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Abstract: In the paper, we investigate deterministic approaches for solving scheduling and 

rescheduling problems. Most of them are based on mixed-integer programming. Descriptions of 

solvers are also presented here. They allow solving complicated optimization problems with many 

variables and constraints in acceptable time. The deterministic approaches could be implemented 

in a production effectiveness navigator under development, one of the aims of which is to react to 

unexpected events occurring in shop-floors. Thus, rescheduling is necessary and optimal decisions 

must be made invoking the state-of-the-art optimization methods. Moreover, the management 

focus should be taken into account, when not only the initial schedule, but also a new schedule is 

created. 
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Introduction 

Nowadays, the majority of business companies use Enterprise Resource Planning (ERP) 

software to store and manage data from every stage of business. In many ERP systems, 

modules are implemented for financial and management accounting, human resource 

management, manufacturing, supply chain, project and customer relationship 

managements. In each step, optimal solutions should be found. We deal with complex 

optimization problems with many variables and constraints. Scheduling is one of the 

important issues of the manufacturing process that has a major impact on the 

productivity of the process (Baker and Trietsch, 2009). However, usually schedules are 

of limited duration and scheduling is a continuous process of responding to unexpected 

events, for example, machine break down, illness of employees, lacking material, etc. 

Thus, rescheduling is often necessary (Vieira et al., 2003). Optimization problems 

should be solved for both scheduling and rescheduling. Various optimization techniques 
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are implemented in the ERP software. Moreover, the Advanced Planning and Scheduling 

(APS) tools have been integrated into the ERP systems: Preactor
1
, Talika PMS, 

CyberPlan
2
, AIMMS

3
, Asprova APS

4
, etc. Recently, a new framework, called 

Production Effectiveness Navigator (PEN), has been designed for advanced planning 

and scheduling (Čaplinskas et al., 2012). Heuristic and meta-heuristic approaches are 

often applied to solve scheduling and rescheduling problems (Ziaee, 2014), (Pérez-

González et al., 2009), (Avci et al., 2003). The approaches are flexible, but the solving 

way is not grounded mathematically, and solutions can be only near to optimal. 

However, complicated optimization problems can be solved in an acceptable time. 

Another type of optimization methods is deterministic. Deterministic methods take into 

account analytical properties of the problem solved. The majority of methods allow us to 

find global optimal solutions. Recently, the increase of computational resources has 

enabled deterministic approaches to solve complex optimization problems, such as 

scheduling and rescheduling (Roslöf et al., 2001), (Floudas and Lin, 2005). The goal of 

the paper is to overview the deterministic methods suitable for implementation in the 

production effectiveness navigator for rescheduling and resource planning. 

1. Framework of production effectiveness navigator 

Manufacturing planning, scheduling, and control are a large area that involves different 

approaches on different planning levels. Various advanced planning and scheduling 

systems emphasize different planning aspects, problems, methods, and solutions. APS is 

a computer program that uses advanced mathematical algorithms for optimization, 

and/or simulation of finite capacity scheduling, sourcing, resource planning and so on. 

Commercial APS systems involve a number of software modules that support the 

planning tasks at different planning levels and in different supply chain processes (Ivert, 

2009). 

The production effectiveness navigator is an advanced production planning and 

scheduling system that is implemented as an add-on in enterprise recourse planning 

systems. This novel predictive-reactive planning and scheduling system will be used for 

the following aims (Čaplinskas et al., 2012):  

• to evaluate the severity of potential impacts of predictable exceptions on medium 

term level production plans and on short-time schedules generated by a ERP 

system;  

• to rework these plans and schedules so that the risk of predictable exceptions 

could be mitigated, i.e., either their likelihood can be minimized or the potential 

severity of their consequences (their impact) can be reduced. 

The PEN system is different from the other similar products by the following 

aspects: a) it should provide specific rule-based mechanisms allowing us to take into 

account the knowledge about the specificity of the production system of a particular 

                                                           

1 http://www.preactor.com 
2 http://www.cybertec.it/en/cyberplan.html 
3 http://business.aimms.com 
4 http://www.asprova.com/ 
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target enterprise in the production rescheduling process; b) it should offer a special 

sandbox functionality for experimenting scenarios of special events, risks, or failures; 

c) it should provide integrated handling of business goals and management focuses 

during the optimization of new schedules.  

