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Abstract: In the paper, the influence of learning parameters on self-organizing map (SOM) is 

analyzed, when both numerical data and text documents are investigated. Three neighboring 

functions (bubble, Gaussian, and heuristic) and four learning rates (linear, inverse-of-time, power 

series, and heuristic) have been investigated. The learning rates are changed according to epochs 

or iterations. The quality of self-organizing map is measured not only by quantization error, but 

also by two other measures, which are suitable when the classified data are analyzed. 
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1. Introduction 

Past more than thirty years when self-organizing map (SOM) was introduced (Kohonen, 

2001), but SOM has been still widely used for data classification, clustering, and 

visualization. Over the past decade, a lot of self-organizing map modifications has been 

developed, but mostly all of them are created for specific tasks. For example, the 

environmental self-organizing maps (EnvSOM) are used for a large dataset analysis, 

where self-organizing maps are influenced by environment conditions (Alonso et al., 

2011). The batch-learning self-organizing maps (BLSOM) are used for the large data 

analysis in bioinformatics area (Iwasaki et al., 2013). There are many other 

modifications and extensions of the traditional SOM algorithm, such like the recursive 

self-organizing map (Voegtlin, 2002), the growing hierarchical self-organizing map 

(Dittenbach et al., 2000), the merge self-organizing map (Hammer et. al, 2004), 

WEBSOM (Lagus et al., 2004), the self-organizing map for structured data 

(Hagenbuchner et al., 2003), and more other. For a long-time, the self-organizing map 

has been used just for a statistical data analysis, but nowadays it is used for different 

kinds of data: audio (Mayer, 2011), video (Barecke et al., 2006), images (Ishtiaq et al., 

2009), text information (Kohonen and Xing, 2011), etc. 

The results of self-organizing maps depend on learning parameters, such like 

neighboring functions, learning rates, map size, etc. The main goal of this research is to 

analyze how the self-organizing map learning parameters affect the results of the trained 

SOM, when both numerical data and text documents are investigated. The quality of 

SOM is measured according not only quantization error, but also the measures purposed 
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in (Stefanovič and Kurasova, 2014). In our preview work (Stefanovič and Kurasova, 

2011a), we has analyzed the influence of neighboring functions and learning rates on 

SOM results, too. However, there the experiments have been carried out just with 

numerical datasets and only a quantization error has been estimated. In this paper, we 

analyze and compare results when different kinds of datasets are used: text documents 

and numerical datasets. Particularity of data from text documents, comparing to 

numerical data, is that usually dimensionality of the data is high, moreover, the number 

of data features is larger than that of data items. Therefore, it is important to explore the 

influence of learning parameters on SOM results, when both numerical data and text 

documents are analyzed. 

2. Self-organizing map 

The self-organizing map is a type of artificial neural network, which is learned by an 

unsupervised manner. The self-organizing map (Kohonen, 2001) is a set of nodes, 

connected to each other via a rectangular or hexagonal topology. The connections 

between the inputs and the nodes have weights, so a set of weights corresponds to each 

node. The set of weights forms a vector                       that is usually 

called a neuron or a codebook vector, where    is the number of rows, and     is the 

number of columns (in the case of a rectangular topology). The main aim of the SOM is 

to preserve the topology of multidimensional data when they are transformed into lower 

dimensional space. Usually, the self-organizing maps are used to cluster, classify, and 

visualize different kinds of datasets. The self-organizing maps can deal only with 

numerical data, so first, we have to transform any kinds of datasets to numerical 

expression. Suppose, we have a dataset                , where each data item is 

described by the features           , i. e.                   . So,    is a point (or 

a vector) in  -dimensional space,      . All datasets are given to SOM as a matrix: 
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)                                         

 

Here     is the value of the  th component of the vector   ,        ,         . 

  is the number of analyzed input vectors, and   is the number of components. The 

learning process of the SOM algorithm starts from initialization of the components of the 

vectors (neurons)    . They can be initialized at random (usually these values are 

random numbers from the interval (0, 1)) or by the principal components. At each 

learning step, an input vector                 is passed to the SOM. The vector 

   is compared with all neurons    . Usually the Euclidean distance between this input 

vector     and each neuron      are calculated. The vector (neuron)    with the minimal 

Euclidean distance to    is designated as a neuron winner (best match unit). All neurons 

components are adapted according to the learning rule: 

 

                                             
                             (2)               
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Here   is the number of learning step,    
  is a neighboring function,   is a pair of 

indexes of the neuron winner of vector   . The learning is repeated until the maximum 

number of learning step   is reached. 

