, TMember> should replace MemberInfo

FieldInfo<TObject, TMember> should replace FieldInfo

MethodInfo<TObject, TMember> should replace MethodInfo

PropertyInfo<TObject, TMember> should replace PropertyInfo

ConstructorInfo<TObject, TMember> should replace ConstructorInfo

EventInfo<TObject, TMember> should replace EventInfo

Java

Member< TObject, TMember> should replace Member

Field< TObject, TMember> should replace Field

Method< TObject, TMember> should replace Method

Constructor< TObject, TMember> should replace Constructor

C# examples

//accessing member when having source object
var somebody = new Person("Anonymous");
MemberInfo<Person, string> memberMetadata
 = memberof(somebody.FullName);

92 Vanags, Licis, Justs

//accessing field without having source object
FieldInfo<Person, string> fieldMetadata = memberof(Person.FullName);

//accessing property without having source object
PropertyInfo<CustomerViewModel, string> propertyMetadata
 = memberof(CustomerViewModel.FullName);

//accessing parameter less constructor metadata
ConstructorInfo<CustomerViewModel, Action> constructorMetadata
 = memberof(CustomerViewModel());

//accessing metadata from constructor with one string parameter
ConstructorInfo<Person, Action<String>> constructorMetadata
 = memberof(Person(string));

//accessing parameter less method metadata without having source
//object
MethodInfo<Person, Action> methodMetadata
 = memberof(Person.DoSomething());

//accessing metadata from method with one parameter of type string
MethodInfo<Person, Action<string>> methodMetadata
 = memberof(Person.DoSomething(string));

/*accessing metadata from method with two parameters: first –
string, second – double and returning value of type – int */
MethodInfo<Person, Func<string, double, int>> methodMetadata
 = memberof(Person.DoSomething(string, double));

//accessing metadata from event
EventInfo<Person, EventArgs> eventMetadata
 = memberof(Person.SomeEvent);

Java examples

Person somebody = new Person("Anonymous");

//AccessibleObject-superclass for Constructor,Method,Field

AccessibleObject<Person, String> memberMetadata

 = memberof(somebody.fullName);

//accessing field without having source object

Field<Person, String> fieldMetadata

 = memberof(Person.fullName);

//accessing parameterless constructor metadata

Constructor<CustomerViewModel, Action> constructorMetadata

 = memberof(CustomerViewModel());

//accessing metadata from constructor with one string

 Strongly typed metadata access in object oriented programming languages with reflection support 93

//parameter

Constructor<Person, Action1<String>> constructorMetadata

 = memberof(Person(String.class));

//accessing parameterless method metadata without having

//source object

Method<Person, Action> methodMetadata

 = memberof(Person.doSomething());

//accessing metadata from method with one parameter of type

//string

Method<Person, Action1<string>> methodMetadata

 = memberof(Person.doSomething(String));

/*accessing metadata from method with two parameters: first

– string, second – double and returning value of type – int

*/

Method<Person, Func2<String, double, int> methodMetadata

= memberof(Person.doSomething(String.class, double.class));

Taking into consideration previously described improvements to operator

‘memberof’, example with method ‘FilterByEquality’ can be declared as follows:

public IEnumerable<TObject> FilterByEquality<TObject, TMember>(
 MemberInfo<TObject, TMember> memberMetaData,
 TMember constrainedValue) {…}

//C# usage example
string personName = "John Doe";
MemberInfo<Person, string> memberMetadata
 = memberof(Person.FullName);
IEnumerable<Person> wantedPersons
 = FilterByEquality(memberMetadata, personName);

Last code line from previous example can be rewritten to use implicit type

declaration:

var wantedPersons = FilterByEquality(memberMetadata, personName);

94 Vanags, Licis, Justs

6. Multiple level member access expressions

It is possible that member access expression is invoked from existing member access

expression. Consider example class declarations:
class Person
{
 public Address HomeAddress;
}
class Address
{
 public string Street;
}

Example of Multiple level member access expression with two level member accesses

will look like this:

var instance = new Person();
instance.HomeAddress = new Address();
instance.HomeAddress.Street = "My street number 6";
var memberMetadata = memberof(instance.HomeAddress.Street);