The PEN system combines various simulation techniques, expanded by optimization 

procedures. The PEN system focuses on the production scheduling and rescheduling 

module, and, especially, on processing of undesirable business events which disrupt the 

schedule. The module provides integrated handling of business goals and management 

focuses during the optimization of the new schedules. 

Deterministic algorithms presented below will be used in PEN for rescheduling shop-

floor level schedules. These schedules are created taking into consideration a fixed set of 

undesirable events. An event is undesirable facts or circumstances which disturbs the 

normal implementation of the actual running schedule. An event is described by an event 

type, time stamp, impact estimation (in hours), related processes, resources and 

materials. All undesirable events are registered in the queue of events, the events are 

transformed into problems, caused by these events, and the actual schedule is reworked 

so that all the problems to be solved if possible. 

In the scope of PEN, the events should be handled only those have a 48 hour-long 

impact on processes, at least. All the events are classified, based on the place of 

occurrence in the process or on their complexity: 

• undesirable events of resources; 

• missing technology resources or the infrastructure problem; 

• problems with production time; 

• reworking; 

• undesirable events of orders (cancelling process); 

• problems in the supply chain management process. 

To reschedule a shop-floor level schedule, data on the following business objects are 

necessary: schedule, event, job, resource, machine, fixture/mould, operation, working 

place, staff worker, vehicle, process, material, supplier, infrastructure resource, logical 

factory map, and subcontractor.  

The main object is a schedule in Fig. 1. There the represented objects are interrelated 

with each other. The objects (management focus, budget, customer’s order and logical 

factory map), represented by orange blocks, influence the objective function of 

deterministic algorithms. The dotted arrays mark dependences of the objects, eg., a 

schedule depends on the management focus, budget, customer order; an operation 

depends on resources and subcontractor. The solid arrays mark the components of the 

objects, eg., resources consist of a machine, material, human resources, vehicle, supplier, 

subcontractor, and infrastructure. 

The decision on the management focus is made by assigning weights to the variables 

of the objective function when solving rescheduling problems. The weights can be used 

to achieve the following management goals: 

• to keep a deadline; 

• to keep the number of subcontractors as low as possible; 

• to keep the budget (cost); 

• to keep the number of workers, involved in the production, as low as possible; 

• a specific goal for a target enterprise. 
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Fig. 1. Dependencies between PEN objects. 

In the PEN system a composition of various deterministic or heuristic optimization 

methods is used for rescheduling. The output of the PEN system is a set of plans for 

enterprise management that are in accordance with that that prepared by ERP. 

1.1. Optimization in the production effectiveness navigator 

The PEN system is focused on the production program, production scheduling and 

rescheduling module, and, especially, on processing of unexpected business events 

which disrupt this program. In this paper, we focus only on optimization problems that 

arise when we reschedule a final assembly schedule or master production schedule, as 

well as on the implementation of management focus constraints in these schedules. 

A particularity of PEN, in the sense of optimization, is that the management focus 

must be directed to customers, contracts and vendors/suppliers, when the objective 

functions are formulated. The management focus means that we set the preferences to 

suppliers, contracts (which one is more preferable) in the PEN system interface. The 
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preferences should be stored as priorities, for example, from 20 (highest) to 1 (lowest). 

All the data of the enterprise management focus on these objects are defined in the form 

of table priorities. Deterministic algorithms will use the information on management to 

create new plans, scheduling and rescheduling in the future. 

When we deal with the rescheduling problem in shop-floor level, management focus 

can be applied to the objective function as weights. The literature on scheduling theory 

(Pinedo, 2012), (Akturk and Ilhan, 2011), (Bülbül and Kaminsky, 2013) is related to 

regular objective functions such as the total flow time, number of tardy jobs, total 

tardiness. Suppose, the objective function is the total tardiness 

 . 