2.1. Learning parameters 

The results of self-organizing map depend on the selected learning parameters. So, it is 

important to choose the best learning parameters to get the better results. The results 

mostly are affected by different neighboring functions    
  (Table 1) and learning rates 

     (Table 2). Usually, two neighboring functions – bubble (3) and Gaussian (4) are 

used. In our research, we analyze one more neighboring function, so-called heuristic (5), 

introduced in (Stefanovič and Kurasova, 2011a). 

 

Table 1. Neighboring functions 

Bubble (3) Gaussian (4) Heuristic (5) 
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In Table 1,    is the index set of neighboring nodes around the node with indexes  . 

Two-dimensional vectors    and     consist of indexes of    and     , respectively. 

The indexes show a place of the neuron-winner, the codebook vector of which is    , 

for the vector    and that of the neuron, the codebook vector of which is     , in SOM. 

The parameter    
  is the neighboring rank of     according to   . As it was mentioned 

before, the learning rate      also influences the results of self-organizing map. Usually 

linear (6), inverse-of-time (7), and power series (8) learning rates are used for SOM 

training. In our investigation, we analyze one more learning rate, so-called heuristic (9). 

Four variants of learning rates are presented in Table 2. 

 

Table 2. Learning rates 

Linear 

(6) 

Inverse-of-time 

(7) 

Power series  

(8) 

Heuristic  

(9) 
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In this paper, two cases are investigated: 

 When the learning rate      depends on the iteration number (in this case,   is the 

order number of the current iteration and   is the total number of iterations). One 

iteration is part of the training process, when one input vector is passed to the 

network and the neurons are changed. 

 When the learning rate      depends on the epoch number (in this case,   is the 

order number of the current epoch and   is the total number of epochs). An epoch 

is part of the training process, when all vectors of the training dataset are passed 

to the network at once. 
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2.2. SOM quality estimators 

One of self-organizing map advantages is visualization of datasets, so after SOM is 

trained, it is important to evaluate the quality of the map. Usually a quantization error 

    (10) (Table 3) is calculated.      is the averaged distance between the vectors     

and the codebook vectors        of their neurons-winners. It shows how well the 

codebook vectors of neurons of the trained SOM adapt to the input vectors   ,   

     .  

 

Table 3. Quality estimators of self-organizing map 

Estimated errors Formula 

Quantization error 

(10) 
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different class centers 

(12) 
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In the paper, SOM quality is estimated not only by the quantization error, but also by 

two other measures, proposed in (Stefanovič and Kurasova, 2014) and used for classified 

data. The measures shows how well classified data correspond to clusters on SOM. The 

first proposed measure    (11) is the Euclidean distance between indexes of all the SOM 

cells, corresponding to the data from same class. The measures    are suitable, when we 

want to see which classes are closer to each other in the maps and how classes match to 

them clusters. Here   is a class label,          ,   is the number of classes;    is 

the number of data items from the  th class;    is the total number of neurons 

corresponding to the data from the  th class;    {  
    

       
 } is a vector, consisting 

of indexes of the SOM cells, corresponding to the data from the  th class;   
  is the 

number of the data items from the  th class in the SOM cell, the indexes of which are 

  
 .   is a penalty.    is the number of the data items in the SOM cell, the indexes of 

which are   
 ;   

  
 is the numbers of data items from other classes than the  th class in the 

SOM cell, the indexes of which are   
 . In this case, the smaller value of measure    

mean the better results, it means that all same class members are closer to each other. 