In case of two level member access expression (in example:

instance.HomeAddress.Street) type of operator ‘memberof’ returning value should be

member containing type from first member access expression. In example described

above first member access expression is ‘HomeAddress’ member access expression and

its containing type is Person, so previous example can be rewritten without implicit type

declaration as follows:

MemberInfo<Person, string> memberMetadata
 = memberof(instance.HomeAddress.Street);

For multiple member access expressions to be useful as metadata, compiler

should maintain whole chain of member access expressions. In previous example it

means that variable ‘memberMetadata’ represents ‘Street’ member access expression

and contains information that member ‘Street’ was accessed from ‘HomeAddress’ which

is another member access expression. Member ‘HomeAddress’ was accessed from

instance (not from another member access expressions), therefore here stops member

access chain backtracking.

If ‘Address’ is needed as returning type and we have only ‘Person’ instance,

then multiple member access expression should be separated as follows:

var homeAddress = instance.HomeAddress;
MemberInfo<Address, string> memberMetadata
 = memberof(homeAddress.Street);

Such multiple member access level behaviour of ‘memberof’ operator would be

useful in defining queries.

 Strongly typed metadata access in object oriented programming languages with reflection support 95

7. Passing metadata to methods

Metadata can be gathered and then passed to methods, like in the following example:

//method declaration
void TestMetadata<T, TProp>(MemberInfo<T, TProp>
 memberAccessExpression) {…}
//method call
TestMetadata(memberof(Person.FullName));

In cases when metadata needs to be passed to method as parameter, ‘memberof’

operator syntax can be transformed into another syntax using method parameter modifier

called ‘meta’:

//method call
TestMetadata(meta Person.FullName);

Method parameter modifier ‘meta’ forces compiler to interpret method actual

parameter as metadata access expression instead of value access expression what is

default behaviour in method parameter interpretation.

Reference parameters and output parameters change not only how method accepts

parameter, but also the way how method processes parameters. For this reason reference

parameters and output parameters require parameter modifier usage at method

declaration. Method parameter modifier ‘meta’ makes changes only in actual value

passed to method call. Parameter modifier ‘meta’ does not impact method execution, so

method parameter modifier ‘meta’ specifying at method declaration is not necessary.

Method parameter modifier ‘meta’ has 5 different forms:

1) parameter modifier for field metadata access, example:
//TestMetadata1 method declaration
void TestMetadata1<T, TField>(FieldInfo<T, TField>
memberAccessExpr) {…}
//TestMetadata1 method call providing field from class Person
TestMetadata1(meta Person.FullName);

2) parameter modifier for property metadata access, example:
//TestMetadata2 method declaration

void TestMetadata2<T, TProp>(PropertyInfo<T, TProp>

memberAccessExpr) {…}
//TestMetadata2 method call providing property from class

//CustomerViewModel

TestMetadata3 (meta CustomerViewModel.FullName);

3) parameter modifier for method metadata access, example:
//TestMetadata3 method declaration
void TestMetadata3<T, TMet>(MethodInfo<T, TMet>

memberAccessExpr) {…}

//TestMetadata3 method call providing other method from class
//Person
TestMetadata3 (meta Person.DoSomething(string, double));

96 Vanags, Licis, Justs

4) TestMetadata4 (meta Person(string));parameter modifier for

constructor metadata access, example:
//TestMetadata4 method declaration
void TestMetadata4<T, TCon>(ConstructorInfo<T, TCon>

memberAccessExpr) {…}

//TestMetadata4 method call providing constructor of class
//Person

5) parameter modifier for event metadata access, example:
//TestMetadata5 method declaration
void TestMetadata5<T, TEventArgs>(EventInfo<T, TEventArgs>

memberAccessExpr) {…}

//TestMetadata5 method call providing event declared in class
//Person
TestMetadata5 (meta Person.SomeEvent);

Most benefits from method parameter modifier ‘meta’ usage can be gained in

frameworks where reflection is used as architectural discipline, especially in frameworks

supporting MVC architectural pattern where views usually are linked with models using

binding mechanism which uses reflection. The following example demonstrates View

designed in ASP.NET MVC Razor View Engine (Palermo et.al., 2012); HTML helper

‘TextBox’ accepts metadata in type unsafe way:

@using (Html.BeginForm())
{
 <p>Your name: @Html.TextBox("FullName")</p>
 <input type="submit" value="Go" />
}

Best that is possible without operator ‘memberof’ invention is usage of lambda

expressions:

model LrcSite.Models.Person

@using (Html.BeginForm())
{
 <p>Your name: @Html.TextBoxFor(model => model.FullName)</p>
 <input type="submit" value="Go" />
}

Example view is defined as strongly typed, namely, variable ‘Html’ is of type

HtmlHelper<Person> and that is why HTML helper ‘TextBoxFor’ can accept member

‘Person.FullName’ metadata in strongly typed way. But, as lambda expressions are

processed at runtime, they are not fully type safe. Besides lambda expressions syntax in

HTML helper case requires declaration of formal parameter (in the previous example it

is parameter named ‘model’) which is unnecessary from syntax perspective and should

be removed to simplify syntax.

The following example demonstrates simple HTML helper ‘TextBoxFor’ accepting

member metadata instance:

 Strongly typed metadata access in object oriented programming languages with reflection support 97

public static MvcHtmlString TextBoxFor<T, TProp>(this HtmlHelper<T>
 html, MemberInfo<T, TProp> memberAccess)
{
 var tag = new TagBuilder("input");
 tag.MergeAttribute("name", memberAccess.Name);
 tag.MergeAttribute("type", "text");

 ModelState modelState;
 html.ViewData.ModelState.TryGetValue(memberAccess.Name,
 out modelState);
 var value = modelState != null && modelState.Value != null
 ? modelState.Value.ConvertTo(typeof(TProp)): default(TProp);

 tag.MergeAttribute("value", Convert.ToString(value));
 return MvcHtmlString.Create(tag.ToString());
}

Example demonstrates how metadata from ‘memberAccess’ expression is gathered

during compile time and syntax does not contain any unnecessary or redundant parts.

Improved HTML helper calling code is demonstrated in following ASP.NET MVC

Razor view example:

@model LrcSite.Models.Person

@using (Html.BeginForm())
{
 <p>Your name: @Html.TextBoxFor(meta Person.FullName)</p>
 <input type="submit" value="Go" />
}

However, it still can be simplified. In case of strongly typed view, member

containing type specification in member access expression is redundant. Here is

simplified, but equivalent code sample to previously declared ASP.NET MVC Razor

view example:

//declaration of variable Html
public HtmlHelper<Person> Html;
…
//HTML helper TextBoxFor usage with method parameter modifier ‘meta’
Html.TextBoxFor(meta Person.FullName);

HTML helper usage example can be rewritten specifying generic parameters

explicitly as follows:

Html.TextBoxFor<Person, string>(meta Person.FullName);

Now can be seen, that generic parameter ‘T’ (type ‘Person’) in HTML helper

‘TextBoxFor’ call is used in 3 places: in ‘Html’ variable declaration, in ‘TextBoxFor’

method call and in member access expression. Compiler uses type inference to detect

unknown generic types and for compiler it is sufficient to supply type for generic

98 Vanags, Licis, Justs

parameter only in one place instead of all tree places. In example, place where generic

parameter T type is specified is in variable ‘Html’ declaration, so further generic

parameter T specifications are not necessary. In similar way compiler is capable to infer

type of generic parameter ‘TProp’ from member access expression ‘Person.FullName’,

so the shortest syntax of HTML helper ‘TextBoxFor’ usage would be as follows:

Html.TextBoxFor(meta FullName);

Finally, type member metadata access and usage syntax in all aspects are short,

expressive and fully type safe. Here comes example of shortest syntax form for method

modifier ‘meta’ demonstrating how metadata should be provided to HTML helpers in

ASP.NET MVC Razor views engine:

@model LrcSite.Models.Person

@using (Html.BeginForm())
{
 <p>Your name: @Html.TextBoxFor(meta FullName)</p>
 <input type="submit" value="Go" />
}

The only part that is not yet covered is method modifier ‘meta’ for whole types

(member containers). If method parameter modifier ‘meta’ works with type members, it

should work with types as well. The following example demonstrates method parameter

‘meta’ usage syntax with types:

//method declaration
void DoSomething(Type someTypeFormalParameter) {...}
//method call
DoSomething(meta Person);

Such practice is equivalent to following code usage pattern:

//method declaration
void DoSomething(Type someTypeFormalParameter) {...}
//method call
DoSomething(typeof(Person));

But in case of method modifier ‘meta’ syntax is much simpler and nicer.