Here  is the completion time, i.e., the time at which the processing of job  is 

finished,  is the due date, i.e., the time at which the processing of job  is due to be 

completed. In this equation, management preferences are used to redefine the weight 

coefficients  (the unit time earliness costs for job ). From the PEN system, we derive 

management focus preferences for contracts, then we can apply some priorities to jobs 

(activities) of this contract ( ). Therefore, in the objective function, for example total 

tardiness, we replace  by .  

The Just-In-Time (JIT) scheduling environment, a job completed early must be held 

in inventory until its due date. Therefore, an ideal schedule  is that in which all the jobs 

terminate exactly on their assigned due dates 

. 

Here  and  are weight coefficients. The same logic is applied to the objective 

function of other deterministic algorithms (eg., job flow time, average number of jobs, 

makespan) that are used in the PEN system. 

2. Deterministic approaches for scheduling and rescheduling 

Various deterministic approaches are used in solving scheduling and rescheduling 

problems. The well-known approaches, based on mathematical programming, are as 

follows: linear programming (LP), nonlinear programming (NLP), integer programming 

(IP), mixed-integer linear programming (MILP), mixed-integer nonlinear programming 

(MINLP), mixed-integer quadratic programming (MIQP), and mixed-integer signomial 

programming (MISP). The programming cases for scheduling and rescheduling, 

depending on the types of variables, are presented in Fig. 2. 

The classification of optimization problems, investigated by practitioners and 

researchers in the last few decades, is presented and some deterministic optimization 

approaches are investigated in the paper (Lin and Tsai, 2012). The paper (Floudas and 

Gounaris, 2009) also presents an overview of the research progress in the deterministic 

global optimization during the last decade. When solving the optimization problems by 

deterministic methods, the problems are characterized by the convexity of the objective 

function or the feasible domain. In that case, continuous and/or discrete (integer) 

variables are involved. The convexity of the objective function or the feasible domain is 

very important. Some efficient numerical methods are developed to solve the 

optimization problem, if the objective function or the feasible domain is convex. 

However, optimization problems often include nonconvex functions. In this case, the 
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standard local optimization methods do not guarantee the global optimality efficiently. 

When solving nonconvex or large-scale optimization problems, deterministic methods 

are confronted with difficulties in searching for an optimal solution during a reasonable 

time due to the high complexity of the problem (Lin and Tsai, 2012). 

Mathematical programming cases for 
scheduling and rescheduling

Continuous variables Mixed-integer variables

NLP LP MILP MINLP

MIQP MISP

Integer variables

IP

 
Fig. 2. Mathematical programming cases for scheduling and rescheduling 

depending on the types of variables. 

This section presents short descriptions of mathematical programming, mixed-integer 

linear and nonlinear programming, mixed-integer signomial programming, constraint 

programing as well as some algorithms, used for scheduling and rescheduling. 

Mathematical programming is used in many fields, where optimal solutions have to 

be found. The term “programming” has been in use since 1940 with a view to describe 

the planning or scheduling of activities in a large organization. If we express the amount 

or level of each activity as a variable, the value of which has to be determined, then we 

can mathematically describe the restrictions inherent in the planning or scheduling 

problem, as a set of equations or inequalities that involve the variables. The solution of 

all the constraints would be considered as an acceptable plan or schedule. 

The sequence of events for finding the solution is as follows (Fourer et al., 2003): 

• Formulate a model, an abstract system of variables, objectives, and constraints 

that represent the general form of the problem to be solved. 

• Collect data that define a specific problem instance. 

• Generate a specific objective function and constraint equations from the model 

and data. 

• Solve the problem instance by running a program, or a solver, and applying an 

algorithm that finds optimal values of variables. 

• Analyse the results. 

• Refine the model and data, and repeat the process. 

We can write a compact description of the general form of the problem, which we 

call a model, using the algebraic notation for the objective and constraints. Components 

of the model are (Fourer et al., 2003): 

• Sets (eg., products). 

• Parameters (eg., production and profit rates). 

• Variables, the values of which should be determined by a solver. 

• An objective, to be maximized or minimized. 
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• Constraints for the solution to be satisfied. 

The model describes an infinite number of related optimization problems. If we 

provide specific values for data, the model becomes a specific problem, or the instance 

of the model that can be solved. 