The measure         (12) is a distance between the centers of indexes of SOM cells, 

corresponding to data items from each class.    is the center of indexes of SOM cells 

corresponding to the data items from the  th class. In this case, the bigger value of 

measure         means the better results, i.e. all the different class centers are far from 

each other, so on the map they are separated. 

3. Experimental investigation 

It is important to investigate how various learning parameters affect the results of SOM 

with different kinds of datasets. In this research, we analyze two datasets: text 

documents and numerical datasets. To analyze text document dataset by self-organizing 

map, first, we have to convert text information to numerical expression. 
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3.1. Text document conversation to numerical expression 

At first, so-called text document dictionary has to be created. In this dictionary, all the 

words are included from the document dataset according to the control factors: word 

length, word frequency, remove alphanumeric and numbers, etc. It is important to 

choose proper control parameters. For example, if we choose to big word frequency, we 

can lose some documents, in the case, if the document do not have such words. When we 

have the text document dictionary, we can create text document matrix, the form of 

which is as in (1). One raw of the matrix corresponds to a document.     is the frequency 

of the  th word in the  th text document,        ,         .   is the number of 

the analyzed text documents, and   is the number of words in the text document 

dictionary. Dimensionality   of the vectors    (             ),         

depends on the number of the words in the dictionary.  

There are different tools, which help to construct the text document matrix from 

documents dataset. Such popular systems like KNIME (Berthold et al, 2007) also can be 

used for text document analysis. In our research, we use a text to matrix generator 

(TMG) toolbox for Matlab to get a bag-of-words and create a text document matrix 

(Zeimpekis and Gallopoulos, 2005).  

3.2. Dataset analyzed 

The experiments have been carried out using five text document datasets, which we take 

from the document database of Seimas of the Republic of Lithuania (LRS, 2013). Fifteen 

documents of similar length from four different areas have been selected at random: the 

Ministry of Health, the Ministry of Education, the Ministry of Internal Affairs, and the 

Ministry of Agriculture. 

All 60 documents are converted to numerical expressions. When creating text 

document matrix, some control factors are fixed. The numbers and alphanumeric are 

removed, because this information is not informative and do not define the documents. 

Primary research has showed that the total number of frequencies for this dataset is five, 

because, if we use the bigger number, some documents do not have such words, which 

repeated five times, and the documents simply rejected. Therefore, we create five 

different text document matrixes which have 60 rows and the different number of 

columns: 3812 (when frequency equal to 1), 1494 (when frequency equal to 2), 769 

(when frequency equal to 3), 446 (when frequency equal to 4), and 287 (when frequency 

equal to 5). 

Two numerical datasets are also analyzed: glass and zoological (zoo). The glass 

dataset was collected by a scientist, which wanted to help criminalists to recognize glass 

slivers found (Asuncion and Newman, 2007). Nine-dimensional vectors                

are formed, where    (             ),          . The dataset has been 

separated to five classes. The zoological dataset consists of 16 Boolean values. Sixteen-

dimensional vectors               are formed, where    (              ),   

      . The dataset has five different classes. 
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3.3. Experimental results 

The system, in which the SOM algorithm is implemented in Matlab (Stefanovič and 

Kurasova, 2011b), is used in the experimental investigation. In this system, we can 

choose any neighboring functions from Table 1 and any learning rate from Table 2. The 

possibility to choose according to what (epochs or iterations) learning rate will be 

changed is implemented, too. The primary research has shown, that the size of the map 

and bigger epoch or iteration number do not affect the results essentially, so in all 

experiments, the map size is 10×10 and the epoch numbers are equal to 50. The number 

of epochs multiplied by the number of data items N corresponds to the number of the 

iterations. Each experiment is repeated 10 times with different initial values of 

neurons    . The averages of the quantization error and all the other measures are 

calculated. The self-organizing map is trained using 80% of all the dataset, and the rest 

20% of the dataset is used for testing in order to see how well the testing dataset adapts 

to the trained SOM. 