8. Summary

Current versions of general purpose programming languages provide poor type safety

solutions. There are several workarounds, but they still need to be improved. Several

years ago Microsoft Corporation was close to idea about member metadata access in

form of ‘infoof’ operator, but in latest .NET releases they have chosen to implement

expression trees and later CallerInfo attributes which do not offer 100% type safety in all

use cases where metadata can be involved. In this paper idea about type safe member

 Strongly typed metadata access in object oriented programming languages with reflection support 99

metadata access is extended to cover different forms of new operator: ’memberof’
7
,

generic forms of operator ‘memberof’, context dependent operator ‘member’ and

method parameter modifier ‘meta’ which forces compiler to interpret method actual

parameter as metadata access expression instead of value access expression. Introduced

operators require changes in programming frameworks like .NET, Java and others, as

well as propose improvements in syntax of general purpose programming languages

resulting in fully type safe metadata access in field of programming languages.

References

Albahari J., Albahari B. (2012). C# 5.0 in a Nutshell, 5th Edition, The Definitive Reference.

O'Reilly Media

Demers F.-N., Malenfant J (1995). Reflection in logic, functional and object-oriented

programming: a Short Comparative Study. In:Proc. of the IJCAI’95 Workshop on Reflection

and Metalevel Architectures and their Applications in AI. Montreal (1995), 29–38.

Forman I.R., Forman N. (2004). Java Reflection in Action. Manning Publications

Lippert E. (2009). In Foof We Trust: A Dialogue,

http://blogs.msdn.com/b/ericlippert/archive/2009/05/21/

in-foof-we-trust-a-dialogue.aspx

Migliore M. (a). How to implement MVVM (Model-View-ViewModel) in TDD (Test Driven

Development),

http://code.msdn.microsoft.com/How-to-implement-MVVM-

71a65441

Palermo J., Bogard J, Hexter E., Hinze M., Skinner J. (2012). ASP.NET MVC 4 in Action.

Manning, New York

Rusina A. (2010). Getting Information About Objects, Types, and Members with Expression

Trees,

http://blogs.msdn.com/b/csharpfaq/archive/2010/01/06/ge

tting-information-about-objects-types-and-members-with-

expression-trees.aspx

Skeet J. (2011). C# in Depth Second Edition, Manning, Stamford

Smith J. (2009). WPF Apps With The Model-View-ViewModel Design Pattern,

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

WEB (b). Caller Information (C# and Visual Basic),

http://msdn.microsoft.com/en-us/library/hh534540.aspx

WEB (c). C# Language Specification,

http://go.microsoft.com/fwlink/?LinkId=199552

WEB (d). Java Language and Virtual Machine Specifications,

http://docs.oracle.com/javase/specs/

WEB (e). Strongly typed metadata access,

http://logicsresearchcentre.com/MetadataAccess

7 For idea description ‘memberof’ is more appropriate than ‘infoof’.

100 Vanags, Licis, Justs

Authors' information

M. Vanags is PhD student at the Faculty of Information Technologies, Latvia University

of Agriculture, Latvia. He is cofounder of Logics Research Centre SIA, where he works

as CTO. Most of his working time he spends to develop future programming

technologies.

A. Licis, M.Sc., is an enthusiastic software engineer. His areas of interest include

scalable systems and databases.

J. Justs is a PhD student at Institute of Materials and Structures, Faculty of Civil

Engineering at Riga Technical University. He is cofounder of Logics Research Centre

SIA. His areas of interest include information technologies and databases.

Received March 14, 2013, revised July 13, 2013, accepted July 30, 2013