The general form of mathematical programming (in the minimization case) is 

expressed by: 

 

 

 

Here a feasible set ;  is a variable vector; the function  is an 

objective function; the functions  and  are constraints 

(Greenberg, 2010). The minimization problem can be replaced by maximization. 

Depending on the types of variables, properties of the objective function, and 

constraints, the general form of mathematical programming can be rearranged. 

In the case of linear programming (LP), the objective function and constraints are 

linear functions. Otherwise, if some of the constraints or objective functions are 

nonlinear, we deal with nonlinear programming (NLP). If all the variables  (

) are integer, the programming is called an integer linear programming (ILP, IP). 

The study of integer programming formulations of scheduling problems is presented in 

(Pan, 1997). A linear programming-based method for job shop scheduling is investigated 

in (Bülbül and Kaminsky, 2013). 

In solving scheduling and rescheduling problems, at first, an objective function and 

constraints are constructed. Later, proper solvers are selected and the problems are 

solved. The solution obtained is a new schedule. Usually, a mathematical model includes 

the following goals: makespan, total weighted tardiness, mean flow time, number of 

tardy jobs, maximum tardiness, total workload of the machines, etc. 

(Özgüven et. al., 2012). 

2.1. Mixed-integer linear programming 

Frequently, there are both continuous and integer variables in scheduling and 

rescheduling problems, so the problems are solved by mixed-integer linear programming 

(MILP). Sometimes, it is called mixed-integer programming (MIP). The problem (in the 

minimization case) is formulated as follows: 

 

 

 

 

 

Here  is an  vector containing the linear objective function;  is an  

vector of decision variables;  is an  matrix,  is an  vector;  is a  

matrix,  is a  vector;  and  are  vectors. 

MILP is used in the contexts, where it only makes sense to take integral quantities of 

certain goods or resources (eg., the number of men or power stations) or binary decisions 

need to be made (eg., producing a product, assigning a task to a worker). 
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The inclusion of integer variables enormously increases not only the modelling 

power, but also the cost of computations. IP is an NP-complete problem, so even small 

problems may be hard to solve. A very similar method to IP is linear programming (LP). 

In linear programming is no need to satisfy the  condition. LP can be solved in a 

polynomial time by interior-point methods (ellipsoid method, Karmarkar’s algorithm 

(Karmarkar, 1984)). The simplex algorithm is another popular algorithm for linear 

programming. Usually specialized network algorithms are more efficient for these 

problems than simplex techniques. But the simplex techniques are general and can be 

used even if no implementation of network algorithms is available. 

In the paper (Sawik, 2011), the scheduling in supply chains is investigated using 

mixed-integer programming. Simulation-based optimization versus mathematical 

programming is analysed in (Klemmt et al., 2009). In (Floudas and Lin, 2005), a review 

of the progress of MILP approaches for short-term scheduling systems has been made. In 

(Moreno and Montagna, 2009), the MILP model has been proposed to simultaneously 

optimize production planning and design decisions. 

2.2. Mixed-integer nonlinear programming 

Mixed-integer nonlinear programming (MINLP) problems, involving not only discrete, 

but also continuous variables, arise in many applications of engineering design, chemical 

engineering, operations research, and management. A review of the recent advances in 

the MINLP optimization of planning and design problems in the process industry is 

presented in (Kallrath, 2005).  

Mixed-integer nonlinear programming (MINLP) is often used for solving scheduling 

and rescheduling problems: 

 

 

 

 

 

 

 

Here  is a nonlinear objective function;  is an  vector of decision variables; 

 is an  matrix,  is an  vector;  is a  matrix,  is a  vector; 

 and  are  vectors;  is a  vector of functions containing nonlinear 

inequality constraints,  is a  vector;  is a  vector of functions containing 

nonlinear inequality constraints, and  is a  vector.  