First of all, an experiment was carried out using five text document datasets. The 

results of all the five text document matrix are averaged (when the frequency is from 1 to 

5) and presented in Fig. 1. The numbers in brackets under columns correspond to the 

number of the learning rates in Table 2. The results, obtained in both cases of changing 

learning rate (according to epochs and iterations), using three neighboring functions, are 

presented in Fig. 1. As we can see in Fig. 1, the smallest quantization error was obtained, 

when we use the Gaussian neighboring function and the inverse-of-time learning rate (7) 

according to iterations (except for the linear learning rate (6) according to iterations) is 

used. The quantization error is also small when the Gaussian neighboring function and 

the heuristic learning rate (9) is used according to epochs and iterations. The worst 

results are obtained, when the bubble neighboring function is used. When the heuristic 

neighboring function is used, the quantization errors close to that, when the Gaussian 

neighboring function is used.  

 

Figure 1. The averaged values of measures for text document training dataset  
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If we look to the results of measures   , we can see that, in the case of the first class 

(  ), mostly all the smallest values of measure are obtained, when the bubble 

neighboring function is used, it means that the same class members are placed near in the 

map (the smaller results mean the better results). The values are also small, when the 

heuristic neighboring function is used. As we can see, the smallest values are obtained, 

when the linear learning rate (6) is used according to iterations. It is difficult to see the 

tendency of the    values, because the results are similar using all the neighboring 

functions and learning rates. In the case of measure   , the smallest values are get, when 

the heuristic neighboring function is used (except for the linear learning rate (6) 

according to iterations). The results of measure    are almost similar, when the bubble 

and heuristic neighboring function are used. The smallest results are also obtained, when 

the linear learning rate (6) according to iterations is used. 

 The biggest value of measure         is obtained, when the heuristic neighboring 

function and the heuristic learning rate (9) according to iterations is used. It means that 

the different class centers are far away from each other, so the different classes separate 

better. The results obtained, when the bubble and Gaussian neighboring functions are 

used, are very similar. The smallest results are obtained, when the heuristic (9) and 

inverse-of-time (7) learning rates are used according to epochs. 

 

 
Figure 2. The averaged values of measures for text document testing dataset 

 

The results of the testing data are presented in Fig. 2. The quantization error values 

are similar, so it is difficult to see some difference. In the cases of measures    and   , 

the Gaussian and heuristic neighboring function also provide similar results, but in the 

most cases, the heuristic neighboring function gives slightly better results. The values of 

measure    are smallest, when the heuristic function is used (except for the linear 

learning rate (6) according to iterations). The values of measure    are various, so it is 
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difficult to say which learning parameters give the better results. Almost in all the cases, 

the value of measure         are better, when the heuristic neighboring function is used. 

The best result is obtained, when the heuristic learning rate (9) according to iterations is 

used. 

Concluding the results of the text document analysis, we can say that the best 

quantization error is obtained, when the Gaussian neighboring function and any learning 

rates according to epochs or iterations are used. In the case of measure   , the best 

results are get, when the heuristic neighboring function and the linear learning rate (6) 

according to iterations is used. In many cases, the worse results are obtained, when the 

Gaussian neighboring function is used. The results of measure         are the best, when 

the heuristic neighboring function and the heuristic learning rate (9) according to 

iterations is used. 

Similar experiments have been made using glass and zoo datasets. The results of the 

quantization error and all the measures also are averaged and presented in Fig. 3. Almost 

in all the cases, the smallest quantization error is obtained, when the Gaussian 

neighboring function is used (except for the linear rate (6) according to iterations and the 

power series learning rate (8) according to epochs). The worst quantization error results 

are obtained, when the bubble neighboring function is used.  

 

 
Figure 3. The averaged values of measures for glass and zoo training datasets. 
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The results for the first class    are better, when the bubble and heuristic neighboring 

functions are used. The Gaussian neighboring function gives worse results. The values of 

measure    are smallest, when the Gaussian neighboring function is used. The smallest 

value is obtained, when linear learning rate (6) is used according to iterations. The other 

neighboring functions give worse results. The best value of    obtained, when the 

heuristic neighboring function is used (except for the linear learning rate (6) according to 

iterations). The bubble and Gaussian neighboring functions give worse results. In the 

case of measure   , the results obtained by the bubble and heuristic neighboring 

functions are almost same. The smallest measure is obtained, when the inverse-of-time 

learning rate (7) according to iterations or epochs are used. According to the measure   , 

the best results are get, when the bubble neighboring function is used. The values of the 

measure between different class centers         are better, when the heuristic 

neighboring function is used. The highest value is obtained, when the heuristic learning 

rate (9) according to iterations is used. The worst results are obtained, when the bubble 

neighboring function is used. 