In the paper (Akturk and Ilhan, 2011), scheduling with controllable processing times 

to minimize the total weighted tardiness is investigated, where the optimization problem 

is formulated as a mixed-integer nonlinear program. Newmann et al. (2002) introduced a 

mixed-integer nonlinear programming model for an advanced planning system. In the 

paper, the scheduling problem was formulated as a nonlinear mixed-integer program and 

transformed into a linear mixed–binary program. Orçun et al. (2001) introduced a 

continuous time model for production planning and scheduling. The proposed model is 

MINLP, which is reformulated as MILP using linearization techniques. 
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One of the cases of mixed-integer nonlinear programming is mixed-integer quadratic 

programming (MIQP) (Lee and Leyffer, 2012). It has the following form: 

 

 

 

 

 

where  is an  matrix and  is an  vector containing the quadratic objective 

function. The other notation is as before. 

2.3. Algorithms for solving MINLP 

The basic concept of algorithms for solving MINLP is to generate and refine bounds on 

its optimal solution value. Lower bounds are generated by solving a relaxation of 

MINLP, and upper bounds are provided by the value of a feasible solution to MINLP. 

Specificity of algorithms depends on the way how the bounds are generated and the 

sequence of subproblems that are solved to generate these bounds (Lee and Leyffer, 

2012). 

A retrospective on optimization techniques applied in the process systems 

engineering is presented in the paper (Biegler and Grossmann, 2004). Mixed integer and 

nonlinear programming, applied in scheduling problems in the flexible job shop cases, is 

overviewed in the paper (Özgüven et. al., 2012). Many deterministic methods for solving 

convex MINLP problems have been reviewed in (Biegler and Grossmann, 2004). The 

algorithm can be as follows: 

• branch and bound method can find a global solution only if the global solution of 

each subproblem can be found, 

• generalized benders decomposition, outer-approximation, an extended cutting 

plane method cannot solve problems with nonconvex constraints or nonconvex 

objective functions, because the subproblems may not have a unique optimum. 

• generalized disjunctive programming addresses discrete/continuous optimization 

problems that involve disjunctions with nonlinear inequalities and logic 

propositions. 

Branch and bound (B&B) is a well-known method for solving combinatorial 

optimization problems. The main idea of the method is to enumerate all feasible 

solutions  of the problem.  is divided into  subsets , , . The 

branch and bound method consists of three main steps – branching, bounding, and 

pruning: 

1. The process of branching divides all feasible solutions  into subsets . The 

branching is a recursive process: each  is divided into further subsets. The 

branching is represented as a branching tree, where  is the root and  are 

branches. 

2. The process of bounding calculates lower and upper bounds for all feasible 

solutions. 

3. If the lower bound of a subset is larger or equal to the best upper bound, the 

subset cannot produce a better solution than that already found and is discarded 
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from the search. If subsets cannot be pruned, the branching must continue from 

the current subsets. 

The most effective branch and bound methods for the job shop problem are based on 

the so-called disjunctive graph model. All the operations of the same job are connected, 

using conjunctive (directed) arcs, and operations of different jobs are connected, using 

disjunctive (undirected) arcs. When building a complete schedule, precedence relations 

are fixed between operations by turning disjunctive arcs into conjunctive. A set of fixed 

disjunctions defines a feasible schedule, if and only if every disjunctive arc has been 

fixed and the resulting graph is acyclic (Brucker, 2007), (Pinedo, 2012). 

In the paper (Özlen and Azizoğlu, 2009), a rescheduling problem, where a set of jobs 

has already been assigned to unrelated parallel machines, is solved by the branch and 

bound algorithm which generates all efficient solutions with respect to the efficiency and 

stability measures. 

Outer-approximation is one of the main approaches for solving MINLP. The 

algorithm is based on the fact that MINLP is equivalent to MILP of finite size. The 

outer-approximation algorithm is the interplay between two solvers: one solves MILP 

models, another solves nonlinear ones (Lee and Leyffer, 2012). 

The Generalized benders decomposition method is very similar to the outer-

approximation method. Instead of using linearizations for each nonlinear constraint, this 

method uses the duality theory to derive one single constraint that combines the 

linearizations derived from all the original problem constraints (Lee and Leyffer, 2012). 

Generalized disjunctive programming involves both Boolean and continuous 

variables that are specified in constraints, disjunctions, and logic propositions. It is an 

alternative representation of the traditional mixed-integer programming. 