 

 
Figure 4. The averaged values of measures for glass and zoo testing datasets. 

 

The result of the testing data presented in Fig. 4. In this case, the quantization errors 

are also the smallest, when the Gaussian neighboring function is used. The bubble 

neighboring function gives the highest value of measures      ,   , and the smallest 
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value of measure        . The Gaussian neighboring function gives the best results 

according to measures    and   , but the worst ones are according to value of measures 

   (except for the linear (6) and inverse-of-time (7) learning rates according to epochs) 

and    (except for the power series learning rate (8) according to epochs). The heuristic 

neighboring function gives the best results with all learning rates in the case of 

measure        . So, like in other experiments, this heuristic function results show that 

the usage of this neighboring function better separate different class members in SOM. 

The results of the glass and zoo data analysis also show that the best quantization 

error is obtained, when the Gaussian neighboring function is used. The heuristic 

neighboring function gives the best results, in the case of measure        . It is difficult 

to see differences in the case of measure   , because, in the different cases, various 

neighboring functions give various results.  

4. Conclusions 

In the paper, the influence of the learning parameters on the results of the self-organizing 

maps has been investigated, when two kinds of the datasets (numerical and text) are 

analyzed. Usually text document datasets differ from numerical ones in the number of 

features, characterizing the data.  In the case of text document datasets, the number of 

the features can be very huge subject to the number of words in the dictionary. 

Moreover, the text document matrix is sparse, because not all the words from the 

dictionary are in every document. Therefore, it is purposeful to investigate SOM learning 

parameters for both numerical and text datasets. Moreover, it is purposeful to evaluate 

SOM results not only by quantization error, but also by the measures, which indicate 

how well the classified data corresponds to clusters in the SOM. The experimental 

investigation, when text documents, glass, and zoo datasets are analyzed by the self-

organizing maps, confirms that learning parameters (neighboring functions and learning 

rates) impact on the SOM results. The results show that ones learning parameters are 

more suitable, when text datasets are analyzed and other ones, when numerical datasets 

are investigated.  

In most cases, the quantization errors are smallest, when the Gaussian neighboring 

function and any learning rate is used. The quantization errors, obtained when the 

heuristic neighboring function is used, are close to that obtained when the Gaussian 

neighboring function is applied. The experimental investigation shows that the heuristic 

neighboring function is the most suitable, in many cases, not only for numerical data, but 

also for text document dataset, in sense of the measures, which evaluate how well the 

classified data corresponds to clusters in the SOM. When the heuristic neighboring 

function is used, it is appropriate to use the heuristic learning rate according to iterations. 

In this case, the values of         mostly always are higher, so it means that different 

classes are separated better for training and testing data. The smallest values of measure 

         are obtained, when the bubble neighboring function is used. The results of the 

Gaussian neighboring function are similar to the bubble neighboring function results, 

when text documents are analyzed, but in the case of numerical data, they are similar to 

the heuristic neighboring function results. It is difficult to make conclusions, which 

learning parameters give the best results of measure   , because the results are various 

and depend on the class number. The results weakly depend on how the learning rule is 

changed (according to epochs or iterations).  



 Investigation on Learning Parameters of Self-Organizing Maps           55       

5. References 
 

Asuncion, A., Newman, D. J. (2007). UCI Machine Learning Repository, Irvine, CA: University 

of California, School of Information and Computer. 

http://www.ics.uci.edu/~mlearn/MLRepository.html 

Alonso, S., Sulkava, M., Prada, M. A., Domínguez, M., and Hollmén, J. (2011). EnvSOM: A 

SOM Algorithm Conditioned on the Environment for Clustering and Visualization. WSOM 

2011, LNCS 6731, pp. 61–70. Springer-Verlag Berlin Heidelberg. 