When a rescheduling problem is solved by the mentioned methods, the following 

commonly used priority rules are taken into consideration: 

• First come, first served (FCFS); 

• Last come, first served (LCFS); 

• Earliest due date (EDD); 

• Shortest processing time (SPT); 

• Longest processing time (LPT); 

• Critical ratio (CR): (time until the due date)/(processing time); 

• Slack per remaining operations (S/RO); 

• Slack /(number of the remaining operations). 

2.4. Mixed-integer signomial programming 

Signomial programming is an optimization technique to solve a class of nonconvex 

nonlinear programming problems. Although signomial programming problems 

frequently occur in the engineering management science, the problems with nonconvex 

functions are still difficult to be solved in order to obtain global optimal solutions (Lin et 

al., 2012). Signomial programming can be used for solving a mixed-integer problem. 

The mixed-integer signomial programming problem formulation is as follows 

(Lundell et al., 2009): 
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The vector  may contain both continuous and integer variables. The differentiable 

real functions  and  are (pseudo)convex, the function  is convex, the function  is 

signomial. A signomial function is a sum of  signomial terms, where each term consists 

of products of the power functions (  are positive): 

 

The GGPECP algorithm solves non-convex MINLP problems containing signomial 

functions (Lundell et al., 2009). Global optimization algorithms are developed in 

(Floudas, 2000) to solve signomial programming problems, based on the exponential 

variable transformation, the convex relaxation, and the branch and bound type algorithm. 

The algorithms transform the nonconvex problem into a convex problem and then solve 

it to obtain the global optimal solution. 

2.5. Constraint programming 

Constraint programming (CP) is also used for solving scheduling problems. This 

technique was started in 1980 by the artificial intelligence community. In recent years, it 

has often been combined with the operations research techniques in order to improve its 

effectiveness (Pinedo, 2012). Constraint programming tries to find a good solution that 

is feasible and that satisfies all the given constraints. In scheduling problems, the 

constraints may include different termination dates and due dates of jobs. It is not 

necessary that the objective function be minimized.  

Constraint programming is applied to the job shop scheduling problem as follows: 

suppose that a schedule has to be found with a makespan less than or equal to a given 

deadline; the constraint satisfaction algorithm produces, for each machine, a sequence of 

operations such that the overall schedule has a makespan less than or equal to the 

deadline (Pinedo, 2012). In the paper (Heinz and Beck, 2002), the application of 

constraint linear programming to scheduling problems, that require resource and start-

time assignments to satisfy resource capacities, has been investigated. Some solutions of 

planning and scheduling problems by the combined integer and constraint programming 

have been introduced in the paper (Timpe, 2002). The authors presented an industrial 

application of a combined MIP/CP algorithm that is able to find a good feasible solution 

to a problem. 

3. Review of mixed-integer programming and constraint 

programming solvers 

Various solvers can be used for solving mathematical programming problems. Some of 

them are integrated into advanced planning and scheduling systems. A review of MINLP 
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solvers is presented in (Bussieck and Vigerske, 2010). The most popular solvers are 

described here. 

IBM ILOG CPLEX Optimization Studio
5 

includes mathematical programming and 

constraint programming optimization models and solvers. The CPLEX Optimizer 

provides flexible, high-performance mathematical programming solvers for linear 

programming, mixed-integer programming, quadratic programming, and quadratically 

constrained programming problems. The CPLEX CP Optimizer is a tool for constraint 

programming and it computes optimized schedules and solves other difficult 

optimization problems.  

FICO Xpress Optimization Suite
6
 software is a platform to develop optimization 

solutions that drive business process improvements. It provides many sophisticated, 

robust optimization algorithms for solving large-scale linear, mixed-integer linear and 

nonlinear, quadratic, mixed-integer quadratic and quadratically-constrained quadratic 

problems. 

LINDO API
7
 is a library of optimization solvers and mathematical programming 

tools. Various optimization methods are implemented: stochastic, linear, convex and 

nonconvex nonlinear, mixed-integer, quadratic, quadratically constrained, second order 

cone and integer optimization. 

BARON
8
 (Branch And Reduce Optimization Navigator) is a computational system 

for solving nonconvex optimization problems in order to achieve the global optimality. 

Continuous, integer and mixed-integer nonlinear problems can be solved using the 

software. 

KNITRO
9
 is a software package for solving large scale mathematical optimization 

problems. It is specialized for nonlinear optimization, but also solves linear 

programming problems, quadratic programming problems, mixed-integer linear, 

quadratic or nonlinear programming problems. 

MOSEK
10

 is a solver for linear programming, mixed-integer programming, quadratic 

programming, and convex nonlinear programming problems. 

BONMIN
11

 (Basic Open-source Nonlinear Mixed-INteger programming) is the 

experimental open source software for solving mixed-integer nonlinear problems. 

The algebraic modelling languages are useful in developing optimization models. 

The most comprehensive and powerful, as well as most popular modelling languages are 

as follows: AIMMS
12

, AMPL
13

, GAMS
14

. They allow us to use the common notation in 

formulating optimization models. There are interfaces through which they are linked to 

various solvers.  

                                                           

5 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/ 
6 http://www.fico.com/en/products/fico-xpress-optimization-suite/ 
7 http://www.lindo.com/index.php?option=com_content&view=article&id=1&Itemid=9 
8 http://www.theoptimizationfirm.com 
9 http://www.ziena.com 
10 http://www.mosek.com 
11 https://projects.coin-or.org/Bonmin 
12 http://business.aimms.com 
13 http://www.ampl.com 
14 http://www.gams.com/ 
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The network-enabled optimization system (NEOS)
15

 is a free internet-based service 

for solving optimization problems. NEOS allows solving various optimization problems 

and provides several interfaces for accessing the solvers. It involves the solvers for 

bound constrained optimization, combinatorial optimization, integer programming, 

global optimization, linear programming, mixed-integer linear programming, mixed-

integer nonlinearly constrained optimization, nonlinearly constrained optimization, 

semidefinite programming, etc. 

The TOMLAB
16

 optimization environment is a package for solving complex 

optimization problems in Matlab. TOMLAB is compatible with the MathWorks 

optimization toolbox, so Matlab solver algorithms are supported. TOMLAB solves more 

types of optimization problems, and it is faster and more robust than the MathWorks 

optimization toolbox. Moreover, the well-known state-of-the-art optimization solvers are 

integrated into TOMLAB. Various optimization problems can be solved: mixed-integer 

linear, quadratic and nonlinear programming, semidefinite programming, geometric 

programming, global optimization problems, etc. 

In Table 1, the comparison of solvers is presented, where mixed-integer linear 

programming (MILP), mixed-integer nonlinear programming (MINLP), mixed-integer 

quadratic programming (MIQP) and constraint programming (CP) are implemented in 

the solvers. 

Table 1. The comparison of solvers for MILP, MINLP, MIQP, CP. 

Solvers MILP MINLP MIQP CP 

IBM ILOG CPLEX Optimization Studio     

FICO Xpress Optimization Suite     

LINDO API     

BARON     

KNITRO     

MOSEK     

BONMIN     

NEOS     

TOMLAB     

Conclusions 

In the paper, an overview of deterministic methods is presented, based on mixed-integer 

programming suitable for scheduling and rescheduling problems in the framework of the 

production effectiveness navigator. The navigator has to react to unexpected events 

occurring in the production process in the shop-floor level. The rescheduling must be 

done, as the process cannot be continued according to the initial schedule. The state-of-

the-art optimization methods should be involved. Moreover, the management focus 

should be taken into account, when not only the initial schedule, but also a new schedule 

                                                           

15 http://neos.mcs.anl.gov/neos/solvers/ 
16 http://tomopt.com/tomlab/ 
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is created. Deterministic approaches can be successfully used for solving rescheduling 

problems. Most of them are able to find the global optimal solutions. Despite that the 

computation is time-consuming in this case, modern computing technologies and their 

power allow us to get the desirable solutions in the acceptable time. On the other hand, if 

scheduling problems are highly complicated, deterministic methods can be integrated 

with heuristics. 
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