Barecke, T., Kijak, E., Nurnberger, A., and Detyniecki, M. (2006). Summarizing video 

information using self-organizing maps, Proc. IEEE Int. Conf. Fuzzy Syst., pp. 540-546. 

Berthold, M., Cebron, N., Dill, F., Kotter, T., and Meinl, T. (2007). KNIME: The Konstanz 

Information Miner. Studies in Classification, Data Analysis, and Knowledge Organization 

(GFKL 2007). Springer. 

Dittenbach, M., Merkl, D., Rauber, A. (2000). The growing hierarchical self-organizing map. 

IEEE - INNS - ENNS International Joint Conference on Neural Networks 6, 6015. 

Hagenbuchner, M., Sperduti, A., and Tsoi, A. C. (2003). A self-organizing map for adaptive 

processing of structured data. IEEE Transactions on Neural Networks 14 (3), 491-505. 

Hammer, B., Micheli, A., Sperduti, A., Strickert, M. (2004) A general framework for unsupervised 

processing of structured data. Neurocomputing 57, 3-35. 

Ishtiaq, M., Jaffar, A., Hussain, A., Basit, A., Mirza, A. M. (2009). Wavelet Based Video 

Segmentation Using Self Organizing Map Neural Network, Computer Science and 

Information Technology - Spring Conference, 2009. IACSITSC '09. International 

Association of, pp. 122-125 

Iwasaki, Y., Abe, T.,Wada, Y.,Wada, K., Ikemura, T. (2013). Novel bioinformatics strategies for 

prediction of directional sequence changes in influenza virus genomes and for surveillance 

of potentially hazardous strains. BMC Infectious Diseases 13(386). 

Kohonen, T. (2001). Self-organizing Maps, 3rd ed., Springer Series in Information Sciences. 

Berlin: Springer-Verlag. 

Kohonen, T., Xing, H. (2011). Contextually Self-Organized Maps of Chinese Words. In: J. 

Laaksonen, T. Honkela (Eds.) Advances in Self-Organizing Maps – WSOM 2011, Lecture 

Notes in Computer Science, Vol. 6731, Springer-Verlag, pp. 16–29. 

Lagus, K., Kaski, S., Kohonen, T. (2004). Mining massive document collections by the WEBSOM 

method. Information Sciences 163(1-3), 135-156. 

Mayer, R. (2011). Analysing the Similarity of Album Art with Self-organizing maps. In: J. 

Laaksonen, T. Honkela (Eds.) Advances in Self-Organizing Maps – WSOM 2011, Lecture 

Notes in Computer Science, Vol. 6731, Springer-Verlag, pp. 357–366. 

Seimas of the Republic of Lithuania (2013). http://www3.lrs.lt/dokpaieska/forma_l.htm 

Stefanovič, P., Kurasova, O. (2011a). Influence of Learning Rates and Neighboring Functions on 

Self-Organizing Maps. WSOM 2011, LNCS 6731, pp. 141-150. Springer-Verlag Berlin 

Heidelberg. 

Stefanovič, P., Kurasova, O. (2011b). Visual analysis of self-organizing maps. Nonlinear Analysis: 

Modeling and Control, 16(4), p. 488–504. 

Stefanovič, P., Kurasova, O. (2013). Similarity analysis of text documents by self-organizing maps 

and k-means. Informacijos mokslai. T. 65, p. 24–33. 

Stefanovič, P., Kurasova, O. (2014). Creation of text document matrices and visualization by self-

organizing map. Information Technology and Control, T. 43, Nr. 1, p. 37-46. 

Voegtlin, T. (2002). Recursive self-organizing maps. Neural Networks 15 (8-9), 979-992. 

Zeimpekis, D., Gallopoulos, E. (2005). TMG: A Matlab Toolbox for Generating Term-Document 

Matrices from Text Collections, Technical Report HPCLAB-SCG 1/01-05, University of 

Patras, GR-26500, Patras, Greece. 

 

 

Received April 3, 2014,  revised May 22, 2014,  accepted May 29, 2014 